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An iterative sequence for quasi-¢-asymptotically nonexpansive multivalued mapping for modify-
ing Halpern’s iterations is introduced. Under suitable conditions, some strong convergence theo-
rems are proved. The results presented in the paper improve and extend the corresponding results
in the work by Chang et al. 2011.

1. Introduction

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. Let D be a nonempty closed subset of a real Banach space X. A mapping T :
D — D is said to be nonexpansive, if |Tx — Ty|| < ||x — y||, for all x,y € D. Let N(D) and
CB(D) denote the family of nonempty subsets and nonempty closed bounded subsets of D,
respectively. The Hausdorff metric on CB(D) is defined by

H(A{, A) = max{supd(x, A,), supd(y, Al)} (1.1)

xX€EAL YyEA

for A;, Ay € CB(D), where d(x, A1) = inf{|lx — y||,y € A;}. The multivalued mapping T :
D — CB(D) is called nonexpansive, if H(Tx,Ty) < ||x-y||, forallx,y € D. An elementp € D
is called a fixed point of T : D — N(D), if p € T (p). The set of fixed points of T is represented
by F(T).
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Let X be a real Banach space with dual X*. We denote by | the normalized duality
mapping from X to 2X" which is defined by

J(x) = {x* eX*: (x,x") = ||x|? = ||x*||2}, xeX, (1.2)

where (-, -) denotes the generalized duality pairing.
A Banach space X is said to be strictly convex, if ||(x + y) /2| < 1 for all x,y € X with
llx|l = llyll = 1 and x # y. A Banach space is said to be uniformly convex, if lim,,_, o ||x, =yl = 0
for any two sequences {x,}, {y,} C X with ||x,|| = ||yl = 1 and lim,_ oo || (x» + ¥,) /2| = 0.
The norm of Banach space X is said to be Gateaux differentiable, if for each x,y € S(x),
the limit

hmw (1.3)
t—0 t

exists, where S(x) = {x : ||x|| = 1,x € X}. In this case, X is said to be smooth. The norm of
Banach space X is said to be Fréchet differentiable, if for each x € S(x), the limit (1.3) is attained
uniformly, for y € S(x), and the norm is uniformly Fréchet differentiable if the limit (1.3) is
attained uniformly for x, y € S(x). In this case, X is said to be uniformly smooth.

Remark 1.1. The following basic properties for Banach space X and for the normalized duality
mapping J can be found in Cioranescu [1].

(1) X (X*, resp.) is uniformly convex if and only if X* (X, resp.) is uniformly smooth.
(2) If X is smooth, then J is single-valued and norm-to-weak* continuous.
(3) If X is reflexive, then ] is onto.

(4) If X is strictly convex, then Jx (" Jy #0, forall x,y € X.

)

(5) If X has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(6) If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of X.

(7) Each uniformly convex Banach space X has the Kadec-Klee property, that is, for any
sequence {x,} C X, if x, — x € X and ||x,|| — [|x||, thenx, — x € X.

(8) If X is a reflexive and strictly convex Banach space with a strictly convex dual X*
and J*: X* — X is the normalized duality mapping in X*, then J~! = J*, JJ* = Ix-
and J*] = Ix.

Next, we assume that X is a smooth, strictly convex, and reflexive Banach space and D
is a nonempty, closed and convex subset of X. In the sequel, we always use ¢ : X x X — R*
to denote the Lyapunov functional defined by

$(x,y) = x> =2(x, Jy) + |lvl]>, xyeX (1.4)
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It is obvious from the definition of the function ¢ that

(el = [ly1)* < d () < (=l + [y )%,

(1.5)
¢y, x) = ¢y, 2) +d(z,x) +2(z -y, Jx - ]z), xy,z€X,
(])<x, J (A Jy + (1-1) ]z)> <A(x,y) + (1 - N)p(x,2), (1.6)
forallA € [0,1] and x,y,z € X.
Following Alber [2], the generalized projection Ilp : X — D is defined by
[p(x) = arg ;Iglg(,b (y,x), VxeX (1.7)

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping.

Example 1.2 (see [3]). Let Ilp be the generalized projection from a smooth, reflexive and
strictly convex Banach space X onto a nonempty closed convex subset D of X, then Ilp is a
closed and quasi-¢-nonexpansive from X onto D.

In 1953, Mann [4] introduced the following iterative sequence {x,}:
Xpr1 = ApXy + (1 —a,)Tx,, (1.8)

where the initial guess x; € D is arbitrary, and {a,} is a real sequence in [0, 1]. It is known that
under appropriate settings the sequence {x,} converges weakly to a fixed point of T. How-
ever, even in a Hilbert space, Mann iteration may fail to converge strongly [5]. Some attempts
to construct iteration method guaranteeing the strong convergence have been made. For
example, Halpern [6] proposed the following so-called Halpern iteration:

Xpi1 = agu+ (1—a,)Tx,, (1.9)

where u, x; € D are arbitrary given and {a,} is a real sequence in [0, 1]. Another approach
was proposed by Nakajo and Takahashi [7]. They generated a sequence as follows:

x1 € X is arbitrary,
Yn = antt + (1 - an)Txy,
Co={zeD:|yn—z| < llxu—=zl}, (1.10)
Qu={zeD:{(x,—z,x1-x,) >0},
Xn1 = Pc,no,x1 (n=1,2,...),

where {a,} is a real sequence in [0,1] and Px denotes the metric projection from a Hilbert
space H onto a closed and convex subset K of H. It should be noted here that the iteration
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previous works only in Hilbert space setting. To extend this iteration to a Banach space, the
concept of relatively nonexpansive mappings are introduced (see [8-12]).

