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We use auxiliary principle technique coupled with iterative regularization method to suggest
and analyze some new iterative methods for solving mixed variational-like inequalities. The
convergence analysis of these new iterative schemes is considered under some suitable conditions.
Some special cases are also discussed. Our method of proofs is very simple as compared with other
methods. Our results represent a significant refinement of the previously known results.

1. Introduction

Variational inequalities are being used to study a wide class of diverse unrelated problems
arising in various branches of pure and applied sciences in a unified framework. Various
generalizations and extensions of variational inequalities have been considered in different
directions using a novel and innovative technique. A useful and important generalization of
the variational inequalities is called the variational-like inequality, which has been studied
and investigated extensively. It has been shown [1–3] that the minimum of the differentiable
preinvex (invex) functions on the preinvex sets can be characterized by the variational-like
inequalities. Note that the preinvex functions may not be convex functions and the invex
sets may not be convex sets. This implies that the concept ofinvxesity plays same roles in
the variational-like inequalities as the convexity plays the role in the variational inequalities.
We would like to point out that the variational-like inequalities are quite different then
variational inequalities in several aspects. For example, one can prove that the variational
inequalities are equivalent to the fixed point problems, whereas variational-like inequalities
are not equivalent to the fixed point problems. However, if the invex set is equivalent to
the convex set, then variational-like inequalities collapse to the variational inequalities. This
shows that variational-like inequalities include variational inequalities as a special case.
Authors are advised to see the delicate difference between these two different problems. For
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other kind of variational inequalities involving two and three operators, see Noor [4–7] and
Noor et al. [8–13].

There is a substantial number of numerical methods including the projection technique
and its variant forms including theWiener-Hopf equations, auxiliary principle, and resolvent
equations methods for solving variational inequalities and related optimization problems.
However, it is known that the projection method, Wiener-Hopf equations, and resolvent
equations techniques cannot be extended to suggest and analyze similar iterative methods
for solving variational-like inequalities due to the presence of the bifunction η(·, ·). This
fact motivated us to use the auxiliary principle technique of Glowinski et al. [14]. In this
technique, one consider an auxiliary problem associated with the original problem. This
way, one defines a mapping and shows that this mapping has a fixed point, which is a
solution of the original problem. This fact enables us to suggest and analyze some iterative
methods for solving the original problem. This technique has been used to suggest and
analyze several iterative methods for solving various classes of variational inequalities and
their generalizations, see [1, 2, 4–34] and the references therein.

The principle of iterative regularization is also used for solving variational inequalities.
It was introduced by Bakušinskiı̆ [16] in connection with variational inequalities in 1979. An
important extension of this approach is presented by Alber and Ryazantseva [15]. In this
approach, the regularized parameter is changed at each iteration which is in contrast with
the common practice for parameter identification of using a fixed regularization parameter
throughout the minimization process. One can combine these two different techniques for
solving the variational inequalities and related optimization problems. This approach was
used by Khan and Rouhani [22] and Noor et al. [9, 10] for solving the mixed variational
inequalities.

Motivated and inspired by the these activities, we suggest and analyze some iterative
algorithms based on auxiliary principle and principle of iterative regularization for solving
a class of mixed variational-like inequalities. For the convergence analysis of the explicit
version of this iterative algorithm, we use partially relaxed strongly monotone operator
which is a weaker condition than strongly monotonicity used by Khan and Rouhani [22]. We
also suggest a new implicit iterative algorithm, the convergence of which requires only the
monotonicity, which is weaker condition than strongly monotonicity. Results proved in this
paper represent a significant improvement of the previously known results. The comparison
of these methods with other methods is an interesting problem for future research.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let K be a nonempty closed set in H. Let f : K → R and η(·, ·) : K ×K → H
be mappings. First of all, we recall the following well-known results and concepts; see [1–
3, 21, 33].

