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The main result is a common fixed point theorem for a pair of multivalued maps on a complete
metric space extending a recent result of Pori¢ and Lazovi¢ (2011) for a multivalued map on a
metric space satisfying Ciri¢-Suzuki-type-generalized contraction. Further, as a special case, we
obtain a generalization of an important common fixed point theorem of Ciri¢ (1974). Existence
of a common solution for a class of functional equations arising in dynamic programming is also
discussed.

1. Introduction

Consistent with Nadler [1, page 620], (X,d) will denote a metric space and CL(X), the
collection of all nonempty closed subsets of X. For A, B € CL(X) and € > 0,

N(e, A) ={x e X :d(x,a) < for some a € A},

Esp={e>0: ACN(eg,B), BCN(g A)),
(1.1)

inf EA,B, if EA/B # @
H(A,B) =
+o0, if EA,B ={.

The hyperspace (CL(X), H) is called the generalized Hausdorff metric space induced by the
metric d on X.
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For nonempty subsets A, B of X, d(A, B) denotes the gap between the subsets A and
B, while

p(A,B) =sup{d(a,b) :ac A, be B},
(1.2)
BN (X)={A:0 # A CX and the diameter of A is finite}.

As usual, we write d(x, B) (resp. p(x, B)) for d(A, B) (resp. p(A, B)) when A = {x}.
Let S,T : X — CL(X). Then u € X is a fixed point of S if and only if u € Su and a
common fixed point of S and T if and only if u € SunTu.

Let S and T be maps to be defined specifically in a particular context, while x and y
are the elements of a metric space (X, d):

M(Sx,Ty) = max{d(x,y),d(x, Sx),d(y,Ty), d(x, Ty) +d(y, Sx) } (1.3)

2

Recently Suzuki [2] and Kikkawa and Suzuki [3] obtained interesting generalizations
of the Banach’s classical fixed point theorem and other fixed point results by Nadler [4],
Jungck [5], and Meir and Keeler [6]. These results have important outcomes (see, e.g., [7—
14]). The following result, due to Pori¢ and Lazovi¢ [9], extends and generalizes fixed point
theorems from Ciri¢ [15], Kikkawa and Suzuki [3], Nadler [4], Reich [16], Rus [17], and
others.

Theorem 1.1. Define a nonincreasing function ¢ from [0,1) onto (0,1] by
1 if 0<r< !
-2

p(r) = X (1.4)
1-r if §§r<1.

Let X be a complete metric space and T : X — CL(X). Assume there exists r € [0,1) such that for
every x,y € X,

@(r)d(x,Tx) < d(x,y) implies H(Tx,Ty) <rM(Tx, Ty). (1.5)

Then there exists z € X such that z € Tz.

We remark that, for every x,y € X, the generalized contraction H(Tx,Ty) <
rM(Tx,Ty), 0 < r < 1, was first studied by Ciri¢ [15]. The following important common
fixed point theorem is due to Ciri¢ [18].

Theorem 1.2. Let X be a complete metric space and S,T : X — X. Assume there exists r € [0,1)
such that for every x,y € X,

d(Sx,Ty) < rM(Sx,Ty). (1.6)

Then S and T have a unique common fixed point.
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For an excellent discussion on several special cases and variants of Theorem 1.2, one
may refer to Rus [17]. However, the generality of Theorem 1.2 may be appreciated from the
fact that (1.6) in Theorem 1.2 cannot be replaced by

d(Sx,Ty) < rmax{d(x,y),d(x,Sx),d(y,Ty),d(x,Ty),d(y, Sx)}. (1.7)

Indeed, Sastry and Naidu [19, Example 5] have shown that maps S and T satisfying (1.7)
need not have a common fixed point on a complete metric space. Notice that the condition
(1.7) with S = T is the quasicontraction due to Ciri¢ [20].

The main result of this paper (cf. Theorem 2.2) generalizes Theorems 1.1 and 1.2.
Further, a corollary of Theorem 2.2 is used to obtain a unique common fixed point theorem
for multivalued maps on a metric space with values in BN (X). As another application, we
deduce the existence of a common solution for a general class of functional equations under
much weaker conditions than those in [12, 14, 21-24].

2. Main Results

We shall need the following result essentially due to Nadler [4] (see also [15, 25], [26, page
4], 1271, [17, page 76]).

Lemma 2.1. If A, B € CL(X) and a € A, then for each € > 0, there exists b € B such that d(a, b) <
H(A,B) +e.

Theorem 2.2. Let X be a complete metric space and S,T : X — CL(X). Assume there exists r €
[0, 1) such that for every x,y € X,

¢(r)min{d(x,Sx),d(y,Ty)} < d(x,y) implies H(Sx,Ty) <rM(Sx,Ty).  (2.1)

Then there exists an element u € X such that u € SunTu.

Proof. Obviously M(Sx,Ty) = 0 iff x = y is a common fixed point of S and T. So, we may
take without any loss of generality that M(Sx, Ty) > 0 for distinct x, y € X. Let £ > 0 be such
that p=r+¢e < 1. Let uy € X and uy € Tuy. Then by Lemma 2.1, their exists u; € Suy such that

d(up,u1) < H(Suy, Tug) + eM(Suy, Tuy). (2.2)

Similarly, their exists uz € Tu, such that

d(us, up) < H(Tuy, Suy) + eM(Tuy, Suy). (2.3)

Continuing in this manner, we find a sequence {u,} in X such that

Uops1 € TUp,,  Upysn € Supyy1 such that
d(uzns1, U2n) < H(Tuzy, Sugy-1) + eM(Tugy,, Sugy-1), (2.4)

A(Uzns2, Uops1) < H(Suppir, Tuz,) + eM(Stinpir, Tugy).
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Now, we consider two cases and show that for any n € N,
d(uans1, Uzn) < Pd(Uan-1,U2n)- (2.5)
Case 1. If d(upp-1, Suzn—1) > d(uz,, Tuz,), then
¢(r) min{d(uzp-1, Ston-1), d(uon, Ttizn) } < d(Uon-1, U2n). (2.6)
Therefore by the assumption,

H(Supy—1, Tup,) < rM(Suzy-1, Tuny,). (2.7)
Case 2. If d(uzp,, Tuzy,) > d(uz,-1, Suz,-1), then
o(r) min{d(uz,—1, Suzn-1), d(Uzn, Tuzn) } < d(Uzp-1, Uzy). (2.8)

So by the assumption,

H(Supy—1, Tuz,) < rM(Supy-1, Tuny,). (2.9)
Hence in either case we obtain by (2.7) and (2.9),

d(uon, Uzni1)
< H(Suou-1, Tuo,) + eM(Sun-1, Tuoy,)
< rM(Suzn-1, Tuzy) + eM(Suzp-1, Tuzy) = ﬂM(SMZn—ll Tuy,)

A(uzn-1, Tuz,) + d(u2y, Stzn-1) }
2

_ ﬁmax{d(um, ttsn), d(tzn1, Stizn-r), dttzm, Titzn),

< pmax{d(uzn-1, U2n), d(Uzn, Uzn+1) }.
(2.10)

This yields (2.5). Analogously, we obtain d(uzns2, op+1) < Pd(tons1, U2,), and conclude that
forany n € N,

d(ups1, un) < d(uy, tn-1). (2.11)

Therefore {u,} is a Cauchy sequence and has a limit in X. Call it u.
Now we show that for any y € X — {u},

d(u,Ty) <rmax{d(u,y),d(y,Ty)}, (2.12)
d(u,Sy) <rmax{d(u,y),d(y,Sy)}. (2.13)
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Since u, — u, there exists ny € N (natural numbers) such that
1
d(u,uy) < gd(u,y) for y#u and all n > ny. (2.14)

Then as in [2, page 1862],
@(r)d(uzp-1, Suzn-1) < d(Uzp-1, Suzn-1) < d(Usn-1,U2) < d(Upp-1, 1) + d(u, uzy,)
2 1
< 3d(y,u) = d(y,u) - 3d(y,u) < d(y,u) - d(uz-1,u) (2.15)

<d(uzn-1,y).
Therefore ( y)

¢(r)d(uzn-1, Suzp-1) < d(Uan-1,Y). (2.16)

Now either d(uz,-1, Suzn-1) < d(y, Ty) or d(y, Ty) < d(uzu-1, Stizn-1).
So in either case by (2.16),

¢(r) min{d(uon-1, Szn-1),d(y, Ty) } < d(uan-1,v). (2.17)

Hence by the assumption (2.1),

d(uzn, Ty) < H(Suzu-1,Ty) < rM(Suzp-1,Ty)

d(uzn-1,Ty) +d(y, Suzn-
5rmax{d(”%-l'y)rd(”zn—l,Suzn_l),d(y,Ty), (t2n1 y);‘ (y, Suz 1)}

(2.18)

Making n — oo,

d(u,Ty) < ”max{d(u,y),d(u,u),d(y, Ty), d(u,Ty) +d(y,u) }

2 (2.19)

< rmax{d(u,y),d(y,Ty),d(u,Ty)}.