Inspired by Matsushita and Takahashi, in this paper, we introduce modifying Halpern-
Mann iterations sequence for finding a fixed point of multivalued mapping T : D — CB(D).

2. Preliminaries

In the sequel, we denote the strong convergence and weak convergence of the sequence {x, |
by x, — x and x,, — x, respectively.

Lemma 2.1 (see [2]). Let X be a smooth, strictly convex, and reflexive Banach space, and let D be a
nonempty closed and convex subset of X. Then the following conclusions hold

(@) ¢(x,y) =0ifandonly if x =y, forall x,y € X;
(b) ¢(x,I1py) + ¢(Ilpy,y) < d(x,y), forall x € D, forall y € X;
()ifxeXandze D, thenz=Ilpx & (z-y,Jx—-Jz) >0, forally € D.

Remark 2.2. If H is a real Hilbert space, then ¢(x, y) = ||x—y|*> and I'lp is the metric projection
Pp of H onto D.

Definition 2.3. A point p € D is said to be an asymptotic fixed point of T : D — CB(D), if
there exists a sequence {x,} C D such that x, — x € X and d(x,,, T(x,)) — 0. Denote the set
of all asymptotic fixed points of T by E(T).

Definition 2.4. (1) A multivalued mapping T : D — CB(D) is said to be relatively nonexpan-
sive, if F(T) #0, F(T) = F(T), and ¢(p,z) <P(p,x), forallx e D,p e F(T), z € T(x).

(2) A multivalued mapping T : D — CB(D) is said to be closed, if for any sequence
{xn} ¢ Dwithx, — x€ Dand d(y,T(x,)) — 0, thend(y,T(x)) =0.

Next, we present an example of relatively nonexpansive multivalued mapping.

Example 2.5 (see [13]). Let X be a smooth, strictly convex, and reflexive Banach space, let D be
a nonempty closed and convex subset of X, and let f : D x D — R be a bifunction satisfying
the conditions: (Al) f(x,x) = 0, for all x € D; (A2) f(x,y) + f(y,x) <0, for all x,y € D;
(A3) limyo f(tz+ (1 -t)x,y) < f(x,y), for each x, y,z € D; (A4) the function y — f(x,y) is
convex and lower semicontinuous, for each x € D. The “so-called” equilibrium problem for
fistofind a x* € D such that f(x*,y) >0, for all y € D. The set of its solutions is denoted by

EP(f).
Letr > 0, x € X and define mapping T, : X — D as follows:

T, (x) = {x €D, f(zy)+ %(y—z,]z—]x} >0,Vy € D}, Vx € X, (2.1)

then (1) T, is single-valued, and so {z} = T,(x); (2) T, is a relatively nonexpansive mapping,
therefore it is a closed and quasi-¢-nonexpansive mapping; (3) F(T;) = EP(f).

Definition 2.6. (1) A multivalued mapping T : D — CB(D) is said to be quasi-¢$-nonexpan-
sive, if F(T) #0, and ¢(p,z) < ¢(p,x), forallx € D,p € F(T), z € T(x).
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(2) A multivalued mapping T : D — CB(D) is said to be quasi-¢-asymptotically non-
expansive, if F(T) #0, and there exists a real sequence k,, C [1,+0), k, — 1 such that

$(p,zn) <knp(p,x), VxeD, peF(T), z, € T"(x). (2.2)

(3) A multivalued mapping T : D — CB(D) is said to be totally quasi-¢-asymptoti-
cally nonexpansive, if F(T) # @, and there exist nonnegative real sequences {v,}, {y,} with vy,
Un — 0 (asn — oo) and a strictly increasing continuous function ¢ : R* — R* with ¢(0) =0
such that

PP, zn) <P(p,x) +val[p(p,x)] +pn, VYx €D, Vn>1, pe F(T), z, € T"(x). (2.3)

Remark 2.7. From the definitions, it is obvious that a relatively nonexpansive multivalued
mapping is a quasi-¢-nonexpansive multivalued mapping, and a quasi-¢-nonexpansive
multivalued mapping is a quasi-¢-asymptotically nonexpansive multivalued mapping, but
the converse is not true.

Lemma 2.8. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and let D be a nonempty closed and convex subset of X. Let {x,} and {y,} be two sequences
in D such that x, — p and ¢(x,,y,) — 0, where ¢ is the function defined by (1.4), then y, — p.

Proof. For ¢p(x,,y,) — 0, we have (||x,]| - |lyull)> — 0. This implies that ||y,|| — [|p|| and so
lJyall — |lJpll. Since D is uniformly smooth, X* is reflexive and JX = X*, therefore, there
exist a subsequence {Jy,,} C {Jy,} and a point x € X such that Jy,, — Jx. Because the norm
|| - