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We propose a newmethod for personal identification using the derived vectorcardiogram (dVCG),
which is derived from the limb leads electrocardiogram (ECG). The dVCGwas calculated from the
standard limb leads ECG using the precalculated inverse transform matrix. Twenty-one features
were extracted from the dVCG, and some or all of these 21 features were used in support vector
machine (SVM) learning and in tests. The classification accuracy was 99.53%, which is similar to
the previous dVCG analysis using the standard 12-lead ECG. Our experimental results show that
it is possible to identify a person by features extracted from a dVCG derived from limb leads only.
Hence, only three electrodes have to be attached to the person to be identified, which can reduce
the effort required to connect electrodes and calculate the dVCG.

1. Introduction

Human identification has potential applications in many different areas where the identity of
a person needs to be determined, and to obtain even higher security levels, more complex
system are required. Specific features of human beings need to be selected to recognize
a person. Much work has been carried out on human face identification [1, 2]. These
methods require a high-resolution computer vision system to collect facial features, which
are generally anthropometric face structures. Other methods used in this area include:
voice recognition [3] and palm recognition [4], with the most common being finger print
identification. The human eye also contains specific features in both the retina and the iris
that may be used for recognition [5].

Although most of these identification methods have gained wide acceptance, one of
the problems with them is the fact that a specific biometric belonging to a certain person can



2 Journal of Applied Mathematics

still be used, even if the owner of the biometric is not present or has died. Therefore, many
biometric hardware systems include a liveness testing measure. This can be obtained by mea-
suring the body temperature, moisture, oxygen level, reflection or absorbance of light or other
radiation, or the presence of a natural spontaneous signal such as a pulse, the contraction of
a pupil in response to light, and muscular contraction in response to an electrical stimulus. In
most cases, such liveness testing is difficult to measure [6], and still it is needed to develop
the reliable and efficient method to test the “liveness” of an applicant’s biometric.

The electrocardiogram (ECG) signal is an alternative inherent liveness biometric
because of the significant fact that an ECG signal does not exist if the subject is not alive.
Recently, the feasibility of using ECG as a new biometric measure for personal identification
has been explored. Biel et al. [7] explained that automatic human identification can be
achieved by analyzing the 30 features extracted from a standard 12-lead ECG. Shen et al.
[8] investigated the feasibility of ECG as a biometric by applying template matching and
a decision-based neural network to the seven features extracted from a single-lead ECG.
Kyoso and Uchiyama [9] developed a human identification engine based on the four feature
parameters of a sampled ECG data sequence on a beat-to-beat basis. Israel et al. [10] proposed
a set of ECG descriptors that characterize the trace of a heartbeat to identify a person. 15
features have been selected from each heartbeat.

All of these researchers used time intervals (e.g., P wave duration, PQ interval, QRS
interval, QT interval, and so on) or amplitude as important features in their studies. These
features from the time domain have some limitations as the temporal features of interval and
amplitude can vary depending on variables such as the time of day of the measurement or
the physical condition of the subject. Noise and positioning of the electrode can also decrease
the accuracy. In contrast, the spatial features of the cardiac electric vector, represented by
the vectorcardiogram (VCG), are not affected by the variables mentioned above. It is also
expected that the vectorcardiographic loops will differ in shape and orientation from person
to person. It is possible to identify a person by features extracted from a VCG. We have
investigated the feasibility of the VCG, which is derived from a standard 12-lead ECG, as
a new biometric for personal identification in our previous study [11], and the experimental
results have shown that it is applicable to identify a person. The drawback of this approach is
the considerable effort required to connect many electrodes to the person, including six leads
to the chest, which is inconvenient in a real environment.

In this work, we investigated a novel approach for identifying a person using the
dVCG that was derived from limb leads only. For limb-lead recording, only three electrodes
are attached to the wrist and ankle, which is much easier than 12-lead recording. By
comparing the performances from limb-lead recordings and from 12-lead recordings, we
analyzed the feasibility of using VCG from limb-lead recording for personal identification.
First, we derived a VCG from a limb-lead ECG and extracted features from the derived VCG.
To remove some redundant features and to analyze the effect of each feature, we performed
feature selection using the Relief-F algorithm. Finally, we performed personal identification
using a support vector machine (SVM).

