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A simple prey-predator-type model for the growth of tumor with discrete time delay in the
immune system is considered. It is assumed that the resting and hunting cells make the immune
system. The present model modifies the model of El-Gohary (2008) in that it allows delay effects
in the growth process of the hunting cells. Qualitative and numerical analyses for the stability of
equilibriums of the model are presented. Length of the time delay that preserves stability is given.
It is found that small delays guarantee stability at the equilibrium level (stable focus) but the delays
greater than a critical value may produce periodic solutions through Hopf bifurcation and larger
delays may even lead to chaotic attractors. Implications of these results are discussed.

1. Introduction

It is well known that cancer is one of the greatest killers in the world, and the control of
tumor growth requires great attention. The development of a cancerous tumor is complex
and involves interaction of many cell types. Main components of these cells are tumor cells
(or abnormal cells also known as bad cells) and immune and healthy tissue cells (or normal
cells also known as good cells).

A tumor is a dynamic nonlinear system, in which bad cells grow, spread, and
eventually overwhelm good cells in the body. The form of the dynamic nonlinear system
modeling the cancer and the class of the equations that describe such a system are related
to the scaling problem. Indeed, there are three natural scales that are connected to different
stages of the disease and have to be identified. The first is the subcellular (or molecular)
scale, where one focuses on studying the alterations in the genetic expressions of the genes
contained in the nucleus of a cell. As a result of this, some special signals, which are
received by the receptors on the cell surface, are transmitted to the cell nucleus. The second
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is the cellular scale, which is an intermediate level between the molecular scale and the
macroscopic scale to be described in the following. The third is the macroscopic scale, where
one deals with heterogeneous tissues. In the heterogeneous tissues, some of the layers (e.g.,
the external proliferating layer, the intermediate layer, and the inner zone with necrotic cells)
constituting the tumor may occur as islands. This leads to a tumor comprising of multiple
regions of necrosis engulfed by tumor cells in a quiescent or proliferative state [1]. In case
of macroscopic scale, the main focus is on the interaction between the tumor and normal
cells (e.g., immune cells and blood vessels) in each of the three layers. For more details
about description of the scaling problem and the passage from one scale to another, one
may refer to Bellomo et al. [1, 2]. A great research effort is being devoted to understand
the interaction between the tumor cells and the immune system. Mathematical models using
ordinary, partial, and delay differential equations [3] play an important role in understanding
the dynamics and tracking the tumor and immune system populations over time.

Many authors have used mathematical models to describe the interaction among the
various components of tumor microenvironment, (see de Boer et al. [4], Goldstein et al. [5],
De Pillis et al. [6], and Kronic et al. [7]). These papers mainly deal with immune response
to tumor growth. In the last few years a great deal of human and economical resources
is devoted to cancer research with a view to develop different control strategies and drug
therapies with main emphasis on experimental aspects and immunology (see Aroesty et
al. [8], Eisen [9], Knolle [10], Murray [11], Adam [12], Adam and Panetta [13], Owen and
Sherrat [14], De Pillis and Radunskaya [15], Dingli et al. [16], andMenchón et al. [17]). There
are many existing reviews of mathematical models of tumor growth and tumor immune
system interactions such as Bellomo and Preziosi [18], Araujo and McElwain [19], Nagy
[20], Byrne et al. [21], Castiglione and Piccoli [22], Martins et al. [23], Roose et al. [24],
Chaplain [25], and Bellomo et al. [26]. Some of these reviews follow a historical approach
(Araujo and McElwain [19]), while others focus on multiscale modeling or on particular
aspects of tumor evolution (Bellomo and Preziosi [18], Martins et al. [23], and Bellomo et
al. [26]). Recently, Bellomo et al. [27] study the competition between tumor and immune
cells modeled by a nonlinear dynamical system, which identifies the evolution of the number
of cells belonging to different interacting populations such as tumor and immune cells at
different scales, namely molecular, cellular and macroscopic. Bellomo and Delitala [28] have
applied the methods of the classical mathematical kinetic theory for active particles to study
the immune competition with special attention to cancer phenomena. They mainly focus on
modeling aspects of the early stage of cancer onset and competition with the immune system.