This yields (2.12). Similarly, we can show (2.13).
Now, we show that u € SunTu.
For 0 < r <1/2, the following cases arise.

Case 1. Suppose u ¢ Su and u € Tu. Then as in [8, page 6], let a € Tu be such that
2rd(a,u) < d(u,Tu), (2.20)

and a € Su be such that 2rd(a, u) < d(u, Su).
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Since a € Tu implies a # u, we have from (2.12) and (2.13),

d(u,Ta) < rmax{d(u,a),d(a,Ta)}, (2.21)

d(u,Sa) < rmax{d(u,a),d(a,Sa)}. (2.22)

On the other hand, since ¢(r)d(u, Tu) < d(u, Tu) < d(a,u),

@(r)min{d(a,Sa),d(u,Tu)} < d(a,u). (2.23)

Therefore by the assumption (2.1),

(u,Sa) +d(a,Tu)
2

d(Sa,a) < H(Sa,Tu) < rmax{d(a,u),d(u, Tu),d(a,Sa), d
(2.24)
{ 1
=rmax4 d(a,u),d(a,Sa), Ed(u, Sa) }

This gives d(a, Sa) < H(Sa, Tu) < rd(a,u) < d(a,u).
So by (2.22), d(Sa,u) < rd(a,u). Thus

d(u,Tu) <d(u,Sa) + H(Sa, Tu)

<rd(a,u) +rd(a,u) =2rd(a,u) <d(u,Tu) (by the assumption of Case 1).

(2.25)
This contradicts u ¢ Tu. Consequently u € Tu. Similarly u € Su.
Case 2. Letu € Su and u ¢ Tu. Then as in the previous case, let a € Tu be such that
2rd(a,u) < d(u, Tu). (2.26)
Since a # u, we have from (2.13),
d(u,Sa) < rmax{d(u,a),d(a,Sa)}. (2.27)

On the other hand, Since ¢(r)d(u, Tu) < d(u, Tu) < d(a, u),

@(r)min{d(a,Sa),d(u,Tu)} < d(a, u). (2.28)
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Therefore by the assumption (2.1),

d(Sa,a) < H(Sa,Tu) < rmax{d(u,u),d(u, Tu),d(a,Sa), d(,Sa) +d(a, Tu) }

2
(2.29)

=r max{d(a, u),d(a, Sa), %d(u, Sa) }

This gives d(a, Sa) < H(Sa, Tu) <rd(a,u) <d(a,u).
So by (2.22), d(Sa,u) < rd(a,u). Thus

d(u,Tu) <d(u,Sa) + H(Sa, Tu)

< rd(a,u) +rd(a,u) = 2rd(a,u) < d(u,Tu) (by the assumption of Case 2).

(2.30)
This contradicts u ¢ Tu. Consequently u € Tu.
Case 3. u € Tuand u ¢ Su. As in the previous case, it follows that u € Su.
Now we consider thecase 1/2<r < 1.
First we show that
H(Sx,Tu) < rmax{ dx,u), d(x, Sx), d(u, Tuy, 2T ;d(”’ 5%) } (2.31)
Assume that x # u. Then for every n € N, there exists z, € Sx such that
1
d(u,z,) <d(u,5x) + Ed(x,u). (2.32)
Therefore
d(x,Sx) < d(x,zy) < d(x,u) +d(u, z,)
1 (2.33)
<d(x,u)+d(u,Sx) + ;d(x, u).
Using (2.13) with y = x, (2.33) implies
d(x,Sx) < d(x,u) + rmax{d(x,u),d(x,Sx)} + %d(u,x). (2.34)
If d(x,u) > d(x,Sx), then (2.34) gives
1
d(x,Sx) <d(x,u) +rd(x,u) + ;d(u, x)
(2.35)

= <1 +7r+ %)d(x,u).
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Making n — oo,

d(x,Sx) < (1+r)d(x,u). (2.36)

Thus ¢(r)d(x,Sx) =(1- r)d(x,Sx) < (1/(1+7r))d(x,Sx) < d(x,u).
Then ¢(r) min{d(x, Sx),d(u,Tu)} < d(x,u), and by the assumption (2.1),

H(Sx,Tu) < rmax{d(x,u), d(x,Sx),d(u,Tu), dlx, Tu) erd(u, 5%) } (2.37)
If d(x,u) < d(x,S5x), then (2.34) gives
d(x,5x) <d(x,u) +rd(x,Sx) + %d(u,x), (2.38)
thatis, (1 -r)d(x,S5x) < (1+ (1/n))d(x,u). O
Making n — oo,
p(r)d(x, Sx) < d(x,u). (2.39)
Then ¢(r) min{d(x, Sx),d(u, Tu)} < d(x,u), and by the assumption, we get (2.37).
Taking x = U1 in (2.37) and passing to the limit, we obtain
d(u, Tu) <rd(u,Tu). (2.40)

This gives u € Tu. Analogously, u € Su.
The following result generalizes Theorem 1.2.

Corollary 2.3. Let X be a complete metric space and S, T maps from X into X. Suppose there exists
r € [0,1) such that for every x,y € X,

@(r)ymin{d(x, Sx),d(y,Ty)} < d(x,y) implies d(Sx,Ty) < rM(Sx,Ty). (2.41)

Then S and T have a unique common fixed point.

Proof. For single-valued maps S and T, it comes from Theorem 2.2 that they have a common
fixed point. The uniqueness of the common fixed point follows easily. O

Remark 2.4. Theorem 1.1 is obtained as a particular case of Theorem 2.2 when S =T.

Now we derive the following result due to Pori¢ and Lazovi¢ [9, Corollary 2.3].
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Corollary 2.5. Let X be a complete metric space and T a map from X into X. Suppose there exists
r € [0,1) such that for every x,y € X,

(r)d(x,Tx) < d(x,y) implies d(Tx,Ty) < rM(Tx,Ty). (2.42)

Then T has a unique fixed point.
Proof. It comes from Corollary 2.3 when S = T. O
The following example shows the generality of our results.

Example 2.6. Let X = {(0,0), (0,4), (4,0),(0,5), (5,0), (4,5), (5,4)} be endowed with the metric
d defined by

d[(x1,x2), (Y1, v2)] = |%1 = 1| + | %2 — 2] (243)
Let S and T be such that
(x1,0) if x1 <xp (x2,0) if x13<xp
S(x1,x2) = T(x1,x2) = (2.44)
(O, O) if X1 > Xy, (0, XZ) if X1 > X3.

Then S and T do not satisfy the condition (1.6) of Theorem 1.2 at x = (4,5), y = (5,4).
However, this is readily verified that all the hypotheses of Corollary 2.3 are satisfied for the
maps Sand T.

Theorem 2.7. Let X be a complete metric space and P,Q : X — BN (X). Assume there exists
r € [0,1) such that for every x,y € X,

¢(r) min{p(x, Px),p(y,Qy) } < d(x,y) (2.45)

implies

d(x, Q) + d(y, Px) } 016

o Qu) <7 max (o), 005, P00, 0), 220

Then there exsits a unique point z € X such that z € Pz N Qz.

Proof. Choose A € (0,1). Define single-valued maps S,T : X — X as follows. For each x € X,
let Sx be a point of Px which satisfies

d(x,Sx) > r)‘p(x, Px). (2.47)

Similarly, for each y € X, let Ty be a point of Qy such that

d(y,Ty) >7'p(y,Qy). (2.48)
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Since Sx € Px and Ty € Qy,
d(x,Sx) < p(x,Px),  d(y,Ty) <p(y,Qy). (2.49)
So, (2.45) gives
¢(r) min{d(x,Sx),d(y,Ty)} < ¢(r) min{p(x, Px),p(y,Qy)} <d(x,y), (2.50)
and this implies (2.46). Therefore

d(Sx,Ty) < p(Px,Qy)

Yd(x, Yd(y, P
Sr'r)‘max{r’\d(x,y),r)‘p(x,Px),r)‘p(y,Qy),r (x Qy);rr (y x)}

<7l max{d(x,y),d(x, Sx),d(y,Ty), d(x Ty) +d(y, 5x) }

2
(2.51)
So (2.50), namely, ¢ (') min{d(x, Sx),d(y,Ty)} < d(x,y) implies
d(x,T d(y,S
d(Sx,Ty) <r' max{d(x, y),d(x,Sx),d(y, Ty), (xTy) er (y,5x) }, (2.52)

where ' = 17} < 1.
Hence by Theorem 2.2, S and T have a unique point z € X such that Sz = Tz = z. This
implies z € Pz N Qz. O

Corollary 2.8. Let X be a complete metric space and P : X — BN(X). Assume there exists r €
[0, 1) such that for every x,y € X,

p(x, Px) < (1+r)d(x,y) implies

d X, P +d ’ Px (253)
p(Px, Py) srmax{d(x,y),p(x,Px),p(y,py), (x, Py) . (v )}.
Then there exists a unique point z € X such that z € Pz.