2. Materials and Methods

2.1. Vectorcardiogram

VCG have been widely investigated in the diagnosis of heart diseases, such as atrial fibrilla-
tion [12], premature ventricular contraction [13], and early ventricular repolarization [14].
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Figure 1: Vectorcardiogram.

VCG is a graphic representation of the magnitude and orientation of the heart’s
electrical activity during a cardiac cycle in the form of a vector loop. In contrast to ECG,
which represents the electrical potential in any one single axis, VCG displays the same
heart’s electrical events along two or three perpendicular axes. VCG provides a vectorial
representation of the distribution of electrical potentials generated by the heart and produces
loop-type patterns (Figure 1). The magnitude and orientation of the P, QRS, and T vector
loops are determined according to an individual heart’s characteristics. Because of the high
amplitude associated with QRS, loops from the QRS complex predominate.

The electrode positions of leads for the traditional VCG are different from those of a
12-lead ECG and must first be deduced by the recording technicians. Therefore, the method
for calculating VCG from a conventional 12-lead ECG is more appealing [12, 15].

2.2. Derived VCG

From a standard 12-lead ECG, the derived VCG can be easily calculated using a method
based on inverse Dower matrix [16] as shown in (2.1). Each of the orthogonal leads, X, Y ,
and Z used to plot the VCG are linear combinations of the eight independent leads (I, II, and
V 1 − −V 6) of a standard 12-lead ECG

⎡
⎢⎢⎣
X

Y

Z

⎤
⎥⎥⎦ = D0

−1[I II V 1 V 2 V 3 V 4 V 5 V 6
]T
,

D0
−1 =

⎡
⎢⎢⎣
−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887

−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102

⎤
⎥⎥⎦.

(2.1)
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To derive the limb ECG from vectorcardiographic leads, Dower et al. described a
method using a transform matrix where each lead (I, II, and III) in the ECG was expressed
as a linear function of the leads X, Y , and Z [17, 18]. The transformation matrix for the limb
leads (I, II and III) is shown in (2.2).

⎡
⎢⎢⎣

I

II

III

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.632 −0.235 0.059

0.235 1.066 −0.132
−0.397 1.301 −0.191

⎤
⎥⎥⎦

⎡
⎢⎢⎣
X

Y

Z

⎤
⎥⎥⎦. (2.2)

The transformation between the vectorcardiographic and limb-lead systems is a
simple matrix operation:

SECG = DSVCG, (2.3)

where SECG is the ECG signal, SVCG is the VCG signal, and D is the transformation matrix.
To calculate a VCG signal from a limb-lead system, we need the inverse of D, but

there is no inverse matrix because D is singular (II = I + III). Therefore, we use the pseudo
inverse (or Moore-Penrose inverse) [19]. The pseudoinverse of D can be determined by
the singular value decomposition (D = UΣV T ). Because matrix D has rank 2, Σ has two
positive singular values (σ1, σ2) along the main diagonal extending from the upper left-
hand corner, and the remaining components of Σ are zero. Then, D†(the pseudo inverse
matrix of D)=(UΣV T )†=(V T )†Σ†U†= VΣ†UT since (V T )† = V and U† = UT because of their
orthogonality. The matrix Σ† takes the following form:

Σ† =

⎡
⎢⎢⎢⎢⎣

1
σ1

0 0

0
1
σ2

0

0 0 0

⎤
⎥⎥⎥⎥⎦
. (2.4)

Therefore, the pseudo inverse matrix of D is shown as follows:

D† =

⎡
⎢⎢⎣
1.0808 0.7038 −0.3770
0.0790 0.4663 0.3874

0.0367 −0.0315 −0.0682

⎤
⎥⎥⎦. (2.5)

Finally, we calculated the dVCG from the limb-lead ECG using

⎡
⎢⎢⎣
X

Y

Z

⎤
⎥⎥⎦ = D†

⎡
⎢⎢⎣

I

II

III

⎤
⎥⎥⎦. (2.6)
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Figure 2: Feature extraction (a) from the dVCG in 3D space, and (b) from the QRS and T vector loops in
the frontal plane.

The pseudoinverse ofD(D†) is an approximation matrix becauseD has deficient rank.
Therefore, the dVCG derived from the limb leads has different patterns than the dVCG from
the standard 12-lead ECG.

