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This paper is concerned with a nonlocal Cauchy problem for fractional integrodifferential
equations in a separable Banach space X. We establish an existence theorem for mild solutions
to the nonlocal Cauchy problem, by virtue of measure of noncompactness and the fixed point
theorem for condensing maps. As an application, the existence of the mild solution to a nonlocal
Cauchy problem for a concrete integrodifferential equation is obtained.

1. Introduction

Nonlocal Cauchy problem for equations is an initial problem for the corresponding equations
with nonlocal initial data. Such a Cauchy problem has better effects than the normal Cauchy
problem with the classical initial data when we deal with many concrete problem coming
from engineering and physics (cf., e.g., [1–10] and references therein). Therefore, the study
of this type of Cauchy problem is important and significant. Actually, as we have seen from
the just mentioned literature, there have been many significant developments in this field.

On the other hand, fractional differential and integrodifferential equations arise from
various real processes and phenomena appeared in physics, chemical technology, materials,
earthquake analysis, robots, electric fractal network, statistical mechanics biotechnology,
medicine, and economics. They have in recent years been an object of investigations with
much increasing interest. For more information on this subject see for instance [9, 11–18] and
references therein.
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Throughout this paper, X is a separable Banach space; L(X) is the Banach space of
all linear bounded operators on X; A is the generator of an analytic and uniformly bounded
semigroup {T(t)}t≥0 on X with ‖T(t)‖L(X) ≤ M for a constant M > 0, and C([a, b], X) is the
space of all X-valued continuous functions on[a, b] with the supremum norm as follows:

‖x‖[a,b] := max{‖x(t)‖ : t ∈ [a, b]}, for anyx ∈ C([a, b], X). (1.1)

Let 0 < q < 1, T > 0, Δ = {(t, s) ∈ [0, T] × [0, T] : t ≥ s}, f : [0, T] × C([0, T], X) →
X, and h : Δ × C ([0, T], X) → X. The nonlocal Cauchy problem for abstract fractional
integrodifferential equations, with which we are concerned, is in the following form:

cDqx(t) = Ax(t) + f(t, x(t)) +
∫ t

0
k(t, s)h(t, s, x(s))ds, t ∈ [0, T],

x(0) = g(x) + x0,

(1.2)

where k and g are given functions to be specified later and the fractional derivative is
understood in the Caputo sense, this means that, the fractional derivative is understood in
the following sense:

cDqx(t) : =LDq(x(t) − x(0)), t > 0, 0 < q < 1, (1.3)

and where

LDqx(t) :=
1

Γ
(
1 − q)

d

dt

∫ t

0
(t − s)−qx(s)ds, t > 0, 0 < q < 1 (1.4)

is the Riemann-Liouville derivative of order q of x(t), where Γ(·) is the Gamma function.
Our main purpose is to establish an existence theorem for the mild solutions to

the nonlocal Cauchy problem based on a special measure of noncompactness under weak
assumptions on the nonlinearity f and the semigroup {T(t)}t≥0 generated by A.

2. Existence Result and Proof

As usual, we abbreviate ‖u‖Lp([0,T], R+) with ‖u‖Lp , for any u ∈ Lp([0, T],R+).
As in [16, 17], we define the fractional integral of order q with the lower limit zero for

a function f ∈ AC[0,∞) as

Iqf(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s)ds, t > 0, 0 < q < 1, (2.1)

provided the right side is point-wise defined on [0,∞).
Now we recall some very basic concepts in the theory of measures of noncompactness

and condensing maps (see, e.g., [19, 20]).
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Definition 2.1. Let E be a Banach space, 2E the family of all nonempty subsets of E, (A,≥) a
partially ordered set, and α : 2E → A. If for every Ω ∈ 2E:

α(co(Ω)) = α(Ω), (2.2)

then we say that α is a measure of noncompactness in E.

Definition 2.2. Let E be a Banach space, and F : Y ⊆ E → E is continuous. Let α be a measure
of noncompactness in E such that

(i) for any Ω0,Ω1 ∈ 2E with Ω0 ⊂ Ω1,

α(Ω0) ≤ α(Ω1); (2.3)

(ii) for every a0 ∈ E, Ω ∈ 2E,

α({a0} ∪Ω) = α(Ω). (2.4)

If for every bounded set Ω ⊆ Y which is not relatively compact,

α(F(Ω)) < α(Ω), (2.5)

then we say that F is condensing with respect to the measure of noncompactness α
(or α-condensing).