Definition 2.1. Let u ∈ K. Then the set K is said to be invex at u with respect to η(·, ·), if

u + tη(v, u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1]. (2.1)

K is said to be an invex set with respect to η(·, ·), if K is invex at each u ∈ K. The invex set K
is also called η-connected set. Clearly, every convex set is an invex set with η(v, u) = v−u, for
all u, v ∈ K, but the converse is not true; see [3, 33].
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From now onwards, Kis a nonempty closed and invex set in H with respect to η(·, ·), unless
otherwise specified.

Definition 2.2. A function f : K → R is said to be preinvex with respect to η(·, ·), if

f
(
u + tη(v, u)

) ≤ (1 − t)f(u) + tf(v), ∀u, v ∈ K, t ∈ [0, 1]. (2.2)

Note that every convex function is a preinvex function, but the converse is not true; see [3, 33].

Definition 2.3. A function f is said to be a strongly preinvex function onK with respect to the
function η(·, ·)with modulus μ, if

f
(
u + tη(v, u)

) ≤ (1 − t)f(u) + tf(v) − t(1 − t)μ
∥
∥η(v, u)

∥
∥2

, ∀v, u ∈ K, t ∈ [0, 1]. (2.3)

Clearly, a differentiable strongly preinvex function f is a strongly invex function with
constant μ > 0, that is,

f(v) − f(u) ≥ 〈
f ′(u), η(v, u)

〉
+ μ

∥∥η(v, u)
∥∥2
, ∀v, u ∈ K, (2.4)

and the converse is also true under certain conditions.

We remark that if t = 1, then Definitions 2.2 and 2.3 reduce to

f
(
u + η(v, u)

) ≤ f(v), ∀u, v ∈ K. (2.5)

One can easily show that the minimum of the differentiable preinvex function on the invex
set K is equivalent to finding u ∈ K such that

〈
f ′(u), η(v, u)

〉 ≥ 0, ∀v ∈ K, (2.6)

which is known as the variational-like inequality. This shows that the preinvex functions play
the same role in the study of variational-like inequalities as the convex functions play in the
theory of variational inequalities. For other properties of preinvex functions, see [3, 30, 33]
and the references therein.

LetK be a nonempty closed and invex set inH. For given nonlinear operator T : K →
H and a continuous function φ(·), we consider the problem of finding u ∈ K such that

〈
Tu, η(v, u)

〉
+ φ(v) − φ(u) ≥ 0, ∀v ∈ K, (2.7)

which is called the mixed variational-like inequality introduced and studied by [1]. It has been
shown in [1–3] that a minimum of differentiable preinvex functions f(u) on the invex sets in
the normed spaces can be characterized by a class of variational-like inequalities (2.7) with
Tu = f ′(u) where f ′(u) is the differential of a preinvex function f(u). This shows that the
concept of variational-like inequalities is closely related to the concept of invexity. For the
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applications, numerical methods, and other aspects of the mixed variational-like inequalities,
see [1, 2, 29] and the references therein.

We note that if η(v, u) = v − u, then the invex set K becomes the convex set K and
problem (2.7) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 + φ(v) − φ(u) ≥ 0, ∀v ∈ K, (2.8)

which is known as a mixed variational inequality. It has been shown [1–14, 17–35] that a wide
class of problems arising in elasticity, fluid flow through porous media and optimization can
be studied in the general framework of problems (2.7) and (2.8).

If φ(·) = 0, then problem (2.7) is equivalent to finding u ∈ K such that

〈
Tu, η(v, u)

〉 ≥ 0, ∀v ∈ K, (2.9)

which is known as the variational-like inequality and has been studied extensively in recent
years. For η(v, u) = v − u, the variational-like inequality (2.9) reduces to the original
variational inequality, which was introduced and studied by Stampacchi [32] in 1964. For
the applications, numerical methods, dynamical system, and other aspects of variational
inequalities and related optimization problems, see [1–35] and the references therein.

