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The steady state solution to atmospheric circulation equations with humidity effect is studied. A
sufficient condition of existence of steady state solution to atmospheric circulation equations is
obtained, and regularity of steady state solution is verified.

1. Introduction

This paper is concerned with steady state solution of the following initial-boundary problem
of atmospheric circulation equations involving unknown functions (u, T, q, p) at (x, t) =
(x1, x2, t) ∈ Ω × (0,∞) (Ω = (0, 2π) × (0, 1) is a period of C∞ field (−∞,+∞) × (0, 1)),

∂u

∂t
= Pr
(
Δu − ∇p − σu) + Pr

(
RT − R̃q

)
�κ − (u · ∇)u, (1.1)

∂T

∂t
= ΔT + u2 − (u · ∇)T +Q, (1.2)

∂q

∂t
= LeΔq + u2 − (u · ∇)q +G, (1.3)

divu = 0, (1.4)

where Pr > 0, R > 0, R̃, Le > 0 are constants, u = (u1, u2), T, q, p denote velocity field,
temperature, humidity, and pressure, respectively, Q, G are known functions, and σ is a
constant matrix

σ =
(
σ0 ω
ω σ1

)
. (1.5)
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The problems (1.1)–(1.4) are supplemented with the following Dirichlet boundary
condition at x2 = 0, 1 and periodic condition for x1:

(
u, T, q

)
= 0, x2 = 0, 1,

(
u, T, q

)
(0, x2) =

(
u, T, q

)
(2π, x2)

(1.6)

and initial value conditions:

(
u, T, q

)
=
(
u0, T0, q0

)
, t = 0. (1.7)

The partial differential equations (1.1)–(1.7)were presented in atmospheric circulation
with humidity effect. Atmospheric circulation is one of the main factors affecting the global
climate, so it is very necessary to understand andmaster its mysteries and laws. Atmospheric
circulation is an important mechanism to complete the transports and balance of atmospheric
heat and moisture and the conversion between various energies. On the contrary, it is also
the important result of these physical transports, balance, and conversion. Thus it is of
necessity to study the characteristics, formation, preservation, change, and effects of the
atmospheric circulation and master its evolution law, which is not only the essential part
of human’s understanding of nature, but also the helpful method of changing and improving
the accuracy of weather forecasts, exploring global climate change, and making effective use
of climate resources.

The atmosphere and ocean around the earth are rotating geophysical fluids, which
are also two important components of the climate system. The phenomena of the atmosphere
and ocean are extremely rich in their organization and complexity, and a lot of them cannot be
produced by laboratory experiments. The atmosphere or the ocean or the couple atmosphere
and ocean can be viewed as an initial- and boundary-value problem [1–4] or an infinite
dimensional dynamical system [5–7]. We deduce atmospheric circulation models which are
able to show features of atmospheric circulation and are easy to be studied from the very
complex atmospheric circulation model based on the actual background and meteorological
data, and we present global solutions of atmospheric circulation equations with the use of the
T weakly continuous operator [8].

We investigate steady state solution of the atmospheric circulation equations in this
paper. The steady state solution is a special state of evolution equations and the time-
independent solution, which plays a very important role on understanding the dynamical
behavior of the evolution equations and is the main directions and important content in
studying evolution equations. Steady state solutions of some systems are studied [9–12]. The
purpose to consider with the steady state solution of atmospheric circulation equations is to
seek the conditions under which atmospheric circulation is stable and to understand structure
of the circulation cell.
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We discuss the existence and regularity of steady state solution to atmospheric
circulation equations (1.1)–(1.4) with the boundary condition (1.6). In other words, we
discuss the following equations:

Δu − ∇p − σu +
(
RT − R̃q

)
�κ − 1

Pr
(u · ∇)u = 0, x ∈ Ω, (1.8)

ΔT + u2 − (u · ∇)T +Q(x) = 0, x ∈ Ω, (1.9)

LeΔq + u2 − (u · ∇)q +G(x) = 0, x ∈ Ω, (1.10)

divu = 0, x ∈ Ω, (1.11)
(
u, T, q

)
= 0, x2 = 0, 1, (1.12)

(
u, T, q

)
(2π, x2) =

(
u, T, q

)
(0, x2). (1.13)

The paper is organized as follows. In Section 2 we present preliminary results.
In Section 3, we prove that the systems (1.8)–(1.13) possess steady state solutions in
W2, q(Ω, R4) ×W1, q(Ω), q ≥ 2 by using space sequence method. In Section 4, by using Sard-
Smale Theorem and energymethod, we obtain regularity of the solutions to the models (1.8)–
(1.13).

Let σ̃ = min{σ0, ω, σ1}, and ‖ · ‖X denote norm of the space X.

2. Preliminaries

We introduce theory of linear elliptic equation and ADN theory of Stokes equation.
We consider with divergence form of linear elliptic equation:

Lu = −Dj

(
aijDiu

)
+ biDiu + cu = f, (2.1)

where aij , bi, c ∈ L∞(Ω), f ∈ L2(Ω), aij = aji, (aij) is uniformly elliptic, that is, there exist
constants 0 < λ1 ≤ λ2 such that

λ1|ξ|2 ≤ aij(x)ξiξj ≤ λ2|ξ|2, ∀ξ ∈ Rn, x ∈ Ω. (2.2)

The problem (1.1) is supplemented with the following Dirichlet boundary condition

u|∂Ω = ϕ. (2.3)

We define three classes of solutions of (2.1) and (2.3).

(1) Classical solution: if there is a function u ∈ C2(Ω) satisfying (2.1), (2.3), we say u is
a classical solution to (2.1) and (2.3).

(2) Strong solution: if there is a function u ∈ W2, p(Ω) satisfying (2.1), (2.3) almost
everywhere for some p ≥ 1, we say u is a strong solution to (2.1) and (2.3).
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(3) Weak solution: if there is a function u ∈W1, 2(Ω) satisfying

∫

Ω

(
aijDiuDjv + biDiuv + cuv

)
dx =

∫

Ω
fvdx, ∀v ∈W1, 2

0 (Ω), (2.4)

and (2.3), we say u is a weak solution to (2.1) and (2.3).

Lemma 2.1 (see [13] (Schauder Theorem)). Let Ω ⊂ Rn be a C2, α field, aij , bi, c, f ∈ C0, α(Ω),
ϕ ∈ C2, α. If u ∈ C2, α is a solution to (2.1) and (2.3), then

‖u‖C2, α ≤ C(‖u‖C0 +
∥
∥f
∥
∥
C0, α +

∥
∥ϕ
∥
∥
C2, α

)
, (2.5)

where C > 0 depends on n, α, λ, Ω and C0, α-norm of the coefficient functions aij , bi, c.

Lemma 2.2 (see [13] (Lp Theorem)). Let Ω ⊂ Rn be a C2 field, aij ∈ C0(Ω), bi, c ∈ L∞(Ω),
f ∈ Lp(Ω), ϕ ∈W2, p(Ω). If u ∈W2, p is a solution of (2.1) and (2.3), then

‖u‖W2, p ≤ C(‖u‖Lp +
∥∥f
∥∥
Lp +
∥∥ϕ
∥∥
W2, p

)
, (2.6)

where C > 0 depends on n, p, λ, Ω and C0, α-norm or L∞-norm of the coefficient functions.

One considers with Stokes equation

−μΔu +∇p = f(x),

divu = 0,

u|∂Ω = ϕ.

(2.7)

Lemma 2.3 (see [14, 15] (ADN theory of Stokes equation)). (1) Let f ∈ Ck, α(Ω, Rn), ϕ ∈
Ck+2, α(Ω, Rn), k ≥ 0. If (u, p) ∈ C2, α(Ω, Rn) × C1, α(Ω) is a solution of (2.7), then the solution
(u, p) ∈ Ck+2, α(Ω, Rn) × Ck+1, α(Ω), and

‖u‖Ck+2, α +
∥∥p
∥∥
Ck+1, α ≤ C

(∥∥f
∥∥
Ck, α +

∥∥(u, p
)∥∥

C0 +
∥∥ϕ
∥∥
Ck+2, α

)
, (2.8)

where C > 0 depends on μ, n, k, α, Ω.
(2) Let f ∈Wk,p(Ω, Rn), ϕ ∈Wk+2, p(Ω, Rn), k ≥ 0. If (u, p) ∈W2, p(Ω, Rn)×W1, p(Ω)(1 <

p <∞) is a solution of (2.7), then the solution (u, p) ∈Wk+2, p(Ω, Rn) ×Wk+1, p(Ω), and

‖u‖Wk+2, p +
∥∥p
∥∥
Wk+1, p ≤ C

(∥∥f
∥∥
Wk,p +

∥∥(u, p
)∥∥

Lp +
∥∥ϕ
∥∥
Wk+2, p

)
, (2.9)

where C > 0 depends on μ, n, k, α, Ω.
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Lemma 2.4. The eigenvalue equation:

ΔT(x1, x2) = λT(x1, x2), (x1, x2) ∈ (0, 2π) × (0, 1)

T = 0, x2 = 0, 1,

T(0, x2) = T(2π, x2),

(2.10)

has eigenvalue {λk}∞k=1, and

0 < λ1 ≤ λ2 ≤ · · · , λk −→ ∞, as k −→ ∞. (2.11)

Let X be a linear space, X1, X2 two Banach space, X1 separable, and X2 reflexive. Let
X ⊂ X2. There exists a linear mapping

L : X −→ X1 is one to one and dense. (2.12)

Definition 2.5. A mapping F : X2 → X∗
1 is called weakly continuous provided

lim
n→∞

〈F(un), v〉 = 〈F(u0), v〉, ∀v ∈ X1, (2.13)

for all {un} ⊂ X2, un ⇀ u0 in X2.

Lemma 2.6 (see [2]). If F : X2 → X∗
1 is weakly continuous, U ⊂ X2 is bounded open set, 0 ∈ U,

and

〈F(u), Lu〉 ≥ 0, ∀u ∈ ∂U ∩X, (2.14)

then the equation F(u) = 0 has a solution in X2.
One introduces the Sard-Smale Theorem of infinite dimensional operator. Let X, Y be two

separable Banach Spaces, F : X → Y be a C1 mapping. F is called a Fredholm operator provided the
derivative operator DF(x) : X → Y is a Fredholm operator for all x ∈ X.

Lemma 2.7 (see [16, 17] (Sard-Smale Theorem)). Let F : X → Y be a C1 Fredholm operator with
zero index. Then regular value of F is dense in Y . If p ∈ Y is critical value of F, then F−1(p) is discrete
set.

3. Existence of Steady State Solution

Theorem 3.1. If σ̃λ1 ≥ max{(R + 1)2, (R̃ − 1)2/Le}, and λ1 is the first eigenvalue of the elliptic
equation (2.10), then for allQ, G ∈ Lq(Ω), (1.8)–(1.13) have a solution (u, T, q, p) ∈W2, q(Ω, R4)×
W1, q(Ω), q ≥ 2.

Proof. Let X = {φ = (u, T, q) ∈ C∞(Ω, R4) | φ satisfy (1.11)–(1.13)}, andH1 = {φ = (u, T, q) ∈
H1(Ω, R4) | φ satisfy (1.11)–(1.13)}.
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Define F : H1 → H∗
1 , for all ψ = (v, S, z) ∈ H1,

〈
Fφ, ψ

〉
=
∫

Ω

[
∇u∇v + σu · v −

(
RT − R̃q

)
v2 +

1
Pr

(u · ∇)u · v +∇T∇S

−u2S + (u · ∇)TS −QS + Le∇q∇z − u2z + (u · ∇)qz −Gz
]
dx.

(3.1)

Firstly, we prove the coercivity of F.

〈
Fφ, φ

〉
=
∫

Ω

[
|∇u|2 + σu · u −

(
RT − R̃q

)
u2 +

1
Pr

(∇ · u)u · u + |∇T |2

−u2T + (u · ∇)TT −QT + Le
∣
∣∇q∣∣2 − u2q + (u · ∇)qq −Gq

]
dx

=
∫

Ω

[
|∇u|2 + σu · u − (R + 1)u2T +

(
R̃ − 1

)
qu2 + |∇T |2 −QT + Le

∣∣∇q∣∣2 −Gq
]
dx

≥
∫

Ω

[
|∇u|2 + |∇T |2 + Le

∣∣∇q∣∣2 + σ̃|u|2 − |R + 1||u2||T |

−
∣∣∣R̃ − 1

∣∣∣
∣∣q
∣∣|u2| − |Q||T | − |G|∣∣q∣∣

]
dx

≥
∫

Ω

[
|∇u|2 + |∇T |2 + Le

∣∣∇q∣∣2 + σ̃|u|2 − σ̃|u2|2 − 1
2σ̃

(
|R + 1|2|T |2 +

∣∣∣R̃ − 1
∣∣∣
2∣∣q
∣∣2
)

−ε|T |2 − 1
ε
|Q|2 − ε∣∣q∣∣2 − 1

ε
|G|2
]
dx

≥
∫

Ω

[
|∇u|2 + 1

2
|∇T |2 + Le

2
∣∣∇q∣∣2

]
dx +

∫

Ω

[
1
2
|∇T |2 − |R + 1|2

2σ̃
|T |2
]

dx

+
∫

Ω

[
Le
2
∣∣∇q∣∣2 − 1

2σ̃

∣∣∣R̃ − 1
∣∣∣
2∣∣q
∣∣2
]
dx − ε

∫

Ω

[
|T |2 + ∣∣q∣∣2

]
dx − 1

ε

∫

Ω

[
|Q|2 + |G|2

]
dx

≥
∫

Ω

[
|∇u|2 + 1

2
|∇T |2 + Le

2
∣∣∇q∣∣2

]
dx − ε

∫

Ω

[
|T |2 + ∣∣q∣∣2

]
dx − 1

ε

∫

Ω

[
|Q|2 + |G|2

]
dx.

(3.2)

Let ε > 0 be appropriate small. Then

〈
Fφ, φ

〉 ≥ C1

∫

Ω

[
|∇u|2 + |∇T |2 + ∣∣∇q∣∣2

]
dx − C2

∫

Ω

[
|Q|2 + |G|2

]
dx. (3.3)

From Q, S ∈ Lq(Ω) (q ≥ 2), it follows that

〈
Fφ, φ

〉 ≥ C1
∥∥φ
∥∥
H1

− C3. (3.4)
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Then there exists an appropriate large constantM such that

〈
Fφ, φ

〉 ≥ 0, φ ∈ ∂BM ∩X. (3.5)

Furthermore, we verify that F is weakly continuous.
Let φk ⇀ φ inH1, we have from the Sobolev imbedding Theorem

φk → φ in Lp
(
Ω, R4

)
, 1 ≤ p <∞. (3.6)

By u0 v ∈ L2, uk ⇀ u0 inH1(Ω, R2), it follows that

lim
k→∞

∫

Ω
[(u0 · ∇)uk − (u0 · ∇)u0] · vdx = 0. (3.7)

Combining the general Hölder inequality and (3.6), we deduce

lim
k→∞

∫

Ω
[(uk · ∇)uk − (u0 · ∇)uk] · vdx

≤ lim
k→∞

∫

Ω
|uk − u0||∇uk||v|dx

≤ lim
k→∞

(∫

Ω
|uk − u0|4dx

)1/4(∫

Ω
|∇uk|2dx

)1/2(∫

Ω
|v|4dx

)1/4

= 0.

(3.8)

Then,

lim
k→∞

∫

Ω
[(uk · ∇)uk − (u0 · ∇)u0] · vdx

= lim
k→∞

∫

Ω
[(uk · ∇)uk − (u0 · ∇)uk] · vdx + lim

k→∞

∫

Ω
[(u0 · ∇)uk − (u0 · ∇)u0] · vdx

= 0.

(3.9)

Thus,

lim
k→∞

∫

Ω
[(uk · ∇)uk] · vdx =

∫

Ω
[(u0 · ∇)u0] · vdx. (3.10)

As u0 S ∈ L2, Tk ⇀ T0 inH1, we find

lim
k→∞

∫

Ω
[(u0 · ∇)Tk − (u0 · ∇)T0]Sdx = 0. (3.11)
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Combining the general Hölder inequality and (3.6), we deduce

lim
k→∞

∫

Ω
[(uk · ∇)Tk − (u0 · ∇)Tk]Sdx

≤ lim
k→∞

∫

Ω
|uk − u0||∇Tk||S|dx

≤ lim
k→∞

(∫

Ω
|uk − u0|4dx

)1/4(∫

Ω
|∇Tk|2dx

)1/2(∫

Ω
|S|4dx

)1/4

= 0.

(3.12)

Then,

lim
k→∞

∫

Ω
[(uk · ∇)Tk − (u0 · ∇)T0]Sdx

= lim
k→∞

∫

Ω
[(uk · ∇)Tk − (u0 · ∇)Tk]Sdx

+ lim
k→∞

∫

Ω
[(u0 · ∇)Tk − (u0 · ∇)T0]Sdx

= 0.

lim
k→∞

∫

Ω
[(uk · ∇)Tk]Sdx =

∫

Ω
[(u0 · ∇)T0]Sdx.

(3.13)

By u0 z ∈ L2, qk ⇀ q0 inH1, we have

lim
k→∞

∫

Ω

[
(u0 · ∇)qk − (u0 · ∇)q0

]
zdx = 0. (3.14)

Combining the general Hölder inequality and (3.6), we deduce

lim
k→∞

∫

Ω

[
(uk · ∇)qk − (u0 · ∇)qk

]
zdx

≤ lim
k→∞

∫

Ω
|uk − u0|

∣∣∇qk
∣∣|z|dx

≤ lim
k→∞

(∫

Ω
|uk − u0|4dx

)1/4(∫

Ω

∣∣∇qk
∣∣2dx
)1/2(∫

Ω
|z|4dx

)1/4

= 0.

(3.15)
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Then,

lim
k→∞

∫

Ω

[
(uk · ∇)qk − (u0 · ∇)q0

]
zdx

= lim
k→∞

∫

Ω

[
(uk · ∇)qk − (u0 · ∇)qk

]
zdx

+ lim
k→∞

∫

Ω

[
(u0 · ∇)qk − (u0 · ∇)q0

]
zdx

= 0.