Definition 2.3. Let

�q(σ) =
1
π

∞∑
n=1

(−1)n−1σ−qn−1 Γ
(
nq + 1

)
n!

sin
(
nπq

)
, σ ∈ (0,∞) (2.6)

be a one-sided stable probability density, and

ξq(σ) =
1
q
σ−1−1/q�q

(
σ−1/q

)
, σ ∈ (0,∞). (2.7)

For any z ∈ X, we define operators {Y (t)}t≥0 and {Z(t)}t≥0 by

Y (t)z =
∫∞

0
ξq(σ)T(tqσ)zdσ,

Z(t)z = q
∫∞

0
σtq−1ξq(σ)T(tqσ)zdσ.

(2.8)
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If a continuous function x : [0, T] → X satisfies

x(t) = Y (t)
(
g(x) + x0

)
+
∫ t

0
Z(t − s)[f(s, x(s)) + a(x)(s)]ds, t ∈ [0, T], (2.9)

then the function x is called a mild solution of (1.2).
Our main result is as follows.

Theorem 2.4. Assume that

(1) f(·, w) and h(·, ·, w) are measurable for each w ∈ C([0, T], X); k(t, ·) is measurable for
each t ∈ [0, T];

(2) f(t, ·) is continuous for a.e. t ∈ [0, T]; g is completely continuous; h(t, s, ·) is continuous
for a.e. (t, s) ∈ Δ; the map t → kt := k(t, ·) is continuous from [0, T] to L∞([0, T],R);

(3) there exist two positive functions μ(·), η(·) ∈ Lp(0, T,R+) (p > 1/q > 1) and two positive
functionsm(·, ·) and ζ(·, ·) on Δ with

sup
t∈[0,T]

∫ t

0
m(t, s)ds := m∗ <∞, sup

t∈[0,T]

∫ t

0
ζ(t, s)ds := ζ∗ <∞, (2.10)

such that

∥∥f(t,w)
∥∥ ≤ μ(t)‖w‖ (a.e. t ∈ [0, T]),

‖h(t, s,w)‖ ≤ m(t, s)‖w‖ (a.e. (t, s) ∈ Δ),
(2.11)

for all w ∈ C([0, T], X), and

χ
(
f(t,D)

) ≤ η(t)χ(D), (a.e. t ∈ [0,T]),

χ(h(t, s,D)) ≤ ζ(t, s)χ(D), (a.e. (t, s) ∈ Δ),
(2.12)

for any bounded set D ⊂ C([0, T], X), where χ is the Hausdorff measure of
noncompactness:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}. (2.13)

(4) g(·) satisfies
∥∥g(x)∥∥ ≤ b, ∀x ∈ C([0, T], X), (2.14)

for a positive constant b, and

k(t) := ess sup{|k(t, s)|, 0 ≤ s ≤ t} (2.15)
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is bounded on [0, T].
Then the mild solutions set of problem (1.2) is a nonempty compact subset of the space

C([0, T], X), in the case of

qM

Γ
(
1 + q

)
(
p − 1
pq − 1

)(p−1)/p
Tq−1/p

∥∥μ∥∥Lp < 1. (2.16)

Proof. First of all, let us prove our definition of the mild solution to problem (1.2) is well
defined and reasonable. Actually, the proof is basic. We present it here for the completeness
of the proof as well as the convenience of reading.

Write

a(x)(t) =
∫ t

0
k(t, s)h(t, s, x(s))ds,

x̂(λ) =
∫∞

0
e−λtx(t)dt,

f̂(λ) =
∫∞

0
e−λtf(t, x(t))dt,

â(λ) =
∫∞

0
e−λta(x)(t)dt.