Several authors have used the concept of prey-predator-type interactions in tumor
studies where in general the immune cells play the role of predator and the tumor cells
that of prey (see Kuznetsov et al. [29], Kirschner and Panetta [30], Sarkar and Banerjee [31],
and El-Gohary [32]). These are mainly ordinary differential equation models, which certainly
provide a simpler framework to explore the interactions among tumor cells and the different
types of immune and healthy tissue cells. Kuznetsov et al. [29] study nonlinear dynamics
of immunogenic tumors with emphasis on parameter estimation and global bifurcation
analysis. Immunotherapy of tumor-immune interaction has been studied by Kirschner and
Panetta [30]. They indicated that the dynamics between tumor cells, immune cells, and IL-2
can explain both short-term oscillations in tumor size as well as long-term tumor relapse.
Sarkar and Banerjee [31] discuss self-remission and tumor stability by taking stochastic
approach.

The delay differential equations have long been used in modeling cancer phenomena
[33–39]. Byrne [40] considers the effect of time delay on the dynamics of avascular tumor
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growth by incorporating a time-delayed factor into the net proliferation rate of the cells.
Burić et al. [41] consider the effects of time delay on the two-dimensional system, which
represents the basic model of the immune response. They study variations of the stability
of the fixed points due to time delay and the possibility for the occurrence of the chaotic
solutions. Recently, Foryś and Kolev [42] propose and study the role of time delay in solid
avascular tumor growth. They study a delay model in terms of a reaction-diffusion equation
and mass conservation law. Two main processes are taken into account that is, proliferation
and apoptosis. Gałach [43] studies a simplified version of the Kuznetsov-Taylormodel, where
immune reactions are described by a bilinear term with time delay. Yafia [44] analyzes an
interaction between the proliferating and quiescent cells tumor with a single delay. He shows
the occurrence of Hopf bifurcation as the delay crosses some critical value.

Recently, El-Gohary [32] studied a cancer self-remission and tumor system and
provided optimal control strategies that made its unstable steady states asymptotically stable.
In the present paper, we modify the model of El-Gohary [32] by introducing a constant time
delay T in the growth rate of the hunting cells of the immune system. This modification,
while on one hand incorporates certain thresholds that may be helpful to control the tumor
cell growth, on the other hand hints at the complex dynamics that a tumor may have. It may
be mentioned here that by representing tumor growth with ordinary differential equations
we indeed operate in the present study at the supermacroscopic scale, while the link with the
lower cellular scale is represented by the delay. Of course, we do not consider heterogeneity,
mutations, and link with the lower molecular scale in the present paper (for details one may
see [27, 28, 45, 46]).

2. The Model and Equilibrium Solutions

El-Gohary [32] considered the following model for cancer self-remission and tumor growth:

dM

dt
= q + rM

(
1 − M

k1

)
− αMN,

dN

dt
= βNZ − d1N,

dZ

dt
= sZ

(
1 − Z

k2

)
− βNZ − d2Z.

(2.1)

In (2.1), different variables and parameters have the following interpretations.
M(t), N(t), Z(t): densities of tumor cells, hunting predator cells, and resting cells at

time t

q: conversion of normal cells to malignant cells,

r: growth rate of tumor cells,

k1: maximum carrying capacity of tumor cells,

α: rate of killing of tumor cells by hunting cells,

β: conversion rate of the resting cells to tumor cells,

d1: natural death rate of hunting cells,
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s: growth rate of resting cells,

d2: natural death rate of resting cells.

Using nondimensional variables and parameters as

τ = qk−1
1 t, x1 = k−1

1 M, x2 = αk1q
−1N, x3 = k−1

2 Z,

a1 = rk1q
−1, a2 = βk1k2q

−1, a3 = d1k1q
−1, a4 = sk1q

−1, a5 = βα−1,

a6 = d2k1q
−1,

(2.2)

El-Gohary [32] obtained the following nondimensional form of model (2.1):

dx1

dτ
= 1 + a1x1(1 − x1) − x1x2,

dx2

dτ
= a2x2x3 − a3x2,

dx3

dτ
= a4x3(1 − x3) − a5x2x3 − a6x3.

