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The conservation laws for the integrable coupled KDV type system, complexly coupled kdv
system, coupled system arising from complex-valued KDV in magnetized plasma, Ito integrable
system, and Navier stokes equations of gas dynamics are computed by multipliers approach. First
of all, we calculate the multipliers depending on dependent variables, independent variables,
and derivatives of dependent variables up to some fixed order. The conservation laws fluxes
are computed corresponding to each conserved vector. For all understudying systems, the local
conservation laws are established by utilizing the multiplier approach.

1. Introduction

The partial differential equations, which arise in the sciences, dynamics, fluid mechanics,
electromagnetism, economics and so forth, express conservation of mass, momentum, energy,
electric charge, or value of firm. All the conservation laws of partial differential equations
may not have physical interpretation but are essential in studying the integrability of the
PDE. The high number of conservation laws for a partial differential equation grantees that
the partial differential equation is strongly integrable and can be linearized or explicitly
solved [1]. Moreover, the conservation laws are used for analysis, particularly, development
of numerical schemes, soliton solutions, study of properties such as bi-Hamiltonian structures
and recursion operators, and reduction of partial differential equations.

There are different methods for the construction of conservation laws as described
by Naz [2], Naz et al. [3], Bluman et al. [4], Hereman et al. [5], and references therein.
Rocha Filho and Figueiredo [6] developed computer packages based on Noether’s method
for the variational problems. Wolf [7] and Wolf et al. [8] introduced computer programmes
in REDUCE to calculate conservation laws.
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In this work, the multiplier approach is used to derive the conservation laws for some
systems of partial differential equations important due to physical point of view. Stuedel [9]
introduced the multiplier approach and the conserved vectors were written in a characteristic
form as DiT

i = ΛαEα. The determining equations for the multipliers (characteristics) were
obtained by taking the variational derivative of DiT

i = QαEα for the arbitrary functions
not only for solutions of system of partial differential equations [10]. A conserved vector
is associated with each multiplier. The conservation laws for the integrable coupled kdv-type
system, complexly coupled KDA system, coupled system arising from complex-valued KDV
in magnetized plasma, Ito integrable system, and Navier stokes equations of gas dynamics
are computed by utilizing the multiplier approach. The conserved vectors derived here can
be used in constructing the solutions of underlying systems in the following different ways.
The corresponding potential system can be written for the conservation laws, and symmetry
reductions [11] can be carried out. Another approach to deduce exact solutions is via the
double reduction theory [12–14]. The exact solution can be derived if the conservation laws
give physical conserved quantities like Naz et al. [15]. The exact solutions of systems under
consideration are subject of future work.

The outline of paper is as follows. In Section 2, some definitions related withmultiplier
approach are presented. The conservation laws for integrable coupled kdv-type system,
complexly coupled kdv system, coupled system arising from complex-valued KDV in
magnetized plasma, Ito integrable system, and Navier stokes equations of gas dynamics are
constructed in Section 3. Conclusions are summarized in Section 4.

2. Preliminaries

Consider a kth-order system of partial differential equations (PDEs) with n independent
variables x ≡ (x1, x2, . . . , xn) and m dependent variables u ≡ (u1, u2, . . . , um) defined as,

Eα

(
x, u, u(1), u(2), . . . , u(k)

)
= 0, α = 1, 2, . . . , m, (2.1)

where u(i) is the collection of ith-order partial derivatives of u.
(1) The Euler operator is defined by

δ

δuα
=

∂

∂uα
−Di

∂

∂uα
i

+DiDj
∂

∂uα
ij

− · · · , (2.2)

where

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, 2, (2.3)

is the total derivative operator with respect to xi.
(2) A conserved vector of (2.1) is an n-tuple T = (T1, T2, . . . , Tn), T i ∈ A, i = 1, 2 . . . n,

such that

DiT
i = 0 (2.4)

holds for all solutions of (2.1). Equation (2.4) is called a local conservation law.
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(3) The multipliers Λα of system (2.1) has the property

DiT
i = ΛαEα, (2.5)

for the arbitrary function uα [9, 10].
(4) The determining equations for the multipliers are obtained by taking variational

derivative of (2.5) (see [10]):

δ

δuα
[ΛαEα] = 0. (2.6)

Equation (2.6) holds for the arbitrary functions uα not only for the solutions of system (2.1).
Equation (2.6) yields multipliers for all local conservation laws. Then conserved

vectors can be derived systematically using (2.5) as the determining equation. But in some
problems it is not difficult to construct the conserved vectors by elementary manipulations
once the multiplier has been determined.

3. Conservation Laws for Nonlinear Systems of Partial
Differential Equations

3.1. Integrable Coupled System

Consider the integrable coupled system [16, 17]

E1 = ut +
[
uxx − (k + 3)(k + 6)u2 − k2v2

]

x
+ 2k[(k + 6)vux + (k + 3)uvx = 0,

E2 = vt +
[
vxx − k(k − 3)v2 − (k + 3)2u2

]

x
+ 2(k + 3)[kvux + (k − 3)uvx = 0.

(3.1)

The group invariant solution of (3.1)was derived in [17]. Here wewill construct conservation
laws for coupled system (3.1). Consider simple multipliers of the form Λ1(t, x, u, v) and
Λ2(t, x, u, v). Multipliers Λ1 and Λ2 for the system (3.1) have the property that

Λ1E1 + Λ2E2 = DtT
1 +DxT

2, (3.2)

for all functions u(t, x) and v(t, x) where the total derivative operators Dt and Dx from (2.3)
are

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ vtt

∂

∂vt
+ utx

∂

∂ux
+ vtx

∂

∂vx
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ uxt

∂

∂ut
+ vxt

∂

∂vt
+ · · · .

(3.3)

The right-hand side of (3.2) is a divergence expression and T1 and T2 are the components
of the conserved vector T = (T1, T2). The determining equations for the multipliers
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Λ1 and Λ2 are

δ

δu
[Λ1E1 + Λ2E2] = 0, (3.4)

δ

δv
[Λ1E1 + Λ2E2] = 0, (3.5)

where δ/δu and δ/δv are the standard Euler operators defined in (2.2), which annihilate
divergence expressions:

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

t

∂

∂utt
+DtDx

∂

∂utx
+D2

x

∂

∂uxx
− · · · , (3.6)

δ

δv
=

∂

∂v
−Dt

∂

∂vt
−Dx

∂

∂vx
+D2

t

∂

∂vtt
+DtDx

∂

∂vtx
+D2

x

∂

∂vxx
− · · · . (3.7)

Separating (3.4) and (3.5), after expansion, with respect to different combinations of
derivatives of u and v, yields the following overdetermined system:

Λ2xx = 0, Λ2vx = 0, Λ2vv = 0,

Λ1t = −12
k
(k + 3)[(u − v)k + 3u]Λ2x, Λ1x = − (k + 3)

k
Λ2x,

Λ2t = 12[(k + 3)u − kv]Λ2x,

Λ1u =
(k + 3)

[(
2k2 + 6k

)
Λ2 + 2Λ1k

2 + (k + 3)((u − v)k + 3u)
]
Λ2v

k2[(u − v)k + 3u]
,

Λ2u =

(−3k − k2)Λ2 −Λ1k
2 − (k + 3)((u − v)k + 3u)Λ2v

[(u − v)k + 3u]k
,

Λ1v =

(−3k − k2)Λ2 −Λ1k
2 − (k + 3)((u − v)k + 3u)Λ2v

[(u − v)k + 3u]k
.

(3.8)

The solution of system (3.8) yields following four multipliers:

Λ(1)
1 = 1, Λ(1)

2 = −k + 3
k

,

Λ(2)
1 = − 1

k2 (k + 3)2u, Λ(2)
2 = v,

Λ(3)
1 =

1
k
[−kv + 2(k + 3)u], Λ(3)

2 = u,

Λ(4)
1 = −k + 3

k
[x + 12(k + 3)ut − 12kvt],

Λ(4)
2 = x + 12(k + 3)ut − 12ktv.

(3.9)
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From (3.2) and (3.9), we obtained following four conserved vectors:

T
(1)
1 = − 1

k
[(k + 3)u − kv],

T
(1)
2 =

1
k

[
6(k + 3)2u2 − 12k(k + 3)uv + kvxx − kuxx − 3uxx

]
,

T
(2)
1 = − 1

2k2

[
u2(k + 3)2 − k2v2

]
,

T
(2)
2 =

1
6k2

[
3(k + 3)2u2

x − 3k2v2
x + 4(k + 6)(k + 3)3u3 − 4k3(k − 3)v3

−12k(k + 3)3u2v + 12k3(k + 3)uv2 − 6(k + 3)2uuxx + 6k2vvxx

]
,

T
(3)
1 = − 1

k

[
(k + 3)u2 − kuv

]
,

T
(3)
2 =

1
3k

[
3(k + 3)u2

x + 2(k + 3)2(k + 12)u3

− 2k3v3 − 6k(k + 3)(k + 9)u2v + 6k2(k + 6)uv2

−6(k + 3)uuxx + 3kuxxv + 3kuvxx − 3kuxvx

]
,

T
(4)
1 = − 1

k

[
6(k + 3)2tu2 + 6k2tv2

−12k(k + 3)tuv + (k + 3)ux − kvx

]
,

T
(4)
2 =

1
k

[
− (k + 3)(x + 12(k + 3)tu − 12ktv)uxx

+ (x + 12(k + 3)ut − 12ktv)kvxx + 6(k + 3)2tu2
x + 6tk2v2

x

− 12k(k + 3)tuxvx + (k + 3)ux − kvx + 48(k + 3)3tu3

− 48k3tv3 − 144k(k + 3)2tu2v + 144k2(k + 3)tuv2

+6(k + 3)2xu2 + 6k2xv2 − 12k(k + 3)xuv
]
.

(3.10)

3.2. Higher-Order Conservation Laws for
Complexly Coupled KDV System

The conservation laws of complexly coupled KDV were discussed in Naz [18]

ut − 6uux − 6vvx − uxxx = 0,

vt − 6uvx − 6vux − vxxx = 0,
(3.11)
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and six conserved vectors were derived by multipliers approach with multipliers of form
Λ1(t, x, u, v) and Λ2(t, x, u, v). Now we will consider higher-order multipliers and derive the
associated conservation laws fluxes. The determining equations for multipliers of the form
Λ1(t, x, u, v, ux, vx, uxx, vxx) and Λ2(t, x, u, v, ux, vx, uxx, vxx) from (2.6) are

δ

δu
[Λ1(ut − 6uux − 6vvx − uxxx) + Λ2(vt − 6uvx − 6vux − vxxx)] = 0, (3.12)

δ

δv
[Λ1(ut − 6uux − 6vvx − uxxx) + Λ2(vt − 6uvx − 6vux − vxxx)] = 0, (3.13)

where the standard Euler operators δ/δu and δ/δv are given by (3.6) and (3.7). Equations
(3.12) and (3.13) are separated, after expansion, according to different combinations of
derivatives of u and v and after some simplification the following system of equations for
Λ1,Λ2 is obtained:

Λ1xx = 0, Λ1vx = 0, Λ1xvxx = 0, Λ1vvxx = 0, Λ1ux = 0, Λ1vx = 0,

Λ2xx = 0, Λ2vx = 0, Λ2xvxx = 0, Λ2vvxx = 0, Λ2ux = 0, Λ2vx = 0,

Λ1vxxvxx = 0, Λ2vxxvxx = 0, Λ2vv = 6Λ1vxx , Λ1vv = 6Λ2vxx ,

Λ1t = 6Λ2xv + 6Λ1xu, Λ2t = 6Λ1xv + 6Λ2xu,

Λ1u = Λ2v, Λ2u = Λ1v, Λ1uxx = Λ2vxx , Λ2uxx = Λ1vxx .

(3.14)

The solution of system (3.14) yields

Λ1 = c1 + u(c3 + c4t) + v(c5 + c6t) +
x

6
c4 +

(
3u2 + 3v2 + uxx

)
c7 + (6uv + vxx)c8,

Λ2 = c2 + v(c3 + c4t) + u(c5 + c6t) +
x

6
c6 + (6uv + vxx)c7 +

(
3u2 + 3v2 + uxx

)
c8,

(3.15)

where c1, c2, . . . , c8 are arbitrary constants. The first six multipliers are same as derived in [18].
The two new multipliers are actually the higher-order multipliers associated with constants
c7 and c8

Λ(7)
1 = 3u2 + 3v2 + uxx, Λ(7)

2 = 6uv + vxx,

Λ(8)
1 = 6uv + vxx, Λ(8)

2 = 3u2 + 3v2 + uxx.

(3.16)
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Equation (2.5)with multipliers given in (3.16) gives two new conservation laws

T
(7)
1 = 3uv2 + u3 +

1
2
uuxx +

1
2
vvxx,

T
(7)
2 = −6uvvxx − 27u2v2 − 1

2
vvtx − 9

2
u4 − 1

2
u2
xx

− 3uxxv
2 − 3u2uxx − 9

2
v4 − 1

2
v2
xx −

1
2
uutx +

1
2
vxvt +

1
2
uxut,

T
(8)
1 = 3u2v + v3 +

1
2
uvxx +

1
2
uxxv,

T
(8)
2 = −1

2
uvtx − 18u3v − uxxvxx − 18uv3 − 3v2vxx

− 3u2vxx − 1
2
vutx − 6uvuxx +

1
2
uxvt +

1
2
vxut.

(3.17)

The two new higher-order conservation laws (3.17) are obtained for the system (3.11).

3.3. Conservation Laws for Complex-Valued KDV in Magnetized Plasma

The complexly coupled KDV

wt −
(
|w|2w

)

x
−wxxx = 0 (3.18)

arises in the study of the asymptotic investigation of electrostatic waves of a magnetized
plasma [19]. The variable w is the complex field amplitude w = u + iv. The representation of
(3.18) in real field variables u and v is

ut − 3u2ux − 2uvvx − v2ux − uxxx = 0,

vt − 3v2vx − 2uvux − u2vx − vxxx = 0.
(3.19)

The conservation laws for system (3.19) are derived here by using multiplier approach.
The determining equations for multipliers of the form Λ1(t, x, u, v, ux, vx, uxx, vxx) and
Λ2(t, x, u, v, ux, vx, uxx, vxx) from (2.6) are

δ

δu

[
Λ1

(
ut − 3u2ux − 2uvvx − v2ux − uxxx

)
+ Λ2

(
vt − 3v2vx − 2uvux − u2vx − vxxx

)]
= 0,

δ

δv

[
Λ1

(
ut − 3u2ux − 2uvvx − v2ux − uxxx

)
+ Λ2

(
vt − 3v2vx − 2uvux − u2vx − vxxx

)]
= 0.

(3.20)
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Equation (3.20) finally results in the following overdetermined system:

Λ2xx = 0, Λ1ux = 0, Λ2ux = 0, Λ1vx = 0, Λ2vx = 0,

Λ1uxx = Λ2vxx , Λ2uxx = 0, Λ1vxx = 0,

Λ1uxx = Λ2vxx , Λ2uxx = 0, Λ1vxx = 0,

Λ2vx =
Λ2x

v
, Λ2xvxx = 0, Λ2vv = 6vΛ2vxx ,

Λ2vvxx = 0, Λ2vxxvxx = 0,

Λ1t =
3
v

(
uxx + u3 + v2u

)
Λ2x,

Λ2t =
3
v

(
Λ2xvxx + Λ2xu

2v + Λ2xv
3
)
,

Λ1x =
Λ2xu

v
,

Λ1u = 2Λ2vxxu
2 − 2Λ2vxxv

2 + Λ2v,

Λ2u = 2Λ2vxxuv,

Λ1v = 2Λ2vxxuv.

(3.21)

The solution of system (3.21) yields following five multipliers:

Λ(1)
1 = 0, Λ(1)

2 = 1,

Λ(2)
1 = 1, Λ(2)

2 = 0,

Λ(3)
1 = u, Λ(3)

2 = v,

Λ(4)
1 = u3 + uv2 + uxx,

Λ(4)
2 = u2v + v3 + vxx,

Λ(5)
1 = 3t

(
u3 + uv2 + uxx

)
+ xu,

Λ(5)
2 = 3t

(
v3 + u2v + vxx

)
+ xv.

(3.22)
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The corresponding conserved vectors conserved vectors are

T
(1)
1 = v, T

(1)
2 = −u2v − v3 − vxx,

T
(2)
1 = u, T

(2)
2 = −u3 − uv2 − uxx,

T
(3)
1 =

u2

2
+
v2

2
,

T
(3)
2 =

u2
x

2
+
v2
x

2
− uuxx − vvxx − 3

4
u4 − 3

4
v4 − 3

2
u2v2,

T
(4)
1 =

1
4

[
u4 + v4 + 2u2v2 + 2uuxx + 2vvxx

]
,

T
(4)
2 = −1

2

[
u6 + v6 + u2

xx + v2
xx + 2uv2uxx + 2u2vvxx − vxvt

−uxut + 2u3uxx + 3u4v2 + 3u2v4 + 2v3vxx + vvtx + uutx

]
,

T
(5)
1 =

3t
4

[
u4 + v4 + 2u2v2 + 2uuxx + 2vvxx

]
+
x

2
u2 +

x

2
v2,

T
(5)
2 = −3t

2

[
u6 + v6 + u2

xx + v2
xx + 2uv2uxx + 2u2vvxx − vxvt

−uxut + 2u3uxx + 3u4v2 + 3u2v4 + 2v3vxx + vvtx + uutx

]

− 1
2
uux − 1

2
vvx + x

[
1
2
u2
x +

1
2
v2
x −

3
4
u4 − 3

4
v4 − uuxx − vvxx − 3

2
u2v2

]
.

(3.23)

3.4. Conservation Laws for Ito Integrable System

Consider the following integrable Ito coupled system [20]:
ut = vx,

vt = −2(vxxx + 3uvx + 3vux) − 12wwx,

wt = wxxx + 3uwx,

(3.24)

where u(t, x), v(t, x) and w(t, x). For simplicity, consider multipliers of the form Λ1 =
Λ1(t, x, u, v,w),Λ2 = Λ2(t, x, u, v,w), and Λ3 = Λ3(t, x, u, v,w).

The determining equations for multipliers Λ1, Λ2, and Λ3 from (2.6) are

δ

δu
[Λ1(ut − vx) + Λ2(vt + 2vxxx + 6uvx + 6vux + 12wwx) + Λ3(wt −wxxx − 3uwx)] = 0,

(3.25)
δ

δv
[Λ1(ut − vx) + Λ2(vt + 2vxxx + 6uvx + 6vux + 12wwx) + Λ3(wt −wxxx − 3uwx)] = 0,

(3.26)
δ

δw
[Λ1(ut − vx) + Λ2(vt + 2vxxx + 6uvx + 6vux + 12wwx) + Λ3(wt −wxxx − 3uwx)] = 0,

(3.27)
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where the standard Euler operators δ/δu, δ/δv, and δ/δw can be computed from (2.2).
Separating (3.25)–(3.27), after expansion, according to different combinations of derivatives
of u, v, and w and after some simplification following system of equations for Λ1,Λ2,Λ3 is
obtained:

Λ1xx = 0, Λ1t = 0, Λ1u = 0, Λ1v = 0, Λ1w = 0,

Λ2x = 0, Λ2u = 0, Λ2v = 0, Λ2w = 0,

Λ2t = Λ1x, Λ3(t, x, u, v,w) = 0.

(3.28)

The system of determining equation (3.28) yields

Λ1 = c1 + c2x, Λ2 = c3 + c2t, Λ3 = 0, (3.29)

where c1, c2, c3 are arbitrary constants and we have three multipliers

Λ(1)
1 = 1, Λ(1)

2 = 0, Λ(1)
3 = 0,

Λ(2)
1 = x, Λ(2)

2 = t, Λ(2)
3 = 0,

Λ(3)
1 = 0, Λ(3)

2 = 1, Λ(3)
3 = 0.

(3.30)

From (2.5), the conservation laws associated with multipliers given in (3.30) are

T
(1)
1 = u, T

(1)
2 = −v,

T
(2)
1 = ux + vt, T

(2)
2 = 6uvt + 6w2t − vx + 2tvxx,

T
(3)
1 = v, T

(3)
2 = 6uv + 6w2 + 2vxx.

(3.31)

The multiplier approach gave three nontrivial conservation laws for Ito system (3.24).

3.5. Conservation Laws Navier-Stokes Equations for the Compressible Flow
of a Heat-Conducting, Viscous Fluid for the Ideal Gas Case

The one-dimensional compressible flow of a heat-conducting, viscous fluid for the ideal gas
case is represented by the Navier-stokes equations [21]