Definition 2.4. An operator T : K → K is said to be

(i) η-Monotone, if and only if, 〈Tu, η(v, u)〉 + 〈Tv, η(u, v)〉 ≤ 0, for all u, v ∈ K.

(ii) Partially relaxed strongly η-monotone, if there exists a constant α > 0 such that

〈
Tu, η(v, u)

〉
+
〈
Tz, η(u, v)

〉 ≤ α
∥∥η(z, u)

∥∥2
, ∀u, v, z ∈ K. (2.10)

Note that for z = v, partially relaxed strong η-monotonicity reduces to η-monotonicity of the
operator T . For η(v, u) = v − u, the invex set K becomes the convex set and consequently
Definition 2.4 collapses to the well concept of monotonicity and partial relaxed strongly
monotonicity of the operator.

Assumption 2.5. Assume that the bifunction η : K ×K → H satisfies the condition

η(u, v) = η(u, z) + η(z, v), ∀u, v, z ∈ K. (2.11)

In particular, it follows that η(u, u) = 0 and

η(u, v) + η(u, v) = 0, ∀u, v ∈ H. (2.12)

Assumption 2.5 has been used to suggest and analyze some iterative methods for various
classes of variational-like inequalities.
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3. Auxiliary Principle Technique/Principle of Iterative Regularization

In this section, we will discuss the solution of mixed variational-like inequality (2.7) using its
regularized version. We will use auxiliary principle technique [14] coupled with principle of
iterative regularization for solving the mixed variational-like inequalities.

For a given u ∈ K satisfying (2.7), we consider the problem of finding z ∈ K such that

〈
Tw + E′(w) − E′(u), η(v,w)

〉
+ φ(v) − φ(w) ≥ 0, ∀v ∈ K. (3.1)

Note that, ifw = u, then (3.1) reduces to (2.7). Using (3.1), we suggest an iterative scheme for
solving (2.7). For a given u ∈ K, consider the problem of finding a solution z ∈ K satisfying
the auxiliary variational-like inequality

ρn
〈
Tw + εnw + E′(w) − E′(u), η(v,w)

〉
+ ρnφ(v) − ρnφ(w) ≥ 0, ∀v ∈ K, (3.2)

where {ρn}∞n=1 be a sequence of positive real, and {εn}∞n=1 be a decreasing sequence of positive
real such that εn → 0 as n → ∞. Clearly, ifw = u and εn → 0 as n → ∞, thenw is a solution
of (2.7).

Now, we consider the regularized version of (2.7). For a fixed but arbitrary n ∈ N and
for εn > 0, find uεn ∈ K such that

〈
Tuεn + εnuεn , η(v, uεn)

〉
+ φ(v) − φ(uεn) ≥ 0, ∀v ∈ K. (3.3)

Algorithm 3.1. For a given u0 ∈ K, compute un+1 ∈ K from the iterative scheme

〈
ρn(Tnun+1 + εnun+1) + E′(un+1) − E′(un), η(v, un+1)

〉
+ ρnφ(v) − ρnφ(un+1) ≥ 0, ∀v ∈ K,

(3.4)

where {ρn}∞n=1 be a sequence of positive real and {εn}∞n=1 be a decreasing sequence of positive
reals such that εn → 0 as n → ∞.

We now study the convergence analysis of Algorithm 3.1.

Theorem 3.2. Let T be a monotone operator. For the approximation Tn of T , assume that there exists
{δn} such that δn > 0 such that

‖Tn(u) − T(v)‖ ≤ cδn
(
1 +

∥∥η(u, v)
∥∥), ∀u ∈ K, where c is a constant. (3.5)

Also for the sequences {εn}, {δn}, and {ρn}, one has

∞∑

n=0

δ2
n < ∞,

∞∑

n=0

(
ρ2n + δ2

n

)
< ∞,

∞∑

n=0

εnρn < ∞,
∞∑

n=0

αnρn < ∞. (3.6)

