
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 874239, 7 pages
doi:10.1155/2012/874239

Research Article
Generalized Chessboard Structures Whose
Effective Conductivities Are Integer Valued

Dag Lukkassen1, 2 and Annette Meidell1, 2

1 Narvik University College, P.O. Box 385, 8505 Narvik, Norway
2 Norut Narvik, P.O. Box 250, 8504 Narvik, Norway

Correspondence should be addressed to Dag Lukkassen, dl@hin.no

Received 28 September 2011; Accepted 18 November 2011

Academic Editor: Srinivasan Natesan

Copyright q 2012 D. Lukkassen and A. Meidell. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We consider generalized chessboard structures where the local conductivity takes two values a
and b. All integer combinations of a and b which make the components of effective conductivity
matrix integer valued are found. Moreover, we discuss the problem of estimating the effective
conductivity matrix by using the finite-element method.

1. Introduction

Let h be a large positive integer and consider a periodic composite material with period equal
to 1/h. The stationary heat conduction problem can then be formulated by the following
minimum principle:

Eh = min
u

(
Fh(u) −

∫
Ω
u(x)g(x)dx

)
, (1.1)

where

Fh(u) =
∫
Ω

(
1
2
gradu(x) · Ch(x)gradu(x)

)
dx. (1.2)

Here, u is the temperature; the conductivity matrix Ch(x) is given by

Ch(x) = C(hx), (1.3)
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Figure 1: The four component chessboard structure.

where C(·) is periodic relative to the unit cube of R
m, g is the source field, Ω is a bounded-

open subset of R
m, and the minimization is taken over some Sobolev space depending on the

boundary conditions. It is possible to prove that the “energy” Eh converges to the so-called
homogenized “energy” Ehom as h → ∞, defined by

Ehom = min
u

(
Fhom(u) −

∫
Ω
u(x)g(x)dx

)
, (1.4)

where

Fhom(u) =
∫
Ω

(
1
2
Du(x) · σ∗Du(x)

)
dx. (1.5)

The matrix σ∗ is often called the homogenized or effective conductivity matrix and is found
by solving a number of boundary value problems on the cell of periodicity. For an elementary
introduction to the theory of homogenization, see, for example, the book Persson et al.
[1].

There are very few microstructures where all elements of the effective conductivity
matrix are known in terms of closed form explicit formulae. Laminates and chessboards are
the most classical. Mortola and Steffé [2] studied in 1985 a chessboard structure consisting
of four equally sized squares in each period with (isotropic) conductivities a, b, c, and d,
respectively (see Figure 1). They conjectured that the corresponding effective conductivity
matrix of this composite structure is given by

σ∗ =

[
σ11 0

0 σ22

]
, (1.6)
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Figure 2: The three special cases when the local conductivity only takes two values.

where

σ11 = G(H(A(a, b), A(c, d)), A(H(a, d),H(b, c))),

σ22 = G(H(A(a, d), A(b, c)), A(H(a, b),H(c, d))).
(1.7)

Here, A, G, and H denote the arithmetic mean, the geometric mean and the harmonic mean,
respectively, given by the formulae:

A
(
α, β

)
=

α + β

2
, G

(
α, β

)
=
√
αβ, H

(
α, β

)
=

2αβ
α + β

. (1.8)

Mortola and Steffés conjecture was ultimately proved by Craster and Obnosov [3] andMilton
[4] in 2001 (see also [5]).

In this paper, we consider the special cases when the local conductivity only takes two
values (see Figure 2). One such case is when a = c = d, which will be referred to as the
connected case. The remaining cases are the chessboard case and the laminate case. The first of
these is characterized by the property a = c and b = d, and the second is characterized by the
property a = d and b = c. For these three cases, we find all integer combinations of a and b
which make the components of σ∗ integer valued. We also discuss the problem of estimating
σ∗ by using the finite-element method.

2. The Connected Case

For the connected case, it is easily verified that σ11 = σ22 = σ, where σ is given by the formula:

σ =

√
a2 3b + a

3a + b
. (2.1)
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Assume that a and b are positive integers. In order to obtain an integer value of σ, there must
exist integers r1, r2, k, and l such that

3b + a = kr21 , 3a + b = kr22 , a = lr2, (2.2)

where

gcd(r1, r2) = 1. (2.3)

We note that (2.2) is equivalent with

a = k
3(r2)2 − (r1)2

8
, b = k

3(r1)2 − (r2)2

8
, a = lr2. (2.4)

Hence,

k
(
3(r2)2 − (r1)2

)
= 8lr2. (2.5)

It is clear that gcd(3(r2)
2 − (r1)

2, r2) = 1 (otherwise, 3(r2)
2 − (r1)

2 = ds and r2 = dt for some
integers ts and d > 1, which would mean that r21 = d(3dt2 − s), and since r22 = d2t2, we obtain
that gcd(r21 , r

2
2) ≥ d, which contradicts (2.3)). According to (2.5), this gives that

k = s2r2 (2.6)

for some integer s2. By checking the four combinations when r1 and r2 are odd/even, we can
easily verify that

gcd
(
3(r2)2 − (r1)2, 8

)
= gcd

(
3(r1)2 − (r2)2, 8

)
. (2.7)

Hence, using (2.2), we obtain that

a = sr2
3(r2)2 − (r1)2

d
, b = sr2

3(r1)2 − (r2)2

d
, (2.8)

where

d = gcd
(
r2
(
3(r2)2 − (r1)2

)
, 8
)
, (2.9)

and s is some positive integer. The corresponding integer value of σ is then given by

σ = a

√
3b + a

3a + b
= sr2

3(r1)2 − (r2)2

d

√√√√kr21
kr22

= sr1
3(r1)2 − (r2)2

d
. (2.10)



Journal of Applied Mathematics 5

In order to have positive values of a and b, (2.8) shows that we only can choose values of r1
and r2 such that

1
3
(r2)2 ≤ (r1)2 ≤ 3(r2)2. (2.11)

Summing up, all integers a and b making σ integer valued are of the form (2.8) for
some positive integers s, r1 and r2, satisfying (2.11), where d is given by (2.9). The corre-
sponding value of σ is

σ = sr1
3(r2)2 − (r1)2

d
. (2.12)

Conversely, all a and b of the form (2.8), satisfying (2.11), are positive integers and make σ
integer valued.