(3.16)

Thus,

lim
k→∞

∫

Ω

[
(uk · ∇)qk

]
zdx =

∫

Ω

[
(u0 · ∇)q0

]
zdx. (3.17)

Combining (3.10)–(3.17), we have

lim
k→∞

∫

Ω

〈
Fφk, ψ

〉
dx

= lim
k→∞

∫

Ω

[
∇uk∇v + σuk · v −

(
RTk − R̃qk

)
v2 +

1
Pr

(uk · ∇)uk · v

+∇Tk∇S − uk2S + (uk · ∇)TkS −QS + Le∇qk∇z

−uk2z + (uk · ∇)qkz −Gz
]
dx

=
∫

Ω

[
∇u0∇v + σu0 · v −

(
RT0 − R̃q0

)
v2 +

1
Pr

(u0 · ∇)u0 · v +∇T0∇S

−u02S + (u0 · ∇)T0S −QS + Le∇q0∇z − u02z + (u0 · ∇)q0z −Gz
]
dx

=
∫

Ω

〈
Fφ0, ψ

〉
dx, ∀ψ ∈ H1,

(3.18)

which imply that F : H1 → H∗
1 is weakly continuous. According to Lemma 2.6, (1.8)–(1.13)

have a solution φ = (u, T, q) ∈ H1(Ω, R4).
Lastly we prove that (φ, p) ∈W2,q(Ω, R4) ×W1,q(Ω), 2 ≤ q <∞.
From the Hölder inequality, we see

∫

Ω
|(u · ∇)u|3/2dx ≤

∫

Ω
|u|3/2|Du|3/2dx

≤
(∫

Ω
|Du|2dx

)3/4(∫

Ω
|u|6dx

)1/4

.

(3.19)

Then, (u · ∇)u ∈ L3/2(Ω, R2).
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For the Stokes equation:

−Δu +∇p = g,

divu = 0,

u = 0, x2 = 0, 1,

u(0, x2) = u(2π, x2),

(3.20)

since g = −σu + (RT − R̃q)�κ − (1/Pr)(u · ∇)u ∈ L3/2(Ω), according to ADN theory, (3.20) has
a solution:

(
u, p
) ∈W2, 3/2

(
Ω, R2

)
×W1, 3/2(Ω). (3.21)

By the Hölder inequality, we have

∫

Ω
|(u · ∇)T |3/2dx ≤

∫

Ω
|u||DT |3/2dx

≤
(∫

Ω
|DT |2dx

)3/4(∫

Ω
|u|6dx

)1/4

≤ C
∫

Ω
|DT |2dx,

(3.22)

thus, (u · ∇)T ∈ L3/2(Ω).
For the elliptic equation:

−ΔT = f1,

T = 0, x2 = 0, 1,

T(0, x2) = T(2π, x2),

(3.23)

as f1 = u2 − (u · ∇)T +Q ∈ L3/2(Ω), according to theory of linear elliptic equation, (3.23) has
a solution

T ∈W2, 3/2(Ω). (3.24)

From the Hölder inequality, we see

∫

Ω

∣∣(u · ∇)q
∣∣3/2dx ≤

∫

Ω
|u|3/2∣∣Dq∣∣3/2dx ≤

(∫

Ω

∣∣∇q∣∣2dx
)3/4(∫

Ω
|u|6dx

)1/4

, (3.25)

thus, (u · ∇)q ∈ L3/2(Ω).
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For the elliptic equation:

−Δq = f2,

q = 0, x2 = 0, 1,

q(0, x2) = q(2π, x2),

(3.26)

as f2 = u2 − (u · ∇)q +G ∈ L3/2(Ω), according to theory of linear elliptic equation, (3.26) has a
solution

q ∈W2, (3/2)(Ω). (3.27)

By the Sobolev imbedding Theorem, we see

W2, (3/2)(Ω) ↪→W1,6(Ω) ↪→ L6(Ω). (3.28)

Then T, q ∈ L6, and

∫

Ω
|(u · ∇)u|3dx ≤

(∫

Ω
|Du|6dx

)1/2(∫

Ω
|u|6dx

)1/2

≤ C‖u‖6W2, (3/2) . (3.29)

Thus, (u · ∇)u ∈ L3(Ω, R2). Consequently g ∈ L3(Ω). According to ADN theory, (3.20) has a
solution

(
u, p
) ∈W2, 3

(
Ω, R2

)
×W1, 3(Ω). (3.30)

Similarly, we deduce

(
T, q
) ∈W2, 3

(
Ω, R2

)
. (3.31)

By doing the same procedures as above, (1.8)–(1.13) have a solution (u, T, q, p) ∈
W2, q(Ω, R4) ×W1, q, q ≥ 2.

4. Regularity of Steady State Solution

Theorem 4.1. If σ̃λ1 ≥ max{(R+1)2, (R̃−1)2/Le}, and λ1 is the first eigenvalue of elliptic equation
(2.10), then there exists a dense open set F ⊂ Lq(Ω, R2)(q ≥ 2), the solution to (1.8)–(1.13) is finite
for all (Q,G) ∈ F.

