
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 890243, 16 pages
doi:10.1155/2012/890243

Research Article
Further Research on the M/G/1 Retrial Queueing
Model with Server Breakdowns

Ehmet Kasim and Geni Gupur

College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China

Correspondence should be addressed to Ehmet Kasim, ehmetkasim@163.com

Received 13 March 2012; Accepted 28 June 2012

Academic Editor: Song Cen

Copyright q 2012 E. Kasim and G. Gupur. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We study spectral properties of the operator which corresponds to the M/G/1 retrial queueing
model with server breakdowns and obtain that all points on the imaginary axis except zero belong
to the resolvent set of the operator and 0 is not an eigenvalue of the operator. Our results show that
the time-dependent solution of the model is probably strongly asymptotically stable.

1. Introduction

There has been considerable interest in retrial queueing systems, see Atencia et al. [1, 2],
Choi et al. [3], Djellab [4], Gupur [5, 6], Kasim and Gupur [7], Li et al. [8], Li and Wang [9],
Wang et al. [10, 11], and Yang and Templeton [12]. Many researchers studied the M/G/1
retrial queueing systems with server breakdowns in the steady-state case, see Atencia et al.
[1, 2], Choi et al. [3], Djellab [4], Li and Wang [9], and Wang et al. [10]. Only few researchers
studied transient solutions of M/G/1 retrial queueing systems, see Wang et al. [11], Gupur
[5, 6], Kasim andGupur [7]. AndWang et al. [11] studied the transient solution of theM/G/1
retrial queueing system with server failure by using Laplace transform and obtained the
expression of the probability-generating function. In other words, they studied the existence
of the time-dependent solution of themodel. Gupur [5, 6, 13, 14], Gupur et al. [15], and Kasim
and Gupur [7] did dynamic analysis for several queueing models including retrial queueing
models by using functional analysis and obtained the existence and uniqueness of the time-
dependent solution of several queueing models and asymptotic behavior of their time-
dependent solutions. In this paper, by using the idea in Gupur [6] and Gupur et al. [15],
we study the asymptotic behavior of the time-dependent solution of the M/G/1 retrial
queueing system with server breakdowns in which the failure states of the server are
absorbing states. This queueing system was studied by Wang et al. [10] in 2001. By using
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the supplementary variable technique they established the corresponding queueing model
and obtained explicit expressions of some reliability indices such as the availability, failure
frequency for steady-state cases under the following hypothesis: “the time-dependent solu-
tion of the model converges to a steady-state solution.” By reading their paper we find that
the above hypothesis, in fact, implies the following two hypotheses.

Hypothesis 1. The model has a nonnegative time-dependent solution.

Hypothesis 2. The time-dependent solution of the model converges to a steady-state solution.

In 2010, Gupur [6] studied the above two hypotheses. Firstly, he converted the model
into an abstract Cauchy problem by selecting a suitable Banach space and defining the under-
lying operator which corresponds to the model and its domain. Next, by using the Hille-
Yosida theorem and the Phillips theorem he proved that the model has a unique non-negative
time-dependent solution and therefore obtained that Hypothesis 1 holds. Then, when the
service completion rate is a constant, he studied the asymptotic behavior of its time-
dependent solution. By studying resolvent set of of the adjoint operator of the operator which
corresponds to the model (in this case, the M/G/1 retrial queueing model with server break-
downs is called the M/M/1 retrial queueing model with server breakdowns) he obtained
the resolvent set of the operator on the imaginary axis: all points on the imaginary axis
except zero belong to its resolvent set. And he proved that 0 is not an eigenvalue of the
operator. Thus, he suggested that the time-dependent solution of themodel probably strongly
converges to zero. Until now, any other results about this model have not been found in
the literature. In this paper, we try to study the asymptotic behavior of the time-dependent
solution of the abovemodel when the service completion rate is a function. Firstly, we convert
the model into an abstract Cauchy problem by Gupur [6] and we determine the resolvent set
of the adjoint operator of the operator corresponding to the model when the service
completion rate satisfies a certain condition. Also, we prove that 0 is not an eigenvalue of the
operator. If we can verify 0 is not in the residue spectrum of the operator, then from the above
results we conclude that the time-dependent solution of themodel strongly converges to zero.
Naturally, the results obtained in [6] are now special cases of our results.

According to Wang et al. [10], the M/G/1 retrial queueing system with server break-
downs can be described by the following system of partial differential equations with integral
boundary conditions:

dpI,0,0(t)
dt

= −λpI,0,0(t) +
∫∞

0
μ(x)pw,0,1(x, t)dx,

dpI,i,0(t)
dt

= −(λ + iθ)pI,i,0(t) +
∫∞

0
μ(x)pw,i,1(x, t)dx, i ≥ 1,

∂pw,0,1(x, t)
∂t

+
∂pw,0,1(x, t)

∂x
= −(λ + α + μ(x)

)
pw,0,1(x, t),

∂pw,i,1(x, t)
∂t

+
∂pw,i,1(x, t)

∂x
= −(λ + α + μ(x)

)
pw,i,1(x, t)

+λpw,i−1,1(x, t), i ≥ 1,

pw,i,1(0, t) = λpI,i,0(t) + (i + 1)θpI,i+1,0(t), i ≥ 0,

pI,0,0(0) = 1, pI,i,0(0) = 0, i ≥ 1; pw,j,1(x, 0) = 0, j ≥ 0.