Then the approximate solution un+1 obtained fromAlgorithm 3.1 converges to an exact solution u ∈ K
satisfying (2.7).
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Proof. Let uεn ∈ K satisfying the regularized mixed variational-like inequality (3.3). Then
replacing v by un+1 in (3.3), we have

〈
ρn(Tuεn + εnuεn), η(un+1, uεn)

〉
+ ρnφ(un+1) − ρnφ(uεn) ≥ 0. (3.7)

Let un+1 ∈ K be the approximate solution obtained from (3.4). Replacing v by uεn , we have

〈
ρn(Tnun+1 + εnun+1) + E′(un+1) − E′(un), η(uεn , un+1)

〉
+ ρnφ(uεn) − ρnφ(un+1) ≥ 0. (3.8)

For the sake of simplicity, we have T + εn = Fn and Fn + εn = F̃n in (3.7) and (3.8), respectively,
and then adding the resultant inequalities, we have

〈
E′(un+1) − E′(un), η(uεn , un+1)

〉 ≥
〈
ρnFnuεn − ρnF̃nun+1, η(uεn , un+1)

〉
. (3.9)

We consider the Bregman function:

B(u,w) = E(u) − E(w) − 〈
E′(u), η(w,u)

〉 ≥ μ
∥∥η(w,u)

∥∥2
. (3.10)

Now

B(uεn−1 , un) − B(uεn , un+1) = E(uεn−1) − E(un) −
〈
E′(un), η(uεn−1 , un)

〉

− E(uεn) + E(un+1) +
〈
E′(un+1), η(uεn , un+1)

〉

= E(uεn−1) − E(uεn) +
〈
E′(un+1), η(uεn , un+1)

〉

+ E(un+1) − E(un) −
〈
E′(un), η(uεn−1 , un+1)

〉 − 〈
E′(un), η(un+1, un)

〉

≥ E(uεn−1) − E(uεn) +
〈
E′(un+1), η(uεn , un+1)

〉

− 〈
E′(un), η(uεn−1 , un+1)

〉
+ μ

∥∥η(un+1, un)
∥∥2

≥ E(uεn−1) − E(uεn) +
〈
E′(un+1) − E′(un), η(uεn , un+1)

〉

+
〈
E′(un), η(uεn , uεn−1)

〉
+ μ

∥∥η(un+1, un)
∥∥2

≥ E(uεn−1) − E(uεn) + ρn
〈
Fnuεn − F̃nun+1, η(uεn , un+1)

〉

+
〈
E′(un), η(uεn , uεn−1)

〉
+ μ

∥∥η(un+1, un)
∥∥2

≥ μ
∥∥η(un+1, un)

∥∥2 + μ
∥∥η(uεn−1 , uεn)

∥∥2

+
〈
E′(un) − E′(uεn), η(uεn , uεn−1)

〉

+ ρn
〈
Fnuεn − F̃nun+1, η(uεn , un+1)

〉
.

(3.11)
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Since T is a monotone operator, Fn = T + εn is strongly monotone with constant
(α + εn) = αn (say), we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥
∥η(un+1, un)

∥
∥2 + μ

∥
∥η(uεn−1 , uεn)

∥
∥2

+
〈
E′(un) − E′(uεn), η(uεn , uεn−1)

〉

+ ρnαn

∥
∥η(un, uεn)

∥
∥2 − ρn

〈
F̃nun − Fnun+1, η(uεn , un+1)

〉
,

(3.12)

from which, we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥
∥η(uεn−1 , uεn)

∥
∥2 + μ

∥
∥η(un+1, un)

∥
∥2

+ ρnαn

∥∥η(uεn , un+1)
∥∥2 + τ1 + τ2,

(3.13)

where

τ1 =
〈
E′(un) − E′(uεn), η(uεn , uεn−1)

〉
. (3.14)

Using Lemma 2.1 and Lipschitz continuity of operator E′, we have

≥ −β
2ε2

2
∥∥η(un, uεn)

∥∥2 − 1
2ε2

∥∥η(uεn−1 , uεn)
∥∥2
. (3.15)

Thus

τ1 ≥ −εnρn
2

∥∥η(un, uεn)
∥∥2 − β2

2εnρn

∥∥η(uεn−1 , uεn)
∥∥2
. (3.16)

Solving for τ2, where

τ2 ≥ −ρn
〈
F̃nun+1 − Fnun+1, η(uεn , un+1)

〉

≥ −ε
2ρn
2

∥∥∥F̃nun+1 − Fnun

∥∥∥
2 − ε2ρn

2
‖Fnun − Fnun+1‖2 −

ρn

2ε2
∥∥η(uεn , un+1)

∥∥2
.

(3.17)

Using (3.5), we obtain

τ2 ≥
−c2δ2

nε
2ρn

2
[
1 +

∥∥η(un, un+1)
∥∥]2 − ε2ρnγ

2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2
, (3.18)

where we have used the Lipschitz continuity of Fn(= T + εn) with constant γn(= γ + εn).
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Now using Assumption 2.5, we have

τ2 ≥
−c2δ2

nε
2ρn

2
[
1 +

∥
∥η(un, uεn) + η(uεn , un+1)

∥
∥]2 − ε2ρnγ

2
n

2
∥
∥η(un, un+1)

∥
∥2 − ρn

2ε2
∥
∥η(uεn , un+1)

∥
∥2

≥ −c2δ2
nε

2ρn
2

[
t +

∥
∥η(uεn , un+1)

∥
∥]2 − ε2ρnγ

2
n

2
∥
∥η(un, un+1)

∥
∥2 − ρn

2ε2
∥
∥η(uεn , un+1)

∥
∥2
.

= −c2δ2
nε

2ρnt
2 − c2δ2

nε
2ρn

∥
∥η(uεn , un+1)

∥
∥2
, t ≥ 1 +

∥
∥η(un, uεn)

∥
∥

− ε2ρnγ
2
n

2
∥
∥η(un, un+1)

∥
∥2 − ρn

2ε2
∥
∥η(uεn , un+1)

∥
∥2
.

(3.19)

From (3.13), (3.16) and (3.19), we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥∥η(un+1, un)

∥∥2 + μ
∥∥η(uεn−1 , uεn)

∥∥2 + ρnαn

∥∥η(uεn , un+1)
∥∥2

− εnρn
2

∥∥η(un+1, uεn)
∥∥2 − β2

2εnρn

∥∥η(uεn−1 , uεn)
∥∥2 − c2δ2

nε
2ρnt

2

− c2δ2
nε

2ρn
∥∥η(uεn , un+1)

∥∥2 − ε2ρnγ
2
n

2
∥∥η(un, un+1)

∥∥2

− ρn

2ε2
∥∥η(uεn , un+1)

∥∥2

≥
(
μ − γn

2

)∥∥η(un+1, un)
∥∥2 + C1εnρn

∥∥η(uεn−1 , uεn)
∥∥2

+ ρnαn

∥∥η(un, uεn)
∥∥2

− εnρn
2

∥∥η(un, uεn)
∥∥2 − c2δ2

nt
2

γn
− C2

(
δ2
n + ρn

2
)∥∥η(uεn , un+1)

∥∥2
.

(3.20)

Using conditions (3.6), we have

B(uεn−1 , un) − B(uεn , un+1) ≥
(
μ − γn

2

)∥∥η(un+1, un)
∥∥2
. (3.21)

If un+1 = un, it is easily shown that un is a solution of the variational-like inequality (2.7).
Otherwise, the assumption γn > 2μ implies that B(uεn−1 , un) − B(uεn , un+1) is

nonnegative and we must have

lim
n→∞

∥∥η(un+1, un)
∥∥ = 0. (3.22)

From (3.22), it follows that the sequence {un} is bounded. Let û ∈ K be a cluster point of
the sequence {un}and let the subsequence {uni} of this sequence converges to û ∈ K. Now
essentially using the technique of Zhu and Marcotte [35], it can be shown that the entire
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sequence {un} converges to the cluster point û ∈ K satisfying the variational-like inequality
(2.7).