Proof. There are the following estimates for (1.8)–(1.13):

‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q +

∥∥p
∥∥
W1, q ≤ C(‖Q‖Lq + ‖G‖Lq + 1)3, q ≥ 2. (4.1)
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As φ = (u, T, q) is a solution to (1.8)–(1.13), we have 〈Fφ, φ〉 = 0. Then

∫

Ω

[
|∇u|2 + σu · u −

(
RT − R̃q

)
u2 + |∇T |2 − u2T −QT + Le

∣
∣∇q∣∣2 − u2q −Gq

]
dx = 0. (4.2)

Thus,

∫

Ω

[
|∇u|2 + σu · u − (R + 1)Tu2 +

(
R̃ − 1

)
qu2 + |∇T |2 −QT + Le

∣
∣∇q∣∣2 −Gq

]
dx = 0. (4.3)

Consequently,

∫

Ω

[
|∇u|2 + |∇T |2 + Le

∣∣∇q∣∣2 + σ̃
∣∣∣u2
∣∣∣
]
dx

≤
∫

Ω

[
|R + 1||u2||T | +

∣∣∣R̃ − 1
∣∣∣
∣∣q
∣∣|u2| + |Q||T | + |G|∣∣q∣∣

]
dx

≤
∫

Ω

⎡

⎢
⎣σ̃|u2|2 + |R + 1|2

2σ̃
|T |2 +

∣∣∣R̃ − 1
∣∣∣
2

2σ̃
∣∣q
∣∣2 + ε|T |2 + 1

ε
|Q|2 + ε∣∣q∣∣2 + 1

ε
|G|2
⎤

⎥
⎦dx.

(4.4)

Choosing an appropriate constant ε, we see

∫

Ω

[
|∇u|2 + |∇T |2 + ∣∣∇q∣∣2

]
dx ≤ C(‖Q‖Lq + ‖G‖Lq + 1)2. (4.5)

According to the Sobolev imbedding Theorem and (4.5), we deduce

‖u‖Lq ≤ C‖u‖L2q ≤ C‖Du‖L2 ≤ C(‖Q‖Lq + ‖G‖Lq + 1). (4.6)

Using the Gagliardo-Nironberg inequality and Young inequality, we have

‖Du‖L2q ≤ C
(
‖u‖1/2

W2, q‖u‖1/2W1, 2

)
≤ ε
∥∥∥D2u

∥∥∥
Lq

+ Cε−1‖Du‖L2 , (4.7)

‖DT‖L2q ≤ C
(
‖T‖1/2

W2, q‖T‖1/2W1, 2

)
≤ ε
∥∥∥D2T

∥∥∥
Lq

+ Cε−1‖DT‖L2 , (4.8)

∥∥Dq
∥∥
L2q ≤ C

(∥∥q
∥∥1/2
W2, q

∥∥q
∥∥1/2
W1, 2

)
≤ ε
∥∥∥D2q

∥∥∥
Lq

+ Cε−1
∥∥Dq
∥∥
L2 . (4.9)
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Combining the Hölder inequality and (4.6)–(4.9), we see

‖u · ∇u‖Lq + ‖u · ∇T‖Lq +
∥
∥u · ∇q∥∥Lq

≤ ‖u‖L2q

(‖Du‖L2q + ‖DT‖L2q +
∥
∥Dq
∥
∥
L2q

)

≤ C(‖Q‖Lq + ‖G‖Lq + 1)

×
[
ε
(∥∥
∥D2u

∥
∥
∥
Lq

+
∥
∥
∥D2T

∥
∥
∥
Lq

+
∥
∥
∥D2q

∥
∥
∥
Lq

)
+ ε−1
(‖Du‖L2 + ‖DT‖L2 +

∥
∥Dq
∥
∥
L2

)]
.

(4.10)

Since u, T, q are solutions to (3.20), (3.23), and (3.26), according to ADN theory and
theory of linear elliptic equation, we have

‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q +

∥∥p
∥∥
W1, q

≤ C(∥∥g∥∥Lq +
∥∥f1
∥∥
Lq +
∥∥f2
∥∥
Lq

)

≤ C(‖u‖Lq + ‖T‖Lq +
∥∥q
∥∥
Lq + ‖u · ∇u‖Lq + ‖u2‖Lq + ‖u · ∇T‖Lq

+
∥∥u · ∇q∥∥Lq + ‖Q‖Lq + ‖G‖Lq

)

≤ C(‖u‖Lq + ‖T‖Lq +
∥∥q
∥∥
Lq

)

+ C
(‖u · ∇u‖Lq + |u · ∇T‖Lq +

∥∥u · ∇q∥∥Lq
)
+ C(‖Q‖Lq + ‖G‖Lq).