(2.17)

Clearly, the nonlocal Cauchy problem (1.2) can be written as the following equivalent integral
equation:

x(t) = g(x) + x0 +
1

Γ
(
q
)
∫ t

0
(t − s)q−1[Ax(s) + f(s, x(s)) + a(x)(s)]ds, t ∈ [0, T], (2.18)

provided that the integral in (2.18) exists. Formally taking the Laplace transform to (2.18), we
have

x̂(λ) =
1
λ

(
g(x) + x0

)
+

1
λq
Ax̂(λ) +

1
λq

[
f̂(λ) + â(λ)

]
. (2.19)

Therefore, if the related integrals exist, then we obtain

x̂(λ) = λq−1(λq −A)−1
(
g(x) + x0

)
+ (λq −A)−1

[
f̂(λ) + â(λ)

]

= λq−1
∫∞

0
e−λ

qsT(s)
(
g(x) + x0

)
ds +

∫∞

0
e−λ

qsT(s)
[
f̂(λ) + â(λ)

]
ds

= q
∫∞

0
(λt)q−1e−(λt)

q

T(tq)
(
g(x) + x0

)
dt
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+
∫∞

0
e−(λτ)

q

qτq−1T(τq)
(∫∞

0
e−λt

(
f(t, x(t)) + a(x)(t)

)
dt

)
dτ

= − 1
λ

∫∞

0

(
d

dt
e−(λt)

q
)
T(tq)

(
g(x) + x0

)
dt

+
∫∞

0

∫∞

0
e−λτσqτq−1�q(σ)T(τq)

(∫∞

0
e−λt

(
f(t, x(t)) + a(x)(t)

)
dt

)
dσ dτ

=
∫∞

0

∫∞

0
e−λtσσ�q(σ)T(tq)

(
g(x) + x0

)
dσdt

+ q
∫∞

0

∫∞

0
e−λθ

θq−1

σq
�q(σ)T

(
θq

σq

)(∫∞

0
e−λt

(
f(t, x(t)) + a(x)(t)

)
dt

)
dσ dθ

=
∫∞

0
e−λt

[∫∞

0
�q(σ)T

(
tq

σq

)(
g(x) + x0

)
dσ

]
dt

+ q
∫∞

0

(∫∞

0

∫∞

t

e−λτ
(τ − t)q−1

σq
�q(σ)T

(
(τ − t)q
σq

)(
f(t, x(t)) + a(x)(t)

)
dτ dt

)
dσ

=
∫∞

0
e−λt

[∫∞

0
�q(σ)T

(
tq

σq

)(
g(x) + x0

)
dσ

]
dt

+ q
∫∞

0

(∫∞

0

∫ τ

0
e−λτ

(τ − t)q−1
σq

�q(σ)T
(
(τ − t)q
σq

)(
f(t, x(t)) + a(x)(t)

)
dt dτ

)
dσ

=
∫∞

0
e−λt

[∫∞

0
�q(σ)T

(
tq

σq

)(
g(x) + x0

)
dσ

]
dt

+
∫∞

0
e−λt

[
q

∫ t

0

∫∞

0

(t − s)q−1
σq

�q(σ)T
(
(t − s)q
σq

)(
f(s, x(s)) + a(x)(s)

)
dσ ds

]
dt.

(2.20)

Nowusing the uniqueness of the Laplace transform (cf., e.g., [21, Theorem 1.1.6]), we deduce
that

x(t) =
∫∞

0
�q(σ)T

(
tq

σq

)(
g(x) + x0

)
dσ

+ q
∫ t

0

∫∞

0

(t − s)q−1
σq

�q(σ)T
(
(t − s)q
σq

)
f(s, x(s))dσ ds

+ q
∫ t

0

∫∞

0

(t − s)q−1
σq

�q(σ)T
(
(t − s)q
σq

)
a(x)(s)dσ ds

=
∫∞

0
ξq(σ)T(tqσ)

(
g(x) + x0

)
dσ
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+ q
∫ t

0

∫∞

0
σ(t − s)q−1ξq(σ)T

(
(t − s)qσ)f(s, x(s))dσ ds

+ q
∫ t

0

∫∞

0
σ(t − s)q−1ξq(σ)T

(
(t − s)qσ)a(x)(s)dσ ds.

(2.21)

Consequently, we see that the mild solution to problem (1.2) given by Definition 2.3 is well
defined.

Next, we define the operator F : C([0, T], X) → C([0, T], X) as follows:

(Fx)(t) = Y (t)(g(x) + x0) +
∫ t

0
Z(t − s)[f(s, x(s)) + a(x)(s)]ds, t ∈ [0, T]. (2.22)

It is clear that the operator F is well defined.
The operator F can be written in the form F = F1 +F2, where the operators Fi, i = 1, 2

are defined as follows:

(F1x)(t) = Y (t)
(
g(x) + x0

)
, t ∈ [0, T],

(F2x)(t) =
∫ t

0
Z(t − s)[f(s, x(s)) + a(x)(s)]ds, t ∈ [0, T].

(2.23)

The following facts will be used in the proof.

(1)

∫∞

0
ξq(σ)dσ = 1, (2.24)

which implies that

‖Y (t)‖ ≤ Const; (2.25)

(2)

∫∞

0
σνξq(σ)dσ =

∫∞

0

1
σqν

�q(σ)dσ =
Γ(1 + ν)
Γ
(
1 + qν

) , ν ∈ (0, 1], (2.26)

which implies that

‖Z(t)‖ ≤ qM

Γ
(
1 + q

) tq−1, t > 0. (2.27)
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Let {xn}n∈N ⊂ C([0, T], X) such that

lim
n→∞

‖xn − x‖[0,T] = 0, (2.28)

for an x ∈ C([0, T], X). Then by the assumptions, we know that for almost every t ∈ [0, T]
and (t, s) ∈ Δ:

lim
n→∞

f(t, xn(t)) = f(t, x(t)),

lim
n→∞

h(t, s, xn(s)) = h(t, s, x(s)).
(2.29)

Therefore, for sufficiently large n, we have

∥∥f(t, xn(t)) − f(t, x(t))∥∥ ≤ μ(t)
(
1 + 2‖x‖[0,T]

)
,

‖h(t, s, xn(s)) − h(t, s, x(s))‖ ≤ m(t, s)
(
1 + 2‖x‖[0,T]

)
,

∥∥∥∥∥
∫ t

0
k(t, s)h(t, s, xn(s))ds −

∫ t

0
k(t, s)h(t, s, x(s))ds

∥∥∥∥∥ ≤ m∗k∗
(
1 + 2‖x‖[0,T]

)
,

(2.30)

where

k∗ := sup
t∈[0,T]

k(t). (2.31)

Hence,

lim
n→∞

∥∥∥∥∥
∫ t

0
k(t, s)h(t, s, xn(s))ds −

∫ t

0
k(t, s)h(t, s, x(s))ds

∥∥∥∥∥ = 0. (2.32)

Thus,

‖F2xn − F2x‖[0,T] −→ 0, asn −→ ∞, (2.33)

since (2.27) implies that

∥∥∥∥∥
∫ t

0
Z(t − s)

{
f(s, xn(s)) +

∫s

0
k(s, τ)h(s, τ, xn(τ))dτ

−
[
f(s, x(s)) +

∫ s

0
k(s, τ)h(s, τ, x(τ))dτ

]}
ds

∥∥∥∥∥
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≤ qM

Γ
(
1 + q

)
∫ t

0
(t − s)q−1

[∥∥f(s, xn(s)) − f(s, x(s))∥∥

+
∥∥∥∥
∫s

0
k(s, τ)(h(s, τ, xn(τ)) − h(s, τ, x(τ)))dτ

∥∥∥∥
]
ds.

(2.34)

By (2.33) and our assumptions, we see that F is continuous.
Since χ is the Hausdorff measure of noncompactness in X, we know that χ is

monotone, nonsingular, invariant with respect to union with compact sets, algebraically
semiadditive, and regular. This means that

(i) for any Ω0,Ω1 ∈ 2E with Ω0 ⊂ Ω1,

χ(Ω0) ≤ χ(Ω1); (2.35)

(ii) for every a0 ∈ E, Ω ∈ 2E,

χ({a0} ∪Ω) = χ(Ω); (2.36)

(iii) for every relatively compact set D ⊂ E, Ω ∈ 2E,

χ({D} ∪Ω) = χ(Ω); (2.37)

(iv) for each Ω0, Ω1 ∈ 2E,

χ(Ω0 + Ω1) ≤ χ(Ω0) + χ(Ω1); (2.38)

(v) χ(Ω) = 0 is equivalent to the relative compactness of Ω.