Because the three-dimensional space (3D) and the frontal (XY) plane of the dVCG
provide useful information, such as shape and direction [11], as shown in Figure 2, we used
the dVCG in 3D space and the frontal plane. In the frontal plane, the large vector loop (QRS
vector loop) represents the QRS complex and the small vector loop (T vector loop) represents
the T wave of the ECG. The P vector loop has such a small shape that we did not consider it.

2.3. Feature Extraction

Since the dVCG data taken from all of the recorded heartbeats produced similar patterns for
each subject, the average valueswere taken from each beat’s dVCG trace. Twenty-one features



6 Journal of Applied Mathematics

1.5

1

0.5

0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

A
m

pl
it

ud
e
(m

V
)

(a)

1.5

1

0.5

0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

A
m

pl
it

ud
e
(m

V
)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

A
m

pl
it

ud
e
(m

V
)

−2
0

0.2
0.4
0.6
0.8

(c)

Figure 3:Detection of the QRS complex (depicted by the dashed line) and T wave (depicted by the dashed
dotted line). (a) the detected QRS complex region on the magnitude of the dVCG signal, (b) the detected
T wave region, (c) the detected QRS complex and T wave region on the signal of lead II.

were extracted from the dVCG data. Three features arose from the 3D space (depicted in
Figure 2(a)), seven came from each QRS vector loop (depicted in Figure 2(b)) and T vector
loop, and the others were the differential or proportional values obtained from the QRS and
T vector loops.

To separate the QRS and T vector loops, we needed to detect the QRS complex
and T wave. To detect the QRS complex, we used the QRS detection algorithm developed
by Hamilton and Tompkins [20]. To detect the T wave, we used the QRS complex and
the magnitude of the dVCG. As shown in Figure 3(a), the shape of the magnitude of the
dVCG was segmented into the QRS complex and T wave regions. Therefore, we could easily
separate the T wave interval by excluding the QRS region in the magnitude of the dVCG. The
data shown in Figure 3(b) were achieved by calculating the region over a specific threshold
after detecting the QRS complex region. Figure 3(c) shows the QRS complex and the T wave
region of the signal from lead II.

2.3.1. Feature Extraction from the dVCG in 3D Space

Equation (2.6) shows the dVCG represented as vector

−−−−−−→
dVCGi = Xi

−−→aX + Yi
−→aY + Zi

−−→aZ, (2.7)
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where −−→aX, �aY , and
−−→aZ are unit vectors with directions along the X, Y , and Z axes, respec-

tively. The magnitude of
−−−−−−→
dVCGi is |

−−−−−−→
dVCGi| =

√
Xi

2 + Yi
2 + Zi

2. If this value becomes the larg-
est value when i = p, then the maximum value (VCGpeak), its azimuth (VCGazimuth), and its
elevation (VCGelevation) angle are as shown in the following equation and Figure 2(a):

VCGpeak =
√
Xp

2 + Yp
2 + Zp

2,

VCGazimuth = tan−1
(

Yp

Xp

)
,

VCGelevation = tan−1
(

Zp

Yp

)
.

(2.8)

2.3.2. Feature Extraction from the QRS Vector Loop

When points on the QRS vector loop are represented as vectors on the XY plane, the
relationship is as shown in the following equation:

−−−−→
QRSi = Xi

−−→aX + Yi
−→aY . (2.9)

The magnitude of
−−−−→
QRSi is |

−−−−→
QRSi| =

√
X2

i + Y 2
i . If this value becomes the largest when i = p,

then the maximum (QRSpeak) and the azimuth (QRSangel) angle are as follows:

QRSpeak =
√
Xp

2 + Yp
2,

QRSangel = tan−1
(

Yp

Xp

)
.

(2.10)

The area of a polygon whose vertices, QRSi, have the coordinates (Xi, Yi) for 1 ≤ i ≤ k can be
calculated using (2.11) [19]

QRSarea =
1
2
(X1Y2 −X2Y1) + · · · + 1

2
(Xk−1Yk −XkYk−1) +

1
2
(XkY1 −X1Yk)

=
1
2

k∑
i=1

(XiYi+1 −Xi+1Yi).
(2.11)

In the summation, we assume that Xk+1 = X1 and Yk+1 = Y1. The term QRSmaxdist represents
the maximum distance between each pair of points on the QRS vector loop. If two points on
the QRS vector loop are (Xi, Yi) and (Xj, Yj), then the distance between them is given in

d
(
i, j
)
=
√(

Xi −Xj

)2 + (Yi − Yj

)2
. (2.12)



8 Journal of Applied Mathematics

If this distance is at its maximum when i = p, j = q, then the maximum distance (QRSmaxdist)
and its angle (QRSmaxang) are shown as follows:

QRSmaxdist = d
(
i, j
)∣∣

i=p,j=q = d
(
p, q
)
=
√(

Xp −Xq

)2 + (Yp − Yq

)2
,

QRSmaxang = tan−1
(

Yp − Yq

Xp −Xq

)
.