(4.11)

From (4.6) and (4.10), it follows that

‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q +

∥∥p
∥∥
W1, q

≤ C(‖Q‖Lq + ‖G‖Lq + 1) + C(‖Q‖Lq + ‖G‖Lq + 1)
[
ε
(∥∥∥D2u

∥∥∥
Lq

+
∥∥∥D2T

∥∥∥
Lq

+
∥∥∥D2q

∥∥∥
Lq

)]

+ C(‖Q‖Lq + ‖G‖Lq + 1)ε−1
(‖Du‖L2 + ‖DT‖L2 +

∥∥Dq
∥∥
L2

)
+ C(‖Q‖Lq + ‖G‖Lq).

(4.12)

Let Cε(‖Q‖Lq + ‖G‖Lq + 1) = 1/2. Then

‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q +

∥∥p
∥∥
W1, q

≤ C(‖Q‖Lq + ‖G‖Lq + 1) + C(‖Q‖Lq + ‖G‖Lq + 1)3

≤ C(‖Q‖Lq + ‖G‖Lq + 1)3,

(4.13)

which imply (4.1).
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We introduce the mappings:

G = L +H :W2, q
(
Ω, R4

)
×W1, q(Ω) −→ Lq

(
Ω, R4

)
,

L
(
u, p
)
=

⎛

⎝
−Δu +∇p

−ΔT
−LeΔq

⎞

⎠,

H
(
u, p
)
=

⎛

⎜⎜
⎝

σu −
(
RT − R̃q

)
�κ +

1
Pr

(u · ∇)u

−u2 + (u · ∇)T
−u2 + (u · ∇)q

⎞

⎟⎟
⎠.

(4.14)

Let

f(x) =

⎛

⎝
0

Q(x)
G(x)

⎞

⎠ ∈ Lq
(
Ω, R4

)
. (4.15)

Then, (1.8)–(1.13) can be rewrite as the following mapping

F
(
u, T, q, p

)
= f(x). (4.16)

Clearly, F :W2, q(Ω, R4)×W1, q(Ω) → Lq(Ω, R4) is a completely continuous field. Thus
F is a Fredholm operator with zero index. According to the Sard-Smale Theorem, the regular
value of F is dense in F ⊂ Lq(Ω, R4), and F−1(f) is discrete in W2, q(Ω, R4) ×W1, q(Ω) for all
f ∈ F. F−1(f) in W2, q(Ω, R4) ×W1, q(Ω) is finite for q ≥ 2 from (4.1). Consequently, f ∈ F is
interior point and F is an open set.

Theorem 4.2. If σ̃λ1 ≥ max{(R+1)2, (R̃−1)2/Le}, and λ1 is the first eigenvalue of elliptic equation
(2.10), then

(1) the Equations (1.8)–(1.13) have a classical solution (u, T, q, p) ∈ C2, α(Ω, R4) × C1, α(Ω)
for all Q,G ∈ Cα(Ω),

(2) there exists a tense open set F ⊂ Cα(Ω, R2), such that the solution to (1.8)–(1.13) is finite
for all (Q,G) ∈ F,

(3) the solution (u, T, q, p) to (1.8)–(1.13) is in C∞(Ω, R5) if Q,G ∈ C∞(Ω).

Proof. We prove the assertion (1). As Cα(Ω) ↪→ Lq(Ω), for all q ≤ ∞, Q,G ∈ Lq(Ω)
for all Q,G ∈ Cα(Ω). From Theorem 4.1, (1.8)–(1.13) have a strong solution (u, T, q, p) ∈
W2, q(Ω, R4) ×W1, q, q ≥ 2.

When q ≥ 2,W2, q(Ω) ↪→ C1, α(Ω), α = 1 − (2/q) from the Sobolev imbedding theorem.
Then

(
u, T, q

) ∈ C1, α
(
Ω, R4

)
. (4.17)
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Thus,

(u · ∇)u, (u · ∇)T, (u · ∇)q ∈ Cα(Ω). (4.18)

For Stokes equation:

−Δu +∇p = g,

divu = 0,

u = 0, x2 = 0, 1,

u(0, x2) = u(2π, x2),

(4.19)

as g = −σu + (RT − R̃q)�κ − (1/Pr)(u · ∇)u ∈ Cα(Ω), according to ADN theory, (4.19) has a
solution:

(
u, p
) ∈ C2, α

(
Ω, R2

)
× C1, α(Ω). (4.20)

For the elliptic equation:

−ΔT = f1,

T = 0, x2 = 0, 1,

T(0, x2) = T(2π, x2),

(4.21)

as f1 = u2 − (u · ∇)T +Q ∈ Cα(Ω), according to theory of linear elliptic equation, (4.21) has a
solution:

T ∈ C2, α(Ω). (4.22)

For the elliptic equation:

−Δq = f2,

q = 0, x2 = 0, 1,

q(0, x2) = q(2π, x2),

(4.23)

as f2 = u2 − (u · ∇)q + G ∈ Cα(Ω), according to theory of linear elliptic equation, (4.23) has a
solution:

q ∈ C2, α(Ω). (4.24)

Thus, (1.8)–(1.13) have a solution (u, T, q, p) ∈ C2, α(Ω, R4) × C1, α(Ω).
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Secondly, we prove the assertion (2). Combining ADN theory, theory of linear elliptic
equation, and (4.19)–(4.23), we have

‖u‖C2, α + ‖T‖C2, α +
∥
∥q
∥
∥
C2, α +

∥
∥p
∥
∥
C1, α

≤ C(∥∥g∥∥Cα +
∥
∥f1
∥
∥
Cα +
∥
∥f2
∥
∥
Cα

)

≤ C(‖u‖Cα + ‖T‖Cα +
∥
∥q
∥
∥
Cα + ‖u · ∇u‖Cα + ‖u2‖Cα

+‖u · ∇T‖Cα +
∥
∥u · ∇q∥∥Cα + ‖Q‖Cα + ‖G‖Cα

)

≤ C(‖u‖Cα + ‖T‖Cα +
∥
∥q
∥
∥
Cα

)
+ C
(‖u · ∇u‖Cα + |u · ∇T‖Cα +

∥
∥u · ∇q∥∥Cα

)

+ C(‖Q‖Cα + ‖G‖Cα)

≤ C(‖u‖W1, q + ‖T‖W1, q +
∥
∥q
∥
∥
W1, q

)

+ C
(‖u · ∇u‖W1, q + |u · ∇T‖W1, q +

∥∥u · ∇q∥∥W1, q

)
+ C(‖Q‖Cα + ‖G‖Cα)

≤ C(‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q

)

+ C‖u‖W2, q

(‖u‖W2, q + ‖T‖W2, q +
∥∥q
∥∥
W2, q

)
+ C(‖Q‖Cα + ‖G‖Cα)

≤ C(‖Q‖Lq + ‖G‖Lq + 1) + C(‖Q‖Lq + ‖G‖Lq + 1)6 + C(‖Q‖Cα + ‖G‖Cα)

≤ C(‖Q‖Cα + ‖G‖Cα + 1) + C(‖Q‖Cα + ‖G‖Cα + 1)6.

(4.25)

We introduce the mappings:

F = L +H : C2, α
(
Ω, R4

)
× C1, α(Ω) −→ Cα

(
Ω, R4

)
,

L
(
u, p
)
=

⎛

⎝
−Δu +∇p

−ΔT
−LeΔq

⎞

⎠,

H
(
u, p
)
=

⎛

⎜⎜
⎝

σu −
(
RT − R̃q

)
�κ +

1
Pr

(u · ∇)u

−u2 + (u · ∇)T
−u2 + (u · ∇)q

⎞

⎟⎟
⎠.

(4.26)

Let

f(x) =

⎛

⎝
0

Q(x)
G(x)

⎞

⎠ ∈ Cα
(
Ω, R4

)
, (4.27)

then, (1.8)–(1.13) can be rewritten as

F
(
u, T, q, p

)
= f(x). (4.28)
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Clearly, F : C2, α(Ω, R4) × C1, α(Ω) → Cα(Ω, R4) is complete continuous field. Then F
is a Fredholm operator with zero index. The regular value F ⊂ Cα(Ω, R4) is dense from Sard-
Smale theorem, and F−1(f) is discrete in C2, α(Ω, R4) × C1, α(Ω) for all f ∈ F. From (4.25), we
find that F−1(f) is finite in C2, α(Ω, R4) × C1, α(Ω). Thus, f ∈ F is an interior point and F is an
open set.

Finally we prove the assertion (3). Since Q,G ∈ C∞(Ω), it is true that Q,G ∈
Wk,q(Ω) (k is arbitrary integer). According to Theorem 4.1, we conclude that (u, T, q, p) ∈
Wk+2, q(Ω, R4) ×Wk+1, q(Ω, R) (k is arbitrary integer). From the Sobolev imbedding theorem,
(u, T, q) ∈ Ck+1(Ω, R4) × Ck(Ω, R) (k is arbitrary integer). Then (u, T, q, p) ∈ C∞(Ω, R5).

5. Remark

σ̃λ1 ≥ max{(R + 1)2, (R̃ − 1)
2
/Le} is a sufficient condition, not a necessary condition. In fact,

if the condition does not hold, (1.8)–(1.13)may have not solution for some Q,G.
Returning to the problem of atmospheric circulation, as the temperature source and

the moisture source are changed, the state of the atmospheric circulation changes, but there
is still a corresponding steady state.
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