(1.1)
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Here (x, t) ∈ [0,∞)×[0,∞); pI,i,0(t) (i ≥ 0) represents the probability that the server is idle and
there are i customers in the retrial group at time t; pw,i,1(x, t) represents the joint probability
that at time t there are i customers in the retrial group and the server is up and customer is
being served with elapsed service time x; λ is the arrival rate of customers; α is the server
failing rate; θ is the successive interretrial times of customers; μ(x) is the service completion
rate at time x satisfying

μ(x) ≥ 0,
∫∞

0
μ(x)dx = ∞. (1.2)

In this paper, we use the notations in Gupur [6]:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ θ 0 0 0 · · ·
0 λ 2θ 0 0 · · ·
0 0 λ 3θ 0 · · ·
0 0 0 λ 4θ · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.3)

Take a state space as follows:

X =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(
pI, pw

)
∣∣∣∣∣∣∣∣∣∣

pI =
(
pI,0,0, pI,1,0, pI,2,0, . . .

) ∈ l1

pw =
(
pw,0,1, pw,1,1, pw,2,1, . . .

)
∈ L1[0,∞) × L1[0,∞) × L1[0,∞) × · · ·∥∥(pI, pw)∥∥ =

∞∑
i=0

∣∣pI,i,0∣∣ + ∞∑
i=0

∥∥pw,i,1
∥∥
L1[0,∞) < ∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (1.4)

It is obvious that X is a Banach space and also a Banach lattice. In the following we define
operators and their domains:

A
(
pI, pw

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 0 · · ·
0 −(λ + θ) 0 0 · · ·
0 0 −(λ + 2θ) 0 · · ·
0 0 0 −(λ + 3θ) · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

pI,0,0
pI,1,0
pI,2,0
pI,3,0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− d

dx
0 0 0 · · ·

0 − d

dx
0 0 · · ·

0 0 − d

dx
0 · · ·

0 0 0 − d

dx
· · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

pw,0,1(x)
pw,1,1(x)
pw,2,1(x)
pw,3,1(x)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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D(A) =

⎧⎪⎪⎨
⎪⎪⎩
(
pI, pw

) ∈ X

∣∣∣∣∣∣∣∣

pw,i,1(x)(i ≥ 0) are absolutely continuous
functions and satisfy pw(0) = ΓpI,

∞∑
n=0

∥∥∥∥dpw,i,1

dx

∥∥∥∥
L1[0,∞)

< ∞

⎫⎪⎪⎬
⎪⎪⎭
,

U
(
pI, pw

)
=

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

pI,0,0
pI,1,0
pI,2,0
...

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

u 0 0 · · ·
λ u 0 · · ·
0 λ u · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

pw,0,1(x)
pw,1,1(x)
pw,2,1(x)

...

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠, D(U) = X,

(1.5)

where u = −(λ + α + μ(x)).

E
(
pI, pw

)
=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

∫∞
0 μ(x)pw,0,1(x)dx∫∞
0 μ(x)pw,1,1(x)dx∫∞
0 μ(x)pw,2,1(x)dx

...

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎝

0
0
0
...

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

, D(E) = X. (1.6)

Then the above system of (1.1) can be expressed as an abstract Cauchy problem:

d
(
pI, pw

)
(t)

dt
= (A +U + E)

(
pI, pw

)
(t), ∀t ∈ (0,∞),

(
pI, pw

)
(0) =

⎛
⎜⎝
⎛
⎜⎝

1
0
...

⎞
⎟⎠,

⎛
⎜⎝

0
0
...

⎞
⎟⎠
⎞
⎟⎠.

(1.7)

Gupur [6] have obtained the following results.

Theorem 1.1. If μ = supx∈[0,∞)μ(x) < ∞, then A +U + E generates a positive contraction C0-semi
group T(t). And the system (1.7) has a unique nonnegative time-dependent solution (pI, pw)(x, t) =
T(t)(pI, pw)(0) satisfying ‖(pI, pw)(·, t)‖ ≤ 1, ∀t ∈ [0,∞).

2. Asymptotic Behavior of the Time-Dependent Solution of the System
(1.7)

In this section, firstly we determine the expression of (A + U + E)∗, the adjoint operator of
A + U + E, next we study the resolvent set of (A + U + E)∗, through which we deduce the
resolvent set ofA+U+E on the imaginary axis. Thirdly, we prove that 0 is not an eigenvalue
of A +U + E. Thus, we state our main results in this paper.
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It is easy to see that X∗, the dual space of X, is as follows (see Gupur [6]):

X∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
q∗I , q

∗
w,
)

∣∣∣∣∣∣∣∣∣∣∣∣∣

q∗I =
(
q∗I,0,0, q

∗
I,1,0, q

∗
I,2,0, . . .

)
∈ l∞,

q∗w =
(
q∗w,0,1, q

∗
w,1,1, q

∗
w,2,1, . . .

)
∈ L∞[0,∞) × L∞[0,∞) × L∞[0,∞) × · · ·

∣∣∥∥(q∗I , Q∗
w

)∥∥∣∣ = sup

{
sup
i≥0

∣∣∣q∗I,i,0
∣∣∣, sup

i≥0

∥∥∥q∗w,i,1

∥∥∥
L∞[0,∞)

}
< ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (2.1)

It is not difficult to verify that X∗ is a Banach space.

Lemma 2.1. (A +U + E)∗, the adjoint operator of A +U + E, is as follows:

(A +U + E)∗
(
q∗I , q

∗
w

)
= (L + G +H)

(
q∗I , q

∗
w

)
, ∀(q∗I , q∗w) ∈ D(L), (2.2)

where

L(q∗I , q∗w) =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

−λ 0 0 · · ·
0 −(λ + θ) 0 · · ·
0 0 −(λ + 2θ) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

q∗I,0,0
q∗I,1,0
q∗I,2,0
...

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

d

dx
− (λ + α + μ(x)

)
0 · · ·

0
d

dx
− (λ + α + μ(x)

) · · ·
...

...
. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

q∗w,0,1(x)
q∗w,1,1(x)

...

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠,

G(q∗I , q∗w) =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

0
0
0
...

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

μ(x) 0 0 · · ·
0 μ(x) 0 · · ·
0 0 μ(x) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

q∗I,0,0
q∗I,1,0
q∗I,2,0
...

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠,

H(
q∗I , q

∗
w

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 0 0 0 · · ·
θ λ 0 0 · · ·
0 2θ λ 0 · · ·
0 0 3θ λ · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

q∗w,0,1(0)
q∗w,1,1(0)
q∗w,2,1(0)
q∗w,3,1(0)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 λ 0 0 0 · · ·
0 0 λ 0 0 · · ·
0 0 0 λ 0 · · ·
0 0 0 0 λ · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

q∗w,0,1(x)
q∗w,1,1(x)
q∗w,2,1(x)
q∗w,3,1(x)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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D(L) =

{(
q∗I , q

∗
w

) ∈ X∗
∣∣∣∣∣
q∗w,i,1(x) are absolutely continuous
and satisfy q∗w,i,1(∞) = η, i ≥ 0

}
,

D(G) = D(H) = X∗.

(2.3)

Here, η in D(L) is a nonzero constant which is irrelevant to i.

Proof. By using integration by parts and the boundary conditions on (pI, pw) ∈ D(A), we
have, for any (q∗I , q

∗
w) ∈ D(L),

〈
(A +U + E)

(
pI, pw

)
,
(
q∗I , q

∗
w

)〉
=

∞∑
i=0

[
−(λ + iθ)pI,i,0 +

∫∞

0
μ(x)pw,i,1(x)dx

]
q∗I,i,0

+
∫∞

0

[
−dpw,0,1(x)

dx
− (λ + α + μ(x)

)
pw,0,1(x)

]
q∗w,0,1(x)dx

+
∞∑
i=1

∫∞

0

[
−dpw,i,1(x)

dx
−(λ + α + μ(x)

)
pw,i,1(x) + λpw,i−1,1(x)

]

× q∗w,i,1(x)dx

=
∞∑
i=0

− (λ + iθ)pI,i,0q∗I,i,0 +
∞∑
i=0

∫∞

0
μ(x)pw,i,1(x)q∗I,i,0dx

+
∞∑
i=0

∫∞

0
−dpw,i,1(x)

dx
q∗w,i,1(x)dx

−
∞∑
i=0

∫∞

0

(
λ + α + μ(x)

)
pw,i,1(x)q∗w,i,1(x)dx

+
∞∑
i=1

∫∞

0
λpw,i−1,1(x)q∗w,i,1(x)dx

=
∞∑
i=0

− (λ + iθ)pI,i,0q∗I,i,0 +
∞∑
i=0

∫∞

0
pw,i,1(x)μ(x)q∗I,i,0dx

+
∞∑
i=0

[
−pw,i,1(x)q∗w,i,1(x)

∣∣∣∣x = ∞
x = 0

+
∫∞

0
pw,i,1(x)

dq∗w,i,1(x)

dx
dx

]

+
∞∑
i=0

∫∞

0
pw,i,1(x)

[
−(λ + α + μ(x)

)
q∗w,i,1(x)

]
dx

+
∞∑
i=0

∫∞

0
pw,i,1(x)λq∗w,i+1,1(x)dx

=
∞∑
i=0

− (λ + iθ)pI,i,0q∗I,i,0 +
∞∑
i=0

∫∞

0
pw,i,1(x)μ(x)q∗I,i,0dx

+
∞∑
i=0

pw,i,1(0)q∗w,i,1(0)
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+
∞∑
i=0

∫∞

0
pw,i,1(x)

[
dq∗w,i,1(x)

dx
− (λ + α + μ(x)

)
q∗w,i,1(x)

]
dx

+
∞∑
i=0

∫∞

0
pw,i,1(x)λq∗w,i+1,1(x)dx

=
∞∑
i=0

− (λ + iθ)pI,i,0q∗I,i,0 +
∞∑
i=0

∫∞

0
pw,i,1(x)μ(x)q∗I,i,0dx

+
∞∑
i=0

[
λpI,i,0 + (i + 1)θpI,i+1,0

]
q∗w,i,1(0)

+
∞∑
i=0

∫∞

0
pw,i,1(x)

[
dq∗w,i,1(x)

dx
− (λ + α + μ(x)

)
q∗w,i,1(x)

]
dx

+
∞∑
i=0

∫∞

0
pw,i,1(x)λq∗w,i+1,1(x)dx

=
∞∑
i=0

− (λ + iθ)pI,i,0q∗I,i,0

+
∞∑
i=0

∫∞

0
pw,i,1(x)

[
dq∗w,i,1(x)

dx
− (λ + α + μ(x)

)
q∗w,i,1(x)

+λq∗w,i+1,1(x) + μ(x)q∗I,i,0

]
dx

+
∞∑
i=0

pI,i,0λq
∗
w,i,1(0) +

∞∑
i=0

pI,i+1,0(i + 1)θq∗w,i,1(0)

=
〈(
pI, pw

)
, (L + G +H)

(
q∗I , q

∗
w

)〉
.

(2.4)

From the definition of the adjoint operator and (2.4)we know that the assertion of this lemma
is true.

Lemma 2.2. Assume that there exist two positive constant μ, μ such that

0 < μ = inf
x∈[0,∞)

μ(x) ≤ μ = sup
x∈[0,∞)

μ(x) < ∞. (2.5)

If μ < α + μ, then
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sup

⎧⎨
⎩

λ∣∣γ + λ
∣∣ , sup

i≥1

{
λ + iθ∣∣γ + λ + iθ

∣∣
}
,

λμ∣∣γ + λ
∣∣(Re γ + λ + α + μ

) +
λ

Re γ + λ + α + μ
,

sup
i≥1

⎧⎨
⎩

(λ + iθ)μ(
Re γ + λ + α + μ

)∣∣γ + λ + iθ
∣∣ +

λ

Re γ + λ + α + μ

⎫⎬
⎭
⎫⎬
⎭ < 1,

Re γ + λ + α + μ > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)
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belongs to the resolvent set of (A +U +E)∗. In particular, all points on the imaginary axis except zero
belong to the resolvent set of (A +U + E)∗, which implies that all points on the imaginary axis except
zero belong to the resolvent set of A +U + E.

Proof. For any given (y∗
I , y

∗
w) ∈ X∗, consider the equation (γI − L − G)(q∗I , q∗w) = H(y∗

I , y
∗
w),

that is, (
γ + λ

)
q∗I,0,0 = λy∗

w,0,1(0), (2.7)
(
γ + λ + θ

)
q∗I,1,0 = θy∗

w,0,1(0) + λy∗
w,1,1(0), (2.8)

(
γ + λ + iθ

)
q∗I,i,0 = iθy∗

w,i−1,1(0) + λy∗
w,i,1(0), i ≥ 1, (2.9)

dq∗w,i,1(x)

dx
=
(
γ + λ + α + μ(x)

)
q∗w,i,1(x) − μ(x)q∗I,i,0 − λy∗

w,i+1,1(x), i ≥ 0, (2.10)

q∗w,i,1(∞) = η, i ≥ 0. (2.11)

By solving (2.7)–(2.10), we have

q∗I,0,0 =
λ

γ + λ
y∗
w,0,1(0), (2.12)

q∗I,i,0 =
iθ

γ + λ + iθ
y∗
w,i−1,1(0) +

λ

γ + λ + iθ
y∗
w,i,1(0), i ≥ 1, (2.13)

q∗w,i,1(x) = aie
∫x
0 (γ+λ+α+μ(τ))dτ

+ e
∫x
0 (γ+λ+α+μ(τ))dτ

∫x

0

[
−μ(τ)q∗I,i,0 − λy∗

w,i+1,1(τ)
]
e−

∫τ
0 (γ+λ+α+μ(s))dsdτ

= aie
∫x
0 (γ+λ+α+μ(τ))dτ

− e
∫x
0 (γ+λ+α+μ(τ))dτ

∫x

0

[
μ(τ)q∗I,i,0 + λy∗

w,i+1,1(τ)
]
e−

∫τ
0 (γ+λ+α+μ(s))dsdτ, i ≥ 0.