(2.13)

Additionally, QRSmindist is the length of the minor axis in the QRS vector loop. Namely,
QRSmindist is the maximum distance between the two points, where the line perpendicular
to the line connecting the two points (Xp, Yp) and (Xq, Yq) from the previous equation meets
the QRS vector loop. The six features mentioned above are depicted in Figure 2(b).

The term QRSlwratio is the ratio of the major and minor axis on the QRS vector loop.
This is represented by

QRSlwratio =
QRSmaxdist

QRSmindist
. (2.14)

2.3.3. Feature Extraction from the T Vector Loop

Similar to the cases of the QRS vector loop, the features related to the T vector loop are Tpeak,
Tangle, Tarea, Tmaxdist, Tmaxang, Tmindist, and Tlwratio.

From these two sets of features, four additional features are acquired using the
following equations:

QRSTdiffang = QRSangle − Tangle,

QRSTdiffarea = QRSarea − Tarea,

QRSTratioarea =
QRSarea
Tarea

,

QRSTratiopeark =
QRSpeak
Tpeak

.

(2.15)

2.4. Personal Identification Using SVM and Relief-F

Support vector machines are learning machines based on recent advances in statistical
learning theory [21, 22]. Geometrically speaking, SVMs try to maximize the margin, which
is the distance between the separating hyperplane and the closest data samples (the support
vectors) belonging to the different classes. For multiple class problems, pairwise classification
is commonly employed, which builds c(c− 1)/2 binary classifiers (one versus one) and takes
a majority-voted class as a winner, where c is the number of target classes [23].

To overcome the “curse of dimensionality” or to analyze the effect of each feature
on classification, various feature selection methods have been introduced in the machine-
learning field. Among these, the Relief-F algorithm has been successfully used in many
feature selection tasks [24]. A key idea in Relief-F is estimating the power of each feature
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by increasing the interclass difference and the intraclass similarity. The algorithm initially
looks for the k nearest hits (samples with the same class label) and misses (samples with a
different class label) for a randomly selected sample. Then, it updates the following weight
for each feature, f , with respect to the difference between the feature values of the selected
data and nearest ones

w
(
f
)
= P
(
different value of f |different class) − P

(
different value of f |same class

)
.
(2.16)

In this study, the feature selection method by the Relief-F algorithm was adopted
to improve the computational efficacy and remove possible redundant features that do
not contribute to the classification performance. In addition, we used a linear SVM with
a pairwise coupling method as a classifier in our experiments and compared the 10-fold
cross validation accuracy by eliminating the lowest-ranked features one-by-one based on the
Relief-F algorithm. We took advantage of the work of Witten and Frank [25] and Chang and
Lin [26] for the Relief-F method and SVM learning.

3. Experimental Results

We used a dataset of Lee et al. [11] to evaluate our method and compared our proposed
method with that of Lee et al. These standard 12-lead ECG data were acquired for ten healthy
volunteers using a CardioTouch (Bionet Co., Korea) with a sampling speed of 500 samples
per second. Each recording was 10 s long and was performed when the subject was at rest.
The data collection was done for three months, and almost one hundred of recordings were
done per subject.

To compare our proposed method and the previous dVCG method, we extracted 21
features from dVCG12−lead (dVCG derived from a standard 12-lead system) and dVCGlimb−lead
(dVCG derived from limb-lead system), respectively. These two sets of 21 features extracted
from dVCG12−lead and dVCGlimb−lead were ranked using the Relief-F algorithm, and the results
are shown in Table 1. Note that the notation w(f) is the output from the Relief-F algorithm,
which means the relative importance of the features in terms of the ability for increasing the
interclass difference and the intraclass similarity.