Proof. It comes from Theorem 2.7 when Q = P. O

3. Applications

Throughout this section, we assume that Y and Z are Banach spaces, W CY and D C Z. Let
R denotes the field of reals, g1, : WxD — R and G1,G, : WxD xR — R.Taking W and D
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as the state and decision spaces, respectively, the problem of dynamic programming reduces
to the problem of solving functional equations:

pi =sup{gi(x,y) + Hi(x,y,pi(x,y))}, xeW,i=12 (3.1)
yeD

In the multistage process, some functional equations arise in a natural way (cf. [22, 23];
see also [21, 24, 28, 29]). In this section, we study the existence of common solution of the
functional equations (3.1) arising in dynamic programming.

Let B(W) denotes the set of all bounded real-valued functions on W. For an arbitrary
h € B(W), define ||h|| = sup, ., |h(x)|. Then (B(W), || - ||) is a Banach space. Suppose that the
following conditions hold:

(DP-1) Hy, H,, g1, and g are bounded.

(DP-2) There exists r € [0, 1) such that for every (x,y) € W xD,h,k € B(W) andt e W,

¢(r) min{|h(t) = Arh(t)], [k(t) = A2k(£)]} < [h(t) ~ k(D)) (3.2)
implies

|1 (x,y, h(8) = Ha(x,y, k(D) |

< rmax{|h<t> ~ k()] 1h() — Ach(E)], k(t) - Ask(py), PO ARO]* () = Ak (D) }

2
(3.3)
where A, A, are defined as follows:
Ajh(x) =sup Hi(x,y,h(x,y)), x€W, he BW), i=1,2. (3.4)
yeD

Theorem 3.1. Assume the conditions (DP-1) and (DP-2). Then the functional equations (3.1), i =
1,2, have a unique common solution in B(W).

Proof. For any h,k € B(W), let d(h, k) = sup{|h(x) — k(x)| : x € W}. Then (B(W),d) is a
complete metric space.

Let A be any arbitrary positive number and h;, h, € B(W). Pick x € W and choose
Y1, Y2 € D such that

Aih; < Hi(x, yi, hi(x;)) + A, (3.5)

where x; = (x,y3), i=1,2.
Further,

Aihy > Hi(x, 1, hi(x2)), (3.6)

Ashy > Hy(x,y1, ho(x1)). (3.7)
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Therefore, the first inequality in (DP-2) becomes

¢(r) min{|h1 (x) = Arhi(x)], [h2(x) = Asha(x)|} < [h1(x) = ha(x)], (3.8)
and this together with (3.5) and (3.7) implies
A1h1 - A2h2 < H; (x,yl,hl(xl)) — Hz(x,y, hz(xl)) +A
< |Hi(x, y1, h1(x1)) = Ha(x,y1, ho(x1)) | + A (3.9)
< TM(thl,thz) + A
Similarly, (3.5), (3.6), and (3.8) imply

Axhy(x) — Athy(x) <rM(A1hy, Axhy) + A (3.10)

So, from (3.10) and (3.11), we obtain

|A1h1(x) - Azhz(.X')| <r M(A1h1,A2h2) + A (311)

Since this inequality is true for any x € W, and A > 0 is arbitrary, on taking supremum, we
find from (3.8) and (3.11) that

@(r) min{d(hy, A1h1),d(hy, Ashy)} < d(hy, hy) (3.12)
implies

d(A1hy, Ashy) < TM(A1hy, Axhy). (3.13)

Therefore, Corollary 2.3 applies, wherein A; and A, correspond, respectively, to the maps

Sand T. So A; and A; have a unique common fixed point h*, that is, h*(x) is the unique

bounded common solution of the functional equations (3.1),i =1, 2. O
The following result generalizes a recent result of Singh and Mishra [12, Corollary 4.2]

which in turn extends certain results from [21, 23, 24].

Corollary 3.2. Suppose that the following conditions hold.

(i) G and g are bounded.
(ii) There exists r € [0,1) such that for every x,y € W x D, h,k € BIW)andte W,

() () ~ Kh(b)] < [1() ~ k(t)] implies

(3.14)
|G(x,y,h(t)) = G(x,y,k(t))| < rmax M(K, h(t), k(t)),
where K is defined as
Kh(t) =sup{g(t,y) + G(t,y,h(t,y))}, teW, he B(W). (3.15)

yeD
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Then the functional equation (3.1) with Hy = H, = Gand g1 = g = g possesses a unique bounded
solution in W.

Proof. It comes from Theorem 3.1 when g1 = ¢» = gand H; = H, = G. O
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