(2.14)

Through multiplying e−
∫x
0 (γ+λ+α+μ(τ))dτ to two sides of (2.14), we obtain

e−
∫x
0 (γ+λ+α+μ(τ))dτq∗w,i,1(x) = ai −

∫x

0

[
μ(τ)q∗I,i,0 + λy∗

w,i+1,1(τ)
]
e−

∫τ
0 (γ+λ+α+μ(s))dsdτ, i ≥ 0.

(2.15)

By combining (2.11)with (2.15), we deduce

ai =
∫∞

0

[
μ(τ)q∗I,i,0 + λy∗

w,i+1,1(τ)
]
e−

∫τ
0 (γ+λ+α+μ(s))dsdτ, i ≥ 0. (2.16)

By inserting (2.16) into (2.14), we get

q∗w,i,1(x) = e
∫x
0 (γ+λ+α+μ(τ))dτ

∫∞

x

[
μ(τ)q∗I,i,0 + λy∗

w,i+1,1(τ)
]
e−

∫τ
0 (γ+λ+α+μ(s))dsdτ
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= e
∫x
0 (γ+λ+α+μ(τ))dτ

∫∞

x

μ(τ)q∗I,i,0e
− ∫τ0 (γ+λ+α+μ(s))dsdτ

+ λe
∫x
0 (γ+λ+α+μ(τ))dτ

∫∞

x

y∗
w,i+1,1(τ)e

− ∫τ0 (γ+λ+α+μ(s))dsdτ

(2.17)

=⇒
∥∥∥q∗w,i,1

∥∥∥
L∞[0,∞)

≤
∫∞

0
e
∫x
0 (Re γ+λ+α)dτ

∫∞

x

μ(τ)
∣∣∣q∗I,i,0

∣∣∣e− ∫τ0 (Re γ+λ+α)dse− ∫τx μ(s)dsdτ dx

+ λ

∫∞

0
e
∫x
0 (Re γ+λ+α)dτ

∫∞

x

μ(τ)
∣∣∣y∗

w,i+1,1(τ)
∣∣∣e− ∫τ0 (Re γ+λ+α)dse− ∫τx μ(s)dsdτ dx

≤ μ(
Re γ + λ + α + μ

)∣∣∣q∗I,i,0
∣∣∣

+
λ

Re γ + λ + α + μ

∥∥∥y∗
w,i+1,1

∥∥∥
L∞[0,∞)

, i ≥ 0.

(2.18)

Equation (2.12) gives

∣∣∣q∗I,0,0
∣∣∣ ≤ λ∣∣γ + λ

∣∣
∣∣∣y∗

w,0,1(0)
∣∣∣ ≤ λ∣∣γ + λ

∣∣
∥∥∥y∗

w,0,1

∥∥∥
L∞[0,∞)

. (2.19)

From (2.13) we estimate

∣∣∣q∗I,i,0
∣∣∣ ≤ iθ∣∣γ + λ + iθ

∣∣
∣∣∣y∗

w,i−1,1(0)
∣∣∣ + λ∣∣γ + λ + iθ

∣∣
∣∣∣y∗

w,i,1(0)
∣∣∣

≤ iθ∣∣γ + λ + iθ
∣∣
∥∥∥y∗

w,i−1,1
∥∥∥
L∞[0,∞)

+
λ∣∣γ + λ + iθ

∣∣
∥∥∥y∗

w,i,1

∥∥∥
L∞[0,∞)

≤ λ + iθ∣∣γ + λ + iθ
∣∣sup

i≥0

∥∥∥y∗
w,i,1

∥∥∥
L∞[0,∞)

, i ≥ 1.

(2.20)

By inserting (2.19) and (2.20) into (2.18), we have

∥∥∥q∗w,0,1

∥∥∥
L∞[0,∞)

≤ μ(
Re γ + λ + α + μ

) λ∣∣γ + λ
∣∣
∥∥∥y∗

w,0,1

∥∥∥
L∞[0,∞)

+
λ

Re γ + λ + α + μ

∥∥∥y∗
w,1,1

∥∥∥
L∞[0,∞)

≤
⎧⎨
⎩

λμ∣∣γ + λ
∣∣(Re γ + λ + α + μ

) +
λ

Re γ + λ + α + μ

⎫⎬
⎭
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× sup
i≥0

∥∥∥y∗
w,i,1

∥∥∥
L∞[0,∞)

,

∥∥∥q∗w,i,1

∥∥∥
L∞[0,∞)

≤ μ(
Re γ + λ + α + μ

) λ + iθ∣∣γ + λ + iθ
∣∣sup

i≥0

∥∥∥y∗
w,i,1

∥∥∥
L∞[0,∞)

+
λ

Re γ + λ + α + μ
sup
i≥0

∥∥∥y∗
w,i,1

∥∥∥
L∞[0,∞)

=

⎧⎨
⎩

(λ + iθ)μ(
Re γ + λ + α + μ

)∣∣γ + λ + iθ
∣∣ +

λ

Re γ + λ + α + μ

⎫⎬
⎭

× sup
i≥0

∥∥∥y∗
w,i,1

∥∥∥
L∞[0,∞)

, i ≥ 0.

(2.21)

By combining (2.19) and (2.20) with (2.21), we derive

∣∣∥∥(q∗I , q∗w)∥∥∣∣ ≤ sup

⎧⎨
⎩

λ∣∣γ + λ
∣∣ , sup

i≥1

{
λ + iθ∣∣γ + λ + iθ

∣∣
}
,

λμ∣∣γ + λ
∣∣(Re γ + λ + α + μ

) +
λ

Re γ + λ + α + μ
,

sup
i≥1

⎧⎨
⎩

(λ + iθ)μ(
Re γ + λ + α + μ

)∣∣γ + λ + iθ
∣∣ +

λ

Re γ + λ + α + μ

⎫⎬
⎭
⎫⎬
⎭.

(2.22)

This shows that [I − (γI − L − G)−1H]−1 exists and is bounded when γ belongs to the set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sup

⎧⎨
⎩

λ∣∣γ + λ
∣∣ , sup

i≥1

{
λ + iθ∣∣γ + λ + iθ

∣∣
}
,

λμ∣∣γ + λ
∣∣(Re γ + λ + α + μ

) +
λ

Re γ + λ + α + μ
,

sup
i≥1

⎧⎨
⎩

(λ + iθ)μ(
Re γ + λ + α + μ

)∣∣γ + λ + iθ
∣∣ +

λ

Re γ + λ + α + μ

⎫⎬
⎭
⎫⎬
⎭ < 1,

Re γ + λ + α + μ > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.23)

Through discussing the solution of the equation (γI − L − G)(q∗I , q∗w) = (y∗
I , y

∗
w) for any given

(y∗
I , y

∗
w) ∈ X∗, it is not difficult to verify (γI − L − G)−1 exists and is bounded when γ satisfies
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(2.23). Therefore, by the resolvent equation

[
γI − (L + G +H)

]−1 = {(
γI − L − G)[I − (γI − L − G)−1H]}−1

=
[
I − (γI − L − G)−1H]−1(

γI − L − G)−1,
(2.24)

we know that (γI−L−G−H)−1 exists and is bounded when γ belongs to the set (2.23), which
means that (2.23) belongs to ρ(L + G +H).

In particular, if γ = ia, a ∈ R \ {0}, i2 = −1, then all γ ’s belong to (2.23). In fact, by using
the condition on this lemma, we have

λ√
a2 + λ2

< 1,

sup
k≥1

λ + kθ√
a2 + (λ + kθ)2

< 1,

μ < α + μ =⇒ λμ <
(
α + μ

)√
a2 + λ2

=⇒ λμ + λ
√
a2 + λ2 <

(
α + μ

)√
a2 + λ2 + λ

√
a2 + λ2

=⇒ λμ + λ
√
a2 + λ2 <

(
λ + α + μ

)√
a2 + λ2

=⇒ λμ
√
a2 + λ2

(
λ + α + μ

) +
λ

λ + α + μ
< 1,

μ < α + μ =⇒ (λ + kθ)μ <
(
α + μ

)√
a2 + (λ + kθ)2

=⇒ (λ + kθ)μ + λ
√
a2 + (λ + kθ)2 <

(
α + μ

)√
a2 + (λ + kθ)2 + λ

√
a2 + (λ + kθ)2

=⇒ (λ + kθ)μ + λ
√
a2 + (λ + kθ)2 <

(
λ + α + μ

)√
a2 + (λ + kθ)2,

sup
k≥1

⎧⎪⎨
⎪⎩

(λ + kθ)μ√
a2 + (λ + kθ)2

(
λ + α + μ

) +
λ

λ + α + μ

⎫⎪⎬
⎪⎭ < 1.

(2.25)

The above inequalities show that all points on the imaginary axis except zero belong to the
resolvent set of (A + U + E)∗. From the relation between the spectrum of A + U + E and
spectrum of (A+U +E)∗ we know that all points on the imaginary axis except zero belong to
the resolvent set of A +U + E.
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Lemma 2.3. If

0 < μ = inf
x∈[0,∞)

μ(x) ≤ μ = sup
x∈[0,∞)

μ(x) < ∞, (2.26)

then 0 is not an eigenvalue of A +U + E.