For the 12-lead system, the foremost values were the angle of themaximum peak value
in the T vector loop and the angle of the major axis in the T vector loop. Next were the values
of the length and the angle of the major axis in the QRS vector loop, followed by the length
of the minor axis in the QRS vector loop and the size of the QRS vector loop. The difference
between the size of the QRS and T vector loops came next.

In the case of the limb-lead system, the highest values were the maximum peak value
in 3D space of the dVCG and the area of the QRS vector loop, along with the difference
between the area of the QRS and T vector loops. The length of the minor axis in the QRS
vector loop and the maximum peak value in the T vector loop came next.

For two sets of 21 features, we performed a classification using a linear SVM with
pairwise couplingmethod and compared the 10-fold cross validation accuracy by eliminating
the lowest ranked features one-by-one. The results of the classification performance using the
extracted features from a standard 12-lead and limb-lead system are denoted by the dashed
and solid lines, respectively, in Figure 4.
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Table 1: Rank for each set of 21 features extracted from dVCGs based on a standard 12-lead and limb-lead
ECG, respectively.

Rank 12-Lead System Limb-Lead System
w(f) Feature w(f) Feature

1 0.26028 Tangle 0.29471 VCGpeak

2 0.25459 Tmaxang 0.22822 QRSarea
3 0.24278 QRSmaxdist 0.22220 QRSTdiffarea

4 0.17459 QRSmaxang 0.20969 QRSmindist

5 0.16736 QRSmindist 0.20752 Tpeak
6 0.16552 QRSarea 0.18580 Tmaxang

7 0.16499 QRSTdiffarea 0.18002 Tangle
8 0.16268 VCGpeak 0.17490 QRSmaxdist

9 0.14688 QRSpeak 0.16626 Tmaxdist

10 0.14518 VCGelevation 0.14507 QRSTratiopeak

11 0.11549 QRSlwratio 0.12638 QRSTdiffang

12 0.11397 QRSTdiffang 0.11331 QRSlwratio

13 0.10033 Tarea 0.10956 QRSmaxang

14 0.09135 Tmaxdist 0.10570 QRSpeak
15 0.08369 VCGazimuth 0.07650 VCGazimuth

16 0.07818 Tpeak 0.07066 QRSangle
17 0.06905 Tmindist 0.06596 VCGelevation

18 0.05022 QRSangle 0.05100 Tlwratio

19 0.03320 QRSTratiopeak 0.03715 Tarea
20 0.02709 Tlwratio 0.02179 Tmindist

21 0.00263 QRSTratioarea 0.00091 QRSTratioarea

The recognition rate using 21 features extracted from the standard 12-lead system was
99.52%, and the rate decreased as the number of features decreased. Whenwe used only eight
features, the recognition rate was 99.19%. In the case of features extracted from limb-lead
system, the recognition rate of 99.53% was achieved using all 21 features and a recognition
rate of 99.37% was achieved using only the top eight ranked features. These results show
that when using the dVCG derived from limb leads only, we can produce an acceptable
recognition rate.

4. Discussion and Conclusions

The recording of the standard 12-lead ECG to identify a person is not readily applicable
in a real environment due to the inconvenience of connecting many electrodes. To solve
this problem, we have studied the feasibility of personal identification based on the dVCG
derived from limb leads only.

We extracted 21 features from dVCG and performed feature selection using the Relief-
F algorithm to analyze the effect of each feature. Although there were differences in rank
order, seven out of the eight top-ranked features in a standard 12-lead system were also top-
ranked in the limb-lead system with the exception being the angle of the major axis in the
QRS vector loop. The results also show that the Relief-F algorithm is a suitable algorithm
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Figure 4: Comparison of classification performances between the method using a standard 12-lead system
and our proposed method using the limb-lead system.

for sorting the ranks among the features since the recognition rates do not fluctuate and
gradually decrease as the number of features decreases.

To identify a person, we used a linear SVM as a classifier and calculated the 10-fold
cross validation accuracy. The results of the comparison between the dVCG from the limb-
lead ECG and 12-lead ECG indicate that it is possible to identify a person using only a limb-
lead system with three electrodes instead of the standard 12 leads.

Further studies should investigate the stability of the dVCG with a subject’s various
physical condition changes such as exercising, drinking, and smoking. Additionally, a large
dataset including these various conditions should be used for its validation.
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