(2.3)

We modify model (2.3) by assuming that there is a constant time delay T since the
time resting cells give a signal to hunting cells for activation and the mature hunting cells are
ready to kill the tumor cells. More specifically, we incorporate this assumption by replacing
the growth term a2x2(τ)x3(τ) in (2.3) by a2x2(τ −T)x3(τ −T). Thus our model takes the form

dx1

dτ
= 1 + a1x1(1 − x1) − x1x2,

dx2

dτ
= a2x2(τ − T)x3(t − T) − a3x2,

dx3

dτ
= a4x3(1 − x3) − a5x2x3 − a6x3.

(2.4)

It is obvious that model (2.4) would have same equilibrium solutions as model (2.3), whose
equilibriums have been reported as

E1 =

⎧⎨
⎩

1
2

⎛
⎝1 +

√
1 +

4
a1

⎞
⎠, 0, 0

⎫⎬
⎭,

E2 =

⎧⎨
⎩

1
2

⎛
⎝1 +

√
1 +

4
a1

⎞
⎠, 0,

(
1 − a6

a4

)⎫⎬
⎭,

E3 = (x1, x2, x3) =
[

1
2a1

{
(a1 − x2) +

√
(a1 − x2)

2 + 4a1

}
,

{
a4

a5

(
1 − a3

a2

)
− a6

a5

}
,
a3

a2

]
,

(2.5)

in El-Gohary [32], under the biologically feasible conditions as

a4 > a6,
a3

a2
+
a6

a4
< 1. (2.6)
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Table 1

Equilibrium Nature of stability
E1 Absolutely unstable saddle point
E2 Absolutely unstable saddle point
E3 Asymptotically stable

The first condition states that the ratio of the natural death rate of resting cell to its growth
rate is less than one. The second condition implies that the ratio of the natural death rate of
the hunting cell to its growth rate is also less than one.

3. Linear Stability Analysis

3.1. Stability without Delay (i.e., T = 0)

The local stability results for equilibriums of model (2.4) for T = 0 have been reported in
El-Gohary [32] as shown in (Table 1).

3.2. Stability with Delay (i.e., T /= 0)

Assuming small deviations ui around the equilibrium E3 = (x1, x2, x3) such that ui = xi − xi,
the linearized system of the model (2.4) becomes

du1

dτ
= (a1(1 − 2x1) − x2)u1 − x1u2,

du2

dτ
= −a3u2 + a2x3u2(τ − T) + a2x2u3(τ − T),

du3

dτ
=

a5a3u2

a2
− a4a3u3

a2
.

(3.1)

In the case of a positive delay (T > 0), the characteristic equation for this system can be
written as

P(λ) +Q(λ)e−λT = 0, (3.2)

where

P(λ) = λ3 +A1λ
2 +A2λ +A3, Q(λ) = B1λ

2 + B2λ + B3 (3.3)

such that

A1 = a3 +
a4a3

a2
+ k,

A2 =
a4a3

2

a2
+ ka3 +

ka4a3

a2
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A3 =
ka4a

2
3

a2
,

B1 = −a3,

B2 = −a4a
2
3

a2
+ a5a3x2 − ka3,

B3 = −ka4a
2
3

a2
+ ka5a3x2,

(3.4)

with

k =
√
(a1 − x2)

2 + 4a1. (3.5)

Now substituting λ = iω (where ω is positive) in (3.2) and separating the real and imaginary
parts, we obtain the following system of transcendental equations:

A1ω
2 −A3 =

(
B3 − B1ω

2
)
cos(ωT) + B2ω sin(ωT), (3.6)

ω3 −A2ω = B2ω cos(ωT) −
(
B3 − B1ω

2
)
sin(ωT). (3.7)

Squaring and adding (3.6) and (3.7), we get

(
B3 − B1ω

2
)2

+ B2
2ω2 =

(
A1ω

2 −A3

)2
+
(
ω3 −A2ω

)2
, (3.8)

which can be simplified to

ω6 + C1ω
4 + C2ω

2 + C3 = 0, (3.9)

where

C1 = A1
2 − 2A2 − B1

2,

C2 = A2
2 − B2

2 − 2A1A3 + 2B1B3,

C3 = A3
2 − B3

2 = (A3 + B3)(A3 − B3).

(3.10)

Equation (3.9) can be written as a cubic

ρ3 + C1ρ
2 + C2ρ + C3 = 0 (3.11)

with ρ = ω2.
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For parameter values such that C1 is positive, the simplest assumption that (3.11)will
have a unique positive root is C3 = A3

2 − B3
2 < 0. Since A3 + B3 is positive, it requires that

A3 − B3 < 0 for C3 to be negative. Hence, it can be said that there is a unique positive root say
ρ0 of (3.11). Denoting ω0 = ρ0

1/2, it follows that the characteristic equation (3.2) has a pair of
purely imaginary roots of the form ±iω0. Eliminating sin(ωT) from (3.6) and (3.7), we get

cos(ωT) =

(
A1ω

2 −A3
)(
B3 − B1ω

2) + (
ω3 −A2ω

)
B2ω

(B3 − B1ω2)2 + B2
2ω2

. (3.12)

Then T ∗
n corresponding to ω0 is given by

T ∗
n =

1
ω0

arccos

[(
A1ω0

2 −A3
)(
B3 − B1ω0

2) + (
ω0

3 −A2ω0
)
B2ω0

(B3 − B1ω0
2)2 + B2

2ω0
2

]
+
2nπ
ω0

. (3.13)

Since E3 is stable for T = 0, it implies from Freedman and Rao [47] that E3 remains stable for
T < T ∗

0 .

3.3. Estimation of the Length of Delay to Preserve Stability

Let us consider the linearized system (3.1). Taking the Laplace transform of this system, we
get

(s − a1 + 2a1x1 + x2)U1(s) = −x1U2(s) + u1(0),

(s+a3)U2(s) = a2x3e
−sTU2(s) + a2x3e

−sTK1(s) + a2x2e
−sTU3(s) + a2x2e

−sTK2(s) + u2(0),(
s +

a4a3

a2

)
U3(s) =

a5a3

a2
U2(s) + u3(0),

(3.14)

where

Ui(s) = L{ui(τ)},

K1(s) =
∫0

−T
e−sτu2(τ)dτ,

K2(s) =
∫0

−T
e−sτu3(τ)dτ.

(3.15)

Following lines of Erbe et al. [48] and using the Nyquist criterion (Freedman and Rao
[47]), it can be shown that the sufficient conditions for the local asymptotic stability of
E3 = (x1, x2, x3) are given by

Im H
(
iη0

)
> 0, (3.16)

Re H
(
iη0

)
= 0, (3.17)
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whereH(s) = s3 +A1s
2 +A2s +A3 + e−λT(B1s

2 + B2s + B3) and η0 is the smallest positive root
of (3.17).

Inequality (3.16) and (3.17) can alternatively be written as

A2η0 − η3
0 > −B2η0 cos

(
η0T

)
+ B3 sin

(
η0T

) − B1η
2
0 sin

(
η0T

)
, (3.18)

A3 −A1η
2
0 = B1η

2
0 cos

(
η0T

) − B3 cos
(
η0T

) − B2η0 sin
(
η0T

)
. (3.19)

Now if (3.18) and (3.19) are satisfied simultaneously, they are sufficient conditions to
guarantee stability. These are now used to get an estimate to the length of the time delay. The
aim is to find an upper bound η+ to η0, independent of T , from (3.19) and then to estimate T
so that (3.18) holds true for all values of η such that 0 ≤ η ≤ η+ and hence, in particular, at
η = η0.

Equation (3.19) is rewritten as

A1η
2
0 = A3 − B1η

2
0 cos

(
η0T

)
+ B3 cos

(
η0T

)
+ B2η0 sin

(
η0T

)
. (3.20)

Maximizing the right-hand side of (3.20)
subject to

∣∣sin(η0T)∣∣ ≤ 1,
∣∣cos(η0T)∣∣ ≤ 1, (3.21)

we obtain

|A1|η2
0 ≤ |A3| + |B3| + |B1|η2

0 + |B2|η0. (3.22)

Hence if

η+ =
1

2(|A1| − |B1|)
[
|B2| +

√
B2

2 + 4(|A1| − |B1|)(|A3| + |B3|)
]
, (3.23)

then clearly from (3.22) we have η0 ≤ η+.
From (3.18), we obtain

η2
0 < A2 + B2 cos

(
η0T

)
+ B1η0 sin

(
η0T

) − B3 sin
(
η0T

)
η0

. (3.24)

Since E3 = (x1, x2, x3) is locally asymptotically stable for T = 0, the inequality (3.24) will
continue to hold for sufficiently small T > 0. Using (3.20), (3.24) can be rearranged as

(
B3 − B1η

2
0 −A1B2

)[
cos

(
η0T

) − 1
]
+
{
(B2 −A1B1)η0 +

A1B3

η0

}

× sin
(
η0T

)
< A1A2 −A3 − B3 + B1η

2
0 +A1B2.

(3.25)
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Using the bound

(
B3 − B1η

2
0 −A1B2

)[
cos

(
η0T

) − 1
]
= −

(
B3 − B1η

2
0 −A1B2

)
2sin2

(
η0T

2

)

≤ 1
2

∣∣∣(B1η
2
+ +A1B2 − B3

)∣∣∣η2
+T

2,
{
(B2 −A1B1)η0 +

A1B3

η0

}
sin

(
η0T

) ≤
{
|(B2 −A1B1)|η2

+ + |A1||B3|
}
T,

(3.26)

we obtain from (3.24)

L1T
2 + L2T < L3, (3.27)

where

L1 =
1
2

∣∣∣(B1η
2
+ +A1B2 − B3

)∣∣∣η2
+,

L2 = |(B2 −A1B1)|η2
+ + |A1||B3|,

L3 = A1A2 −A3 − B3 + B1η
2
+ +A1B2.

(3.28)

Hence, if

T+ =
1

2L1

(
−L2 +

√
L2
2 + 4L1L3

)
, (3.29)

then for 0 ≤ T ≤ T+ the Nyquist criterion holds true and T+ estimates the maximum length of
the delay preserving the stability.

4. Numerical Simulation

The purpose of this section is to illustrate dynamics of the model (2.4) numerically with
variation in the delayed responses of the immune system and relate it with the stability results
of the model equilibriummentioned in Section 3. For this purpose, we consider the following
set of parameters a1 = 2.5, a2 = 4.5, a3 = 0.6, a4 = 3.5, a5 = 2, and a6 = 0.1, which satisfies
the biologically feasible conditions (2.6). It may be mentioned that the same set of parameter
values has been used by El-Gohary [32] in numerical calculations. For this set, the positive
equilibrium of the model (2.4) is E3 = (0.8720, 1.4667, 0.1333). It can be seen that for these
parameter values the coefficients of the cubic (3.11) are such that C1 > 0 and C3 < 0. It
guarantees that the cubic (3.11) has a unique positive root ρ0 = 1.34838, which then provides
the unique positive root of (3.9) asω0 =

√
ρ0 = 1.1612. Using this value ofω0, it turns out from

(3.13) that T ∗
0 = 0.3427, and the stability result of Section 3 yields that the positive equilibrium

E3 of model (2.4) is stable for T such that 0 ≤ T < 0.3427. For T = 0.34, Figure 1 illustrates the
approach of the trajectory of the model (2.4) to the equilibrium E3.

Indeed the existence ofω0 as unique root of (3.9) implies that there exists a pair of pure
imaginary eigen values λ that satisfies the characteristic equation (3.2) corresponding to the
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Figure 1: Three-dimensional phase portrait depicting stable dynamics of the model (2.4) for T = 0.34. The
trajectory spirals and approaches to E3 starting from the initial point x1(0) = 1, x2(0) = 1, x3(0) = 1.
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Figure 2: Limit cycle solution of the model (2.4) for T = 0.4 starting from the initial point x1(0) =
1, x2(0) = 1, x3(0) = 1.

delay value T ∗
0 . It thus follows that as T increases from zero and crosses T ∗

0 = 0.3427 a Hopf
bifurcation occurs meaning thereby an initiation of periodic solution(s). One such periodic
solution (limit cycle) of the model (2.4) is shown to exist for T = 0.4 in Figure 2.