Noting that for any ψ ∈ L1([0, T], X), we have

lim
L→+∞

sup
t∈[0,T]

∫ t

0
e−L(t−s)ψ(s)ds = 0. (2.39)

So, there exists a positive constant L such that

qM

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1η(s)e−L(t−s)ds = L1 <

1
3
,

qMk∗ζ∗

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1e−L(t−s)ds = L2 <

1
3
,

qM

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1(μ(s) +m∗k∗

)
e−L(t−s)ds = L3 <

1
3
.

(2.40)
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For every bounded subset Ω ⊂ C([0, T], X), we define

modc(Ω) := lim
δ→ 0

sup
v∈Ω

max
|t1−t2|≤δ

‖v(t1) − v(t2)‖,

Ψ(Ω) := sup
t∈[0,T]

(
e−Ltχ(Ω(t))

)
,

α(Ω) := (Ψ(Ω), modc(Ω)).

(2.41)

Then modc(Ω) is the module of equicontinuity of Ω, and α is a measure of noncompactness
in the space C([0, T], X)with values in the cone R2

+.
Let Ω ⊂ C([0, T], X) be a nonempty, bounded set such that

α(F(Ω)) ≥ α(Ω). (2.42)

By the assumptions and the continuity of T(t) in the uniform operator topology for t > 0, we
get

modc(F1Ω) = 0. (2.43)

Clearly,

∥∥f(s, x(s))∥∥ + ‖a(x)(s)‖ ≤ (
μ(s) +m∗k∗

)‖x‖[0,T]. (2.44)

Let δ > 0, t1, t2 ∈ (0, T] such that 0 < t1 − t2 ≤ δ and x ∈ Ω. Then

∥∥∥∥∥
∫ t1

0
Z(t1 − s)

[
f(s, x(s)) + a(x)(s)

]
ds −

∫ t2

0
Z(t2 − s)

[
f(s, x(s)) + a(x)(s)

]
ds

∥∥∥∥∥

≤ ‖x‖[0,T]
(∫ t2

0
‖Z(t1 − s) − Z(t2 − s)‖

(
μ(s) +m∗k∗

)
ds +

∫ t1

t2

‖Z(t1 − s)‖
(
μ(s) +m∗k∗

)
ds

)

≤ q‖x‖[0,T]
[∫ t2

0

∫∞

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣σξq(σ)∥∥T((t1 − s)qσ)∥∥(μ(s) +m∗k∗

)
dσ ds

+
∫ t2

0

∫∞

0
(t2 − s)q−1σξq(σ)

∥∥T((t1 − s)qσ) − T((t2 − s)qσ)∥∥

×(μ(s) +m∗k∗
)
dσ ds

]
+
qM‖x‖[0,T]
Γ
(
1 + q

)
∫ t1

t2

(t1 − s)q−1
(
μ(s) +m∗k∗

)
ds
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≤
qM‖x‖[0,T]
Γ
(
1 + q

)
[∫ t2

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣(μ(s) +m∗k∗

)
dσ ds

+
∫ t1

t2

(t1 − s)q−1
(
μ(s) +m∗k∗

)
ds

]

+
∫ t2

0

∫∞

0
(t2 − s)q−1σξq(σ)

∥∥T((t1 − s)qσ) − T((t2 − s)qσ)∥∥(μ(s) +m∗k∗
)
dσ ds.

(2.45)

It is not hard to see that the right-hand side of (2.45) tend to 0 as t2 → t1. Thus, the set
{(F2x)(·) : x ∈ Ω} is equicontinuous, then modc(F2Ω) = 0. Combining with (2.43), we have
modc(FΩ) = 0, which implies modc(Ω) = 0 from (2.42). Next, we show that Ψ(Ω) = 0.

It is easy to see that

Ψ(F1Ω) = 0. (2.46)

For any t ∈ [0, T], we define

F̂2(Ω)(t) :=

{∫ t

0
Z(t − s)f(s, x(s))ds : x ∈ Ω

}
. (2.47)

We consider the multifunction s ∈ [0, t] � G(s):

G(s) =
{
Z(t − s)f(s, x(s)) : x ∈ Ω

}
. (2.48)

Obviously,G is integrable, that is,G admits a Bochner integrable selection g : [0, h] → E, and

g(t) ∈ G(t), for a.e. t ∈ [0, h]. (2.49)

From (2.27) and our assumptions, it follows that G is integrably bounded, that is, there exists
a function � ∈ L1([0, h], E) such that

‖G(t)‖ := sup{‖g‖ : g ∈ G(t)} ≤ �(t), a.e. t ∈ [0, h]. (2.50)
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Moreover, we have the following estimate for a.e. s ∈ [0, t]:

χ(G(s)) ≤ qM

Γ
(
1 + q

) (t − s)q−1χ(f(s,Ω(s))
)

≤ qM

Γ
(
1 + q

) (t − s)q−1η(s)χ(Ω(s))

=
qM

Γ
(
1 + q

) (t − s)q−1η(s)eLse−Lsχ(Ω(s))

≤ qM

Γ
(
1 + q

) (t − s)q−1η(s)eLsΨ(Ω).