To implement the proximal method, one has to calculate the solution implicitly, which
is itself a difficult problem. We again use the auxiliary principle technique to suggest another
iterative method, the convergence of which requires only the partially relaxed strongly
monotonicity of the operator. For this, we rewrite (3.1) as follows.

For a given u ∈ K, consider the problem of finding z ∈ Ksuch that

〈
Tu + E′(z) − E′(u), η(v, z)

〉
+ φ(v) − φ(z) ≥ 0, ∀v ∈ K. (3.23)

Note that if z = u, then (3.23) reduces to (2.7). Using (3.23), we develop an iterative scheme
for solving (2.7).

For a given u ∈ K, consider the problem of finding a solution z ∈ K satisfying the
auxiliary variational-like inequality

ρn
〈
Tu + εnu + E′(z) − E′(u), η(v, z)

〉
+ ρnφ(v) − ρnφ(z) ≥ 0, ∀v ∈ K, (3.24)

where {ρn}∞n=1 be a sequence of positive reals, and {εn}∞n=1 be a decreasing sequence of positive
reals such that εn → 0 as n → ∞.

Note that if z = u and εn → 0 as n → ∞, then z is a solution of (2.7).

Algorithm 3.3. For a given u0 ∈ K, compute un+1 ∈ K from the iterative scheme

〈
ρn(Tnun + εnun) + E′(un+1) − E′(un), η(v, un+1)

〉
+ ρnφ(v) − ρnφ(un+1) ≥ 0,

∀v ∈ K, n = 0, 1, 2, . . . ,
(3.25)

where {ρn}∞n=1 be a sequence of positive and {εn}∞n=1 be a decreasing sequence of positive such
that εn → 0 as n → ∞.

Using the technique of Theorem 3.2, one can prove the convergence of Algorithm 3.3.
We include its proof for the sake of completeness.

Theorem 3.4. Let T be a partially relaxed strongly monotone operator with constant α > 0. For the
approximation Tn of T , let (3.5) holds. Also for the sequences {εn}, {δn} and {ρn}, (3.6) is satisfied.
Then the approximate solution un+1 obtained from Algorithm 3.3 converges to an exact solution u ∈ K
satisfying (2.7).

Proof. Let uεn ∈ K satisfying the regularized mixed variational-like inequality (3.3), then
replacing v by un+1, we have

〈
ρn(Tuεn + εnuεn), η(un+1, uεn)

〉
+ ρnφ(un+1) − ρnφ(uεn) ≥ 0. (3.26)

Let un+1 ∈ K be the approximate solution obtained from (3.25). Replacing v by uεn , we have

〈
ρn(Tnun + εnun) + E′(un+1) − E′(un), η(uεn , un+1)

〉
+ ρnφ(uεn) − ρnφ(un+1) ≥ 0. (3.27)
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For the sake of simplicity, we have T+εn = Fn and Tn+εn = F̃n in (3.26) and (3.27), respectively,
and then adding the resultant inequalities, we have

〈
ρnT̃nun − ρnTnun + E′(un+1) − E′(un), η(uεn , un+1)

〉
≥ 0, (3.28)

from which, we have

〈
E′(un+1) − E′(un), η(uεn , un+1)

〉 ≥
〈
ρnTnuεn − ρnT̃nun, η(uεn , un+1)

〉
. (3.29)

We consider the Bregman function:

B(u,w) = E(u) − E(w) − 〈
E′(u), w − u

〉
. (3.30)

Now, we investigate the difference. Using the strongly preinvexity of E, we have

B(uεn−1 , un) − B(uεn , un+1) = E(uεn−1) − E(un) −
〈
E′(un), η(uεn−1 , un)

〉

− E(uεn) + E(un+1) +
〈
E′(un+1), η(uεn , un+1)

〉

≥ E(uεn−1) − E(uεn) +
〈
E′(un+1), η(uεn , un+1)

〉

− 〈
E′(un), η(uεn−1 , un+1)

〉
+ μ

∥∥η(un+1, un)
∥∥2
.