It has been well known from ecological model results (McDonald [49], Cushing [50],
May [51]), especially for models with prey-predator-type interactions, that small delays in
general enhance stability where as large delays in the growth response of the species may
cause instability. In order to check if such possibility of instability of equilibrium occurs for
this model also, we integrated model (2.4) numerically for large values of delay T . It has been
quite interesting to note that for large values of delay T , model (2.4) showed irregular pattern
in time series for each cell population. The fact that these irregular patterns are indeed chaotic
in nature giving rise to chaotic attractors is confirmed by the sensitivity of the solutions to
initial conditions. We present here only two illustrations of chaotic attractors for T = 16 and
26 in Figures 3 and 4, respectively.
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Figure 3: (a) Time series solution of the model (2.4) for T = 16. (b) Corresponding chaotic attractor in the
phase space. (c) Sensitivity of solution to initial conditions: x2 = 1.0, x3 = 1.0 for both types of curves but
x1 = 1.0 for solid curve (i.e., on the attractor) and x1 = 0.99 for dashed curve.
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Figure 4: (a) Time series solution of the model (2.4) for T = 26. (b) Corresponding chaotic attractor in the
phase space. (c) Sensitivity of solution to initial conditions: x2 = 1.0, x3 = 1.0 for both types of curves but
x1 = 1.0 for solid curve and x1 = 0.99 for dashed curve.
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5. Discussion and Conclusions

The response of the tumor diseases to treatment depends upon many factors including the
severity of the tumor, the application of the treatment, and most importantly the patient’s
immune response. Tumor cells are characterized by a vast number of genetic and epigenetic
events leading to the appearance of specific antigens called neoantigens triggering antitumor
activity by the immune system (El-Gohary [52], d’Onofrio [53]). Though this paper does not
deal directly with any external treatment of the tumor, of course it focuses on the indirect
treatment aspects of the disease by looking into the role of the immune system if it does
not get triggered immediately but shows delayed responses. With this in mind, we modify
the model of El-Gohary [32] to incorporate time delayed responses of the immune system
through the growth mechanism of the hunting cells. It is assumed that hunting cells do
not respond to killing of tumor cells as soon as they get signal from resting cells but they
get activated after a constant time delay T . This assumption yields our main model (2.4)
as a system of delay differential equations. As has been mentioned in the introduction, the
model of this paper represents a link between the super-macro-scale (in terms of ordinary
differential equations) and the lower cellular scale (in terms of delay).

The dynamics and the stability results of the model show three main patterns of
solutions: (i) stable equilibrium, (ii) limit cycle solution and (iii) chaotic attractor. More
specifically, it is found that when hunting cells are either all time-alert (T ≈ 0) or alert enough
(0 < T < T ∗

0 ), all three cell populations approach to equilibrium values and the tumor can
be said to be nonmalignant. For averagely alert hunting cells (i.e., when T ≈ T ∗

0 or slightly
greater than T ∗

0 ), all the three cell populations may coexist in a limit cycle or periodic solution.
In this case, the tumor can be termed as mildly malignant. The existence of periodic solutions
is relevant in cancer models. It implies that the tumor levels may oscillate around a fixed point
even in the absence of any treatment. Such a phenomenon, known as Jeff’s phenomenon or
self-regression of tumor [54], has been observed clinically. When the hunting cells play too
lethargic in their response to killing of tumor cells (i.e., when T is large enough), all the three
cell populations may grow in an irregular fashion with time leading to chaotic attractors.
This is indeed the case when the tumor can be said to be malignant and it is the case where
a serious treatment strategy is required because of continuously changing density of tumor
cells all the time.

It is well known from ecological-model results that large delays cause instability of
equilibriums. Thus one can say that the results of the present model are on the known lines
but we feel that instability in the form of chaotic attractors in cancer modeling is quite an
interesting observation of this study linking super-macro-scale to lower cellular scale. The
allowable time delay for activation of the immune system and the estimation of the length
of delay to preserve stability may be the two important parameters that may help decide the
mode of action for controlling the disease.
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