Proof. We consider the equation (A +U + E)(pI, pw) = 0, which is equivalent to

λpI,0,0 =
∫∞

0
μ(x)pw,0,1(x)dx, (2.27)

(λ + iθ)pI,i,0 =
∫∞

0
μ(x)pw,i,1(x)dx, i ≥ 1, (2.28)

dpw,0,1(x)
dx

= −(λ + α + μ(x)
)
pw,0,1(x), (2.29)

dpw,i,1(x)
dx

= −(λ + α + μ(x)
)
pw,i,1(x) + λpw,i−1,1(x), i ≥ 1, (2.30)

pw,i,1(0) = λpI,i,0 + (i + 1)θpI,i+1,0, i ≥ 0. (2.31)

It is hard to determine the concrete expressions of all pI,i,0, pw,i,1(x) and to prove (pI, pw) ∈
D(A). In the following we use another method. We introduce the probability-generating
functions QI(z) =

∑∞
i=0 pI,i,0z

i, Qw(x, z) =
∑∞

i=0 pw,i,1(x)zi for |z| < 1. Theorem 1.1 ensures
that QI(z), Qw(x, z) are well-defined. By applying the basic knowledge of power series, the
Fubini theorem and (2.27)-(2.28), we have

λpI,0,0 +
∞∑
i=1

(λ + iθ)pI,i,0zi =
∫∞

0
μ(x)pw,0,1(x)dx +

∞∑
i=1

∫∞

0
μ(x)pw,i,1(x)zidx

=⇒ λQI(z) + θz

( ∞∑
i=0

pI,i,0z
i

)′
=
∫∞

0
μ(x)

∞∑
i=0

pw,i,1(x)zidx

=⇒ λQI(z) + θz
d

dz
QI(z) =

∫∞

0
μ(x)Qw(x, z)dx.

(2.32)

By (2.29) and (2.30), we deduce

dpw,0,1(x)
dx

+
∞∑
i=1

dpw,i,1(x)
dx

zi = −(λ + α + μ(x)
)
pw,0,1(x)

− (λ + α + μ(x)
) ∞∑
i=1

pw,i,1(x)zi +
∞∑
i=1

λpw,i−1,1(x)zi

=⇒

∂
∑∞

i=0 pw,i,1(x)zi

∂x
= −(λ + α + μ(x)

) ∞∑
i=0

pw,i,1(x)zi + λ
∞∑
i=1

pw,i−1,1(x)zi
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=⇒

∂Qw(x, z)
∂x

= −(λ + α + μ(x)
)
Qw(x, z) + λz

∞∑
i=0

pw,i,1(x)zi

=⇒
∂Qw(x, z)

∂x
=
(
λz − λ − α − μ(x)

)
Qw(x, z)

=⇒

Qw(x, z) = Qw(0, z)e
∫x
0 (λz−λ−α−μ(τ))dτ .

(2.33)

Equation (2.31) gives

Qw(0, z) =
∞∑
i=0

pw,i,1(0)zi = λ
∞∑
i=0

pI,i,0z
i +

∞∑
i=0

(i + 1)θpI,i+1,0zi

= λQI(z) + θ
d

dz
QI(z).

(2.34)

By combining (2.34)with (2.33) and using (2.32), we calculate

λQI(z) + θz
d

dz
QI(z) =

∫∞

0
μ(x)Qw(x, z)dx

=
∫∞

0
μ(x)Qw(0, z)e

∫x
0 [λz−λ−α−μ(τ)]dτdx

=
[
λQI(z) + θ

d

dz
QI(z)

] ∫∞

0
μ(x)e

∫x
0 [λz−λ−α−μ(τ)]dτdx

=⇒
dQI(z)
QI(z)

=
λ

θ

∫∞
0 μ(x)e

∫x
0 [λz−λ−α−μ(τ)]dτdx − 1

z − ∫∞0 μ(x)e
∫x
0 [λz−λ−α−μ(τ)]dτdx

dz

=⇒

QI(z) = QI(0) exp

{
λ

θ

∫z

0

∫∞
0 μ(x)e

∫x
0 [λs−λ−α−μ(τ)]dτdx − 1

s − ∫∞0 μ(x)e
∫x
0 [λs−λ−α−μ(τ)]dτdx

ds

}

= pI,0,0 exp

{
λ

θ

∫z

0

∫∞
0 μ(x)e

∫x
0 [λs−λ−α−μ(τ)]dτdx − 1

s − ∫∞0 μ(x)e
∫x
0 [λs−λ−α−μ(τ)]dτdx

ds

}
.

(2.35)

This together with (2.34) gives

Qw(0, z) =
λ(z − 1)(

z − ∫∞0 μ(x)e
∫x
0 [λz−λ−α−μ(τ)]dτdx

)QI(z). (2.36)
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From (2.35), we derive

∞∑
i=0

pI,i,0 = lim
z→ 1

QI(z)

= lim
z→ 1

pI,0,0 exp

{
λ

θ

∫z

0

∫∞
0 μ(x)e

∫x
0 [λs−λ−α−μ(τ)]dτdx − 1

s − ∫∞0 μ(x)e
∫x
0 [λs−λ−α−μ(τ)]dτdx

ds

}

= pI,0,0 exp

{
λ

θ

∫1

0

∫∞
0 μ(x)e

∫x
0 [λs−λ−α−μ(τ)]dτdx − 1

s − ∫∞0 μ(x)e
∫x
0 [λs−λ−α−μ(τ)]dτdx

ds

}
.