(2.51)

Therefore, since X is a separable Banach space, we know by [20, Theorem 4.2.3] that

χ
(
F̂2(Ω)(t)

)
= χ

(∫ t

0
G(s)ds

)
≤ qM

Γ
(
1 + q

)
∫ t

0
(t − s)q−1η(s)eLsds ·Ψ(Ω). (2.52)

So

sup
t∈[0,T]

(
e−Ltχ

(
F̂2(Ω)(t)

))
≤ qM

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1η(s)e−L(t−s)ds ·Ψ(Ω)

= L1Ψ(Ω).

(2.53)

Similarly, if we set

F̃2(Ω)(t) =

{∫ t

0
Z(t − s)a(x)(s)ds : x ∈ Ω

}
, (2.54)

then we see that the multifunction s ∈ [0, t] � G̃(s),

G̃(s) = {Z(t − s)a(x)(s) : x ∈ Ω} (2.55)

is integrable and integrably bounded. Thus, we obtain the following estimate for a.e. s ∈ [0, t]:

χ
(
G̃(s)

)
≤ qMk∗ζ∗

Γ
(
1 + q

) (t − s)q−1eLsΨ(Ω),

sup
t∈[0,T]

(
e−Ltχ

(
F̃2(Ω)(t)

))
≤ qMk∗ζ∗

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1e−L(t−s)ds ·Ψ(Ω)

= L2Ψ(Ω).

(2.56)
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Now, from (2.53) and (2.56), it follows that

Ψ(F(Ω)) ≤ Ψ(F1(Ω)) + Ψ(F2(Ω)) ≤ (L1 + L2)Ψ(Ω) = L̃Ψ(Ω), (2.57)

where 0 < L̃ < 1. Then by (2.42), we get Ψ(Ω) = 0. Hence α(Ω) = (0, 0). Thus, Ω is relatively
compact due to the regularity property of α. This means that F is α-condensing.

Let us introduce in the space C([0, T], X) the equivalent norm defined as

‖x‖∗ = sup
t∈[0,T]

(
e−Lt‖x(t)‖

)
. (2.58)

Consider the set

Br = {x ∈ C([0, T], X) : ‖x‖∗ ≤ r}. (2.59)

Next, we show that there exists some r > 0 such that FBr ⊂ Br . Suppose on the contrary that
for each r > 0 there exist xr(·) ∈ Br , and some t ∈ [0, T] such that ‖(Fxr)(t)‖∗ > r.

From the assumptions, we have

‖(F1xr)(t)‖∗ ≤M(b + ‖x0‖). (2.60)

Moreover,

‖(F2xr)(t)‖ ≤
∫ t

0

∥∥Z(t − s)[f(s, xr(s)) + a(xr)(s)]∥∥ds

≤ qM

Γ
(
1 + q

)
∫ t

0
(t − s)q−1

(
μ(s)‖xr(s)‖ +m∗k∗eLs‖xr‖∗

)
ds

=
qM

Γ
(
1 + q

)
[∫ t

0
(t − s)q−1μ(s)eLse−Ls‖xr(s)‖ds

+m∗k∗
∫ t

0
(t − s)q−1eLsds · ‖xr‖∗

]

≤ qMr

Γ
(
1 + q

)
∫ t

0
(t − s)q−1(μ(s) +m∗k∗

)
eLsds.

(2.61)

Therefore,

r < sup
t∈[0,T]

(
e−Lt‖(Fxr)(t)‖

)

≤M(b + ‖x0‖) +
qMr

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1(μ(s) +m∗k∗

)
e−L(t−s)ds.

(2.62)
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Dividing both sides of (2.62) by r, and taking r → ∞, we have

qM

Γ
(
1 + q

) sup
t∈[0,T]

∫ t

0
(t − s)q−1(μ(s) +m∗k∗

)
e−L(t−s)ds ≥ 1. (2.63)

This is a contradiction. Hence for some positive number r, FBr ⊂ Br . According to the
following known fact.

Let M be a bounded convex closed subset of E and F : M → M a α-condensing map. Then
FixF = {x : x = F(x)} is nonempty.
we see that problem (1.2) has at least one mild solution.

Next, for c ∈ (0, 1], we consider the following one-parameter family of maps:

H : [0, 1] × C([0, T], X) −→ C([0, T], X)

(c, x) −→ H(c, x) = cF(x).
(2.64)

We will demonstrate that the fixed point set of the family H,

FixH = {x ∈ H(c, x) for some c ∈ (0, 1]} (2.65)

is a priori bounded. Indeed, let x ∈ FixH, for t ∈ [0, T], we have

‖x(t)‖ ≤M∥∥g(x) + x0∥∥ +
∫ t

0
‖Z(t − s)‖∥∥f(s, x(s)) + a(x)(s)∥∥ds

≤M(b + ‖x0‖) +
qM

Γ
(
1 + q

)
[∫ t

0
(t − s)q−1μ(s)‖x(s)‖ds

+m∗k∗
∫ t

0
(t − s)q−1 sup

τ∈[0,s]
‖x(τ)‖ds

]
.

(2.66)

Noting that the Hölder inequality, we have

∫ t

0
(t − s)q−1μ(s)ds ≤

(
p − 1
pq − 1

)(p−1)/p
· t(pq−1)/p · ∥∥μ∥∥Lp

≤
(
p − 1
pq − 1

)(p−1)/p
· Tq−1/p · ∥∥μ∥∥Lp .

(2.67)

Therefore, from (2.66), we obtain

‖x(t)‖ ≤M(b + ‖x0‖) +
qM

Γ
(
1 + q

)
(
p − 1
pq − 1

)(p−1)/p
Tq−1/p

∥∥μ∥∥Lp sup
s∈[0,t]

‖x(s)‖

+
qMm∗k∗

Γ
(
1 + q

)
∫ t

0
(t − s)q−1 sup

τ∈[0,s]
‖x(τ)‖ds.

(2.68)
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We denote

y(t) := sup
s∈[0,t]

‖x(s)‖. (2.69)

Let t̃ ∈ [0, t] such that y(t) = ‖x(t̃)‖. Then, by (2.68), we can see

y(t) ≤M(b + ‖x0‖) +
qM

Γ
(
1 + q

)
(
p − 1
pq − 1

)(p−1)/p
Tq−1/p

∥∥μ∥∥Lpy(t)

+
qMm∗k∗

Γ
(
1 + q

)
∫ t

0
(t − s)q−1y(s)ds.

(2.70)

By a generalization of Gronwall’s lemma for singular kernels ([22, Lemma 7.1.1]), we deduce
that there exists a constant κ = κ(q) such that

y(t) ≤ M(b + ‖x0‖)
1 − (

qM/Γ
(
1 + q

))((
p − 1

)
/
(
pq − 1

))(p−1)/p
Tq−1/p

∥∥μ∥∥Lp
+

κM(b + ‖x0‖)
(
qMm∗k∗/Γ

(
1 + q

))
(
1 − (

qM/Γ
(
1 + q

))((
p − 1

)
/
(
pq − 1

))(p−1)/p
Tq−1/p

∥∥μ∥∥Lp
)2

∫ t

0
(t − s)q−1ds

≤ M(b + ‖x0‖)
1 − (

qM/Γ
(
1 + q

))((
p − 1

)
/
(
pq − 1

))(p−1)/p
Tq−1/p

∥∥μ∥∥Lp
+

κM(b + ‖x0‖)
(
qMm∗k∗/Γ

(
1 + q

))
Tq

q
(
1 − (

qM/Γ
(
1 + q

))((
p − 1

)
/
(
pq − 1

))(p−1)/p
Tq−1/p

∥∥μ∥∥Lp
)2

:= w.