For a/= b, the smallest integer value of σ is obtained when r1 = 5, r2 = 3 (making d = 2)
and s = 1, corresponding to the values a = 3, b = 99, and σ = 5.

3. The Chessboard-and Laminate Case

For the chessboard case, σ11 = σ22 = σ, where

σ = G(a, b) =
√
ab. (3.1)

This case is very simple. We just use the representation:

a = kr21 , b = kr22 , (3.2)

where r1, r2, and k are integers (giving σ = kr1r2).
For the laminate case, we find that σ11 = A(a, b) and σ22 = H(a, b). It is possible to

show that the integers a and b making the harmonic mean integer valued are precisely those
on the form:

a = tp
(
p + q

)
, b = tq

(
p + q

)
, (3.3)

(in this case, H(a, b) = 2tqp) and the form:

a = t
(
2p + 1

)(
p + q + 1

)
, b = t

(
2q + 1

)(
p + q + 1

)
, (3.4)

(in this case,H(a, b) = t(2q + 1)(2p + 1))where p, q, and t are positive integers. For a proof of
this fact, see [6]. Therefore, if σ11 = A(a, b) and σ22 = H(a, b) are integer valued, (a, b) must
belong to the class (3.3) or (3.4). The latter is directly seen to generate integer values also for
A. However, (3.3) gives integer values ofA only if both p and q are odd (for which (3.3)may
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be written on the form (3.4) with t replaced by 2t) or both even, or t is even. In any case, if
bothH and A are integers, we end up with the form:

a = 2tp
(
p + q

)
, b = 2tq

(
p + q

)
, (3.5)

(in this case σ11 = t(p + q)2 and σ22 = 4tqp) and the form:

a = t
(
2p + 1

)(
p + q + 1

)
, b = t

(
2q + 1

)(
p + q + 1

)
(3.6)

(in this case σ11 = t(p + q + 1)2 and σ22 = t(2q + 1)(2p + 1)).

4. Calculating σ∗ by Numerical Methods

As mentioned in the introduction, the effective conductivity matrix is found by solving a
number of boundary value problems on the cell of periodicity. For the connected case, the
effective conductivity σ can be found by solving the following boundary value problem:

div
(
λ(x)gradu

)
= 0 on Y,

u(0, x2) = 0, u(1, x2) = 1,

∂u

∂x2(x1, 0)
=

∂u

∂x2(x1, 1)
= 0.

(4.1)

Here, Y is the unit cell Y = [0, 1]2 and the conductivity λ is defined by

λ(x) =

⎧⎨
⎩
a if x ∈ Y \ [0.25, 0.75]2,

b if x ∈ [0.25, 0.75]2.
(4.2)

In addition, we must assume continuity of normal component of λ(x) gradu through the
four surfaces where λ(x) changes its value from a to b. The effective conductivity σ is then
found by calculating the integral:

σ =
∫
Y

λ(x)
∣∣gradu

∣∣2dx. (4.3)

The above boundary value problem can be solved numerically by using the finite-element
method with relatively good accuracy. The hardest case is assumed to be the one when b = 0,
but even in this case, we obtain a numerical value close to the exact one. Using a couple of
thousand elements (built up by second-order polynomials), the numerical value of σ for the
case a = 1 and b = 0 turns out to be 0.5773, which is close to the exact value:

σ =
1√
3
≈ 0.5773502692. (4.4)
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Using the class of integer values for a and b giving integer valued effective conductivity, we
may relatively easily make internet-based student projects where the students themselves are
supposed to train their skills in using FEM programs, simply by randomly generating a and
b from (2.8) and ask the students to find the integer which is the closest to their numerical
estimate. Without knowing the exact formula, there are no way that they can guess the correct
value without doing the numerical FEM calculation. The actual evaluation can be done by a
simple Java-script or other programs which can register the students progress.

For the chessboard structure, we can use the same method with the only difference
that λ(x) is defined by

λ(x) =

⎧⎨
⎩
a, if x ∈ [0, 0.5]2 ∪ [0.5, 1]2,

b, otherwise.
(4.5)

However, the numerical estimation of the effective conductivity turns out to be significantly
more difficult. In order to illustrate, we have made a numerical estimation for the case when
a = 1 and b = 10000. Even with about 10000 quadrilateral 8-node elements (with increasing
number of elements close to the midpoint of the unit-cell), our numerical value turned out to
be as high as 557, which is more than 5 times higher than the actual value which is σ = 100.
There exists a numerical methodwhich is muchmore efficient than the finite-element method
in such problems. Concerning this, we refer to the paper [7].

The numerical calculation of σ∗ for the laminate case turns out to be trivial. In fact, we
only need two elements to obtain a numerical value which is exactly equal to σii.
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