E1 = ρt + ρxu + ρux = 0,

E2 = ut + uux + R
θρx
ρ

+ Rθx − μ
uxx

ρ
= 0,

E3 = θt + uθx +
R

cv
θux −

μ

cv

u2
x

ρ
− k

cv

θxx
ρ

= 0,

(3.32)
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where u(t, x), ρ(t, x), and θ(t, x) are the density, velocity, and temperature, μ > 0 is the
viscosity coefficient, k > 0 is the heat conductivity coefficient, R > 0 is called the ideal gas
constant, cv > 0 represents the specific heat at constant volume. Consider multipliers of the
form Λ1 = Λ1(t, x, u, ρ, θ),Λ2 = Λ2(t, x, u, ρ, θ), and Λ3 = Λ3(t, x, u, ρ, θ). The determining
equations for multipliers Λ1, Λ2, and Λ3 from (2.6) are

δ

δu
[Λ1E1 + Λ2E2 + Λ3E3] = 0,

δ

δρ
[Λ1E1 + Λ2E2 + Λ3E3] = 0,

δ

δθ
[Λ1E1 + Λ2E2 + Λ3E3] = 0,

(3.33)

where the standard Euler operators δ/δu, δ/δρ, and δ/δθ can be calculated from (2.2).
Expanding (3.33) and then separating according to different combinations of derivatives
of u, ρ, and θ and after some simplification following system of equations for Λ1,Λ2,Λ3 is
obtained:

Λ1xx = 0, Λ1t = −uΛ1x, Λ2t = −Λ1xρ,

Λ3t = 0, Λ2x = 0, Λ3x = 0, Λ1u =
Λ2

ρ
,

Λ2u =
Λ3

c
, Λ3u = 0, Λ1ρ = 0, Λ2ρ =

Λ2

ρ
,

Λ3ρ =
Λ3

ρ
, Λ1θ =

Λ3
ρ

, Λ2θ = 0, Λ3θ = 0,

R + cv /= 0, −R + 2cv /= 0.

(3.34)

The adiabatic constant γ = 1 + R/cv has physical applications in region (1, (5/3)] (see e.g.,
[21, 22]). If R + cv = 0 or −R + 2cv = 0 then the value of γ will be outside the region of
physical significance. The assumptions R + cv /= 0 and −R + 2cv /= 0 are necessary for having
a true physical model. The solution of system (3.34) results in the following four multipliers:

Λ(1)
1 = 1, Λ(1)

2 = 0, Λ(1)
3 = 0,

Λ(2)
1 = u, Λ(2)

2 = ρ, Λ(2)
3 = 0,

Λ(3)
1 = x − tu, Λ(3)

2 = −tρ, Λ(3)
3 = 0,

Λ(4)
1 = θ +

u2

2cv
, Λ(4)

2 =
uρ

cv
, Λ(4)

3 = ρ.

(3.35)
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The expressions for the fluxes are

T
(1)
1 = ρ, T

(1)
2 = uρ,

T
(2)
1 = uρ, T

(2)
2 = u2ρ − μux + Rρθ,

T
(3)
1 = ρ(x − tu), T

(3)
2 = xuρ − tu2ρ + μtux − Rtρθ,

T
(4)
1 = ρθ +

u2ρ

2cv
, T

(4)
2 =

1
2cv

[
2cvuρθ + u3ρ + 2Ruρθ − 2μuux − 2kθx

]
.

(3.36)

We will get same results if we consider multipliers of the form Λi = Λi(t, x, u, ρ, θ, ux,
ρx, θx), i = 1, 2, 3 or Λi = Λi(t, x, u, ρ, θ, ut, ρt, θt), i = 1, 2, 3.

4. Conclusions

The conservation laws for the integrable coupled kdv type system, complexly coupled
kdv system, coupled system arising from complex-valued KDV in magnetized plasma,
Ito integrable system, and Navier stokes equations of gas dynamics were computed
by multipliers approach. The multipliers having dependence on dependent variables,
independent variables, and derivatives of dependent variables up to some fixed order were
constructed. After computing multipliers, the conservation laws fluxes were derived.

First of all, we considered integrable coupled kdv-type system and multiplier
approach yielded four local conserved vectors. For the complexly coupled KDV system,
total eight multipliers were obtained. The two new conserved vectors corresponding to
second-order multipliers were obtained and were not found in [18]. The multiplier approach
on coupled system arising from complex-valued KDV in magnetized plasma gave five
conserved vectors. For Ito integrable system three and for Navier stokes equations of gas
dynamics four, nontrivial conserved vectors were derived.

The conserved vectors derived here can be used in constructing the solutions of
underlying PDE systems and will be considered in the future work.
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