(2.71)

Hence, supt∈[0,T]‖x(t)‖ ≤ w.
Now we consider a closed ball:

BR =
{
x ∈ C([0, T], X) : ‖x‖[0,T] ≤ R

}
⊂ C([0, T], X). (2.72)

We take the radius R > 0 large enough to contain the set FixH inside itself. Moreover, from
the proof above, F : BR → C([0, T], X) is α-condensing. Consequently, the following known
fact implies our conclusion: Let V ⊂ E be a bounded open neighborhood of zero and F : V → E a
α-condensing map satisfying the boundary condition:

x /=λF(x), (2.73)

for all x ∈ ∂V and 0 < λ ≤ 1. Then, FixF is nonempty compact.
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3. Example

In this section, let X = L2([0, π]), we consider the following nonlocal Cauchy problem for an
integrodifferential problem:

∂
q
t u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

1

k k
√
t
· u(t, ξ)
1 + u(t, ξ)

+
∫ t

0
(t − s) sin

(√
s · u(s, ξ)

t

)
ds, t ∈ (0, 1]

u(t, 0) = u(t, π) = 0, t ∈ [0, 1]

u(0, ξ) =
j∑
i=0

∫π

0
ci
(
ξ, y

) u
(
ti, y

)
1 + u

(
ti, y

)dy + u0(ξ),

(3.1)

where ∂qt is the Caputo fractional partial derivative of order 0 < q < 1; ξ ∈ [0, π]; k > 0 is a
constant to be specified later;

u0(ξ) ∈ X; j ∈ N+; 0 < t0 < t1 < · · · < tj < 1; (3.2)

ci(·, ·) (i = 0, 1, . . . , j) are continuous functions and there exists a positive constant b such that

j∑
i=0

∫π

0

∥∥ci(ξ, y)∥∥dy ≤ b. (3.3)

For t ∈ (0, 1], ξ ∈ [0, π], we set

x(t)(ξ) = u(t, ξ),

g(x)(ξ) =
j∑
i=0

∫π

0
ci
(
ξ, y

) x(ti)
(
y
)

1 + x(ti)
(
y
)dy,

k(t, s) = t − s,

h(t, s, x(s))(ξ) = sin
(√

s · x(s)(ξ)
t

)
,

f(t, x(t))(ξ) =
1

k k
√
t
· x(t)(ξ)
1 + x(t)(ξ)

.

(3.4)

On the other hand, it is known that the operator A (Au = u′′ with D(A) = H2([0, π]) ∩
H1

0([0, π])) generates an analytic semigroup and uniformly bounded semigroup {T(t)}t≥0 on
X with ‖T(t)‖L(X) ≤ 1. Therefore, (3.1) is a special case of (1.2).

Moreover, we have

(1) for all t ∈ (0, 1],

∥∥f(t, x)∥∥ ≤ 1

k k
√
t
‖x‖ := μ(t)‖x‖; (3.5)
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(2) for any w, w̃ ∈ X,

∥∥f(t,w) − f(t, w̃)
∥∥ ≤ 1

k k
√
t
‖w − w̃‖, (3.6)

that is, for any bounded set D ⊂ X,

χ
(
f(t,D)

) ≤ 1

k k
√
t
χ(D), (3.7)

for a.e. t ∈ [0, 1];

(3) for almost all (t, s) ∈ Δ,

‖h(t, s, x)‖ =
∥∥∥∥sin

(√
s · x(s)(ξ)

t

)∥∥∥∥ ≤ m(t, s)‖x‖, (3.8)

wherem(t, s) :=
√
s/t, and

m∗ = sup
t∈[0,1]

∫ t

0
m(t, s)ds = sup

t∈[0,1]

∫ t

0

√
s

t
ds =

2
3
; (3.9)

(4)

‖h(t, s,w) − h(t, s, w̃)‖ ≤
√
s

t
‖w − w̃‖, (3.10)

that is, for any bounded set D ⊂ X,

χ(h(t, s,D)) ≤ ζ(t, s)χ(D), (3.11)

where ζ(t, s) :=
√
s/t, and

sup
t∈[0,1]

∫ t

0
ζ(t, s)ds =

2
3
. (3.12)

Therefore, Theorem 2.4 implies that the problem (3.1) has at least a mild solution
when

q · ((p − 1
)
/
(
pq − 1

))(p−1)/p
Γ
(
1 + q

) ∥∥μ∥∥Lp < 1. (3.13)
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