(2.37)

In the following, by the Rouche theorem we know that s − ∫∞
0 μ(x)e

∫x
0 [λs−λ−α−μ(τ)]dτdx has a

unique zero point inside the unit circle |z| = 1. And by the residue theorem we determine the
above integral.

Let f(z) = z and g(z) =
∫∞
0 μ(x)e−(λ+α−λz)x−

∫x
0 μ(τ)dτdx. It is well known that f(z) and

g(z) are differentiable inside and continuous on the contour |z| = 1. And |f(z)| = 1 on |z| = 1.
Since, for (λ + α − λRe z) > 0,

∣∣g(z)∣∣ =
∣∣∣∣
∫∞

0
μ(x)e−(λ+α−λz)x−

∫x
0 μ(τ)dτdx

∣∣∣∣

≤ −
∫∞

0
e−(λ+α−λ Re z)xde−

∫x
0 μ(τ)dτ

= −
[
e−(λ+α−λ Re z)xe−

∫x
0 μ(τ)dτ

∣∣∣∣ x = ∞
x = 0

+(λ + α − λ Re z)
∫∞

0
e−(λ+α−λ Re z)x−∫x0 μ(τ)dτdx

]

= 1 − (λ + α − λRe z)
∫∞

0
e−(λ+α−λ Re z)x−∫x0 μ(τ)dτdx

< 1 =
∣∣f(z)∣∣,

(2.38)

we have |f(z)| < |g(z)| on |z| = 1. Consequently, all conditions of Rouche’s theorem are
satisfied. Obviously f(z) − g(z) has only one zero inside the unit circle |z| = 1, since f(z) has
one. If we denote this zero by z0, then it is a simple pole of

∫∞
0 μ(x)e−(λ+α−λz)x−

∫x
0 μ(τ)dτdx − 1

z − ∫∞0 μ(x)e−(λ+α−λz)x−
∫x
0 μ(τ)dτdx

. (2.39)
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By the residue theorem, we calculate

∫1

0

∫∞
0 μ(x)e−(λ+α−λs)x−

∫x
0 μ(τ)dτdx − 1

s − ∫∞0 μ(x)e−(λ+α−λs)x−
∫x
0 μ(τ)dτdx

ds

= lim
z→ z0

∫∞
0 μ(x)e−(λ+α−λz)x−

∫x
0 μ(τ)dτdx − 1

1 − ∫∞0 λxμ(x)e−(λ+α−λz)x−
∫x
0 μ(τ)dτdx

=

∫∞
0 μ(x)e−(λ+α−λz0)x−

∫x
0 μ(τ)dτdx − 1

1 − ∫∞0 λxμ(x)e−(λ+α−λz0)x−
∫x
0 μ(τ)dτdx

.

(2.40)

Thus, we obtain

∞∑
i=0

pI,i,0 = pI,0,0 exp

{
λ

θ

∫∞
0 μ(x)e−(λ+α−λz0)x−

∫x
0 μ(τ)dτdx − 1

1 − ∫∞0 λxμ(x)e−(λ+α−λz0)x−
∫x
0 μ(τ)dτdx

}
< ∞. (2.41)

From (2.36), we derive

lim
z→ 1

Qw(0, z) = lim
z→ 1

λ(z − 1)

z − ∫∞0 μ(x)e
∫x
0 [λz−λ−α−μ(τ)]dτdx

QI(z)

= lim
z→ 1

λ(z − 1)

z − ∫∞0 μ(x)e
∫x
0 [λz−λ−α−μ(τ)]dτdx

lim
z→ 1

QI(z)

=
λ(1 − 1)

1 − ∫∞0 μ(x)e−
∫x
0 [α+μ(τ)]dτdx

QI(1)

= 0.

(2.42)

By combining (2.33)with (2.42), we estimate

∞∑
i=0

pw,i,1(x) = lim
z→ 1

Qw(x, z) = lim
z→ 1

Qw(0, z)e
∫x
0 (λz−λ−α−μ(τ))dτ

= lim
z→ 1

Qw(0, z)e−
∫x
0 (α+μ(τ))dτ

= 0.

(2.43)

Since Theorem 1.1 shows that each pw,i,1(x) is nonnegative, (2.43) implies pw,i,1(x) = 0 for
all i ≥ 0. This together with (2.27) and (2.28) gives pI,i,0 = 0 for all i ≥ 0. In other words,
(A + U + E)(pI, pw) = 0 has only zero solution; that is, 0 is not an eigenvalue of A + U + E.
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Lemma 2.3 shows that the system (1.7) does not have nonzero steady-state solution.
If we can prove that 0 is not in the residue spectrum ofA+U+E, then by Theorem 1.1,

Lemmas 2.2 and 2.3, and ABLV Theorem (see [16] or [17]), we deduce that the time-
dependent solution of system (1.7) is strongly asymptotically stable. This result is quite
different from other queueing models, see Gupur [13–15] and Kasim and Gupur [7].
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