(3.31)

Since T is partially relaxed strongly monotone with constant α > 0, Tn = T + εn is partially
relaxed strongly monotone with constant (α + εn/4) = αn (say), we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥∥η(un+1, un)

∥∥2 + μ
∥∥η(uεn−1 , uεn)

∥∥2

+
〈
E′(un) − E′(uεn), η(uεn , uεn−1)

〉

+ ρnαn

∥∥η(un, uεn)
∥∥2 − ρn

〈
T̃nun − Tnun, η(uεn , un+1)

〉
.

(3.32)

From which, we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥∥η(uεn−1 , uεn)

∥∥2 + μ
∥∥η(un+1, un)

∥∥2

+ ρnαn

∥∥η(un, uεn)
∥∥2 + τ1 + τ2,

(3.33)

where

τ1 =
〈
E′(un) − E′(uεn), η(uεn , uεn−1)

〉
,

= −〈E′(un) − E′(uεn), η(uεn−1 , uεn)
〉

≥ −ε
2

2
∥∥E′(un) − E′(uεn)

∥∥2 − 1
2ε2

∥∥η(uεn−1 , uεn)
∥∥2
.

(3.34)
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Using Lipschitz continuity of operator E′, we have

τ1 ≥ −β
2ε2

2
∥
∥η(un, uεn)

∥
∥2 − 1

2ε2
∥
∥η(uεn−1 , uεn)

∥
∥2
. (3.35)

Put ε =
√
εnρn/β2, we have

τ1 ≥ −εnρn
2

∥
∥η(un, uεn)

∥
∥2 − β2

2εnρn

∥
∥η(uεn−1 , uεn)

∥
∥2
. (3.36)

Solving for τ2, where

τ2 ≥ −ρn
〈
T̃nun − Tnun, η(uεn , un+1)

〉

≥ −ε
2ρn
2

∥∥∥T̃nun − Tnun

∥∥∥
2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2

≥ −ε
2ρn
2

∥∥∥T̃nun − Tnun+1

∥∥∥
2 − ε2ρn

2
‖Tnun+1 − Tnun‖2 −

ρn

2ε2
∥∥η(uεn , un+1)

∥∥2
.

(3.37)

Using (3.5), we obtain

τ2 ≥
−c2δ2

nε
2ρn

2
[
1 +

∥∥η(un, un+1)
∥∥]2 − ε2ρnγ

2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2
,

(3.38)

where we have used the Lipschitz continuity of Tn(= T + εn) with constant γn(= γ + εn).
Now using Assumption 2.5, we have, for any t ≥ 1 + ‖η(un, uεn)‖,

τ2 ≥
−c2δ2

nε
2ρn

2
[
1 +

∥∥η(un, uεn) + η(uεn , un+1)
∥∥]2 − ε2ρnγ

2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2

≥ −c2δ2
nε

2ρn
2

[
t +

∥∥η(uεn , un+1)
∥∥]2 − ε2ρnγ

2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2

=
−c2δ2

nε
2ρnt

2

2
− c2δ2

nε
2ρn

2
∥∥η(uεn , un+1)

∥∥2 +
c2δ2

nε
2ρn

2

[
−1
2
‖t‖2 − 1

2
∥∥η(uεn , un+1)

∥∥2
]

− ε2ρnγ
2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2

= −c2δ2
nε

2ρnt
2 − c2δ2

nε
2ρn

∥∥η(uεn , un+1)
∥∥2 − ε2ρnγ

2
n

2
∥∥η(un, un+1)

∥∥2 − ρn

2ε2
∥∥η(uεn , un+1)

∥∥2
.

(3.39)
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Combining all the results above, we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥
∥η(un+1, un)

∥
∥2 + μ

∥
∥η(un+1, un)

∥
∥2 + ρnαn

∥
∥η(un, uεn)

∥
∥2

− εnρn
2

∥
∥η(un, uεn)

∥
∥2 − β2

2εnρn

∥
∥η(uεn−1 , uεn)

∥
∥2 − c2δ2

nε
2ρnt

2

− c2δ2
nε

2ρn
∥
∥η(uεn , un+1)

∥
∥2 − ε2ρnγ

2
n

2
∥
∥η(un, un+1)

∥
∥2

− ρn

2ε2
∥
∥η(uεn , un+1)

∥
∥2
.

(3.40)

Taking ε2 = 1/γnρn, we have

B(uεn−1 , un) − B(uεn , un+1) ≥ μ
∥∥η(un+1, un)

∥∥2 + μ
∥∥η(uεn−1 , uεn)

∥∥2 + ρnαn

∥∥η(un, uεn)
∥∥2

− εnρn
2

∥∥η(un, uεn)
∥∥2 − β2

2εnρn

∥∥η(uεn−1 , uεn)
∥∥2 − c2δ2

nt
2

γn

− c2δ2
n

γn

∥∥η(uεn , un+1)
∥∥2 − γn

2
∥∥η(un, un+1)

∥∥2 − ρn
2γn
2

∥∥η(uεn , un+1)
∥∥2

≥
(
μ − γn

2

)∥∥η(un+1, un)
∥∥2 + C1εnρn

∥∥η(uεn−1 , uεn)
∥∥2

+ ρnαn

∥∥η(un, uεn)
∥∥2

− εnρn
2

∥∥η(un, uεn)
∥∥2 − c2δ2

nt
2

γn
− C2

(
δ2
n + ρn

2
)∥∥η(uεn , un+1)

∥∥2
.

(3.41)

Using conditions (3.6), we have

B(uεn−1 , un) − B(uεn , un+1) ≥
(
μ − γn

2

)∥∥η(un+1, un)
∥∥2
. (3.42)

If un+1 = un, then it can easily shown that un is a solution of the variational-like inequality
(2.7). Otherwise, the assumption γn > 2μ implies that B(uεn−1 , un)−B(uεn , un+1) is nonnegative
and we must have

lim
n→∞

∥∥η(un+1, un)
∥∥ = 0. (3.43)

From (3.43), it follows that the sequence {un} is bounded. Let û ∈ K be a cluster point of
the sequence {un} and let the subsequence {uni} of this sequence converges to û ∈ K. Now
essentially using the technique of Zhu and Marcotte [35], it can be shown that the entire
sequence {un} converges to the cluster point û ∈ K satisfying the variational-like inequality
(2.7).
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4. Conclusion

In this paper, we have suggested and analyzed some new iterative methods for solving
the regularized mixed variational-like inequalities. We have also discussed the convergence
analysis of the suggested iterativemethods under some suitable andweak conditions. Results
proved in this are new and original ones. We hope to extend the idea and technique of this
paper for solving invex equilibrium problems and this is the subject of another paper.
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[32] G. Stampacchia, “Formes bilinéaires coercitives sur les ensembles convexes,” Comptes Rendus de

l’Académie des Sciences, vol. 258, pp. 4413–4416, 1964.
[33] T. Weir and B. Mond, “Pre-invex functions in multiple objective optimization,” Journal of Mathematical

Analysis and Applications, vol. 136, no. 1, pp. 29–38, 1988.
[34] Y. Yao, M. A. Noor, Y. C. Liou, and S. M. Kang, “Iterative algorithms for general multivalued

variational inequalities,” Abstract and Applied Analysis, vol. 2012, Article ID 768272, 10 pages, 2012.
[35] D. L. Zhu and P. Marcotte, “Co-coercivity and its role in the convergence of iterative schemes for

solving variational inequalities,” SIAM Journal on Optimization, vol. 6, no. 3, pp. 714–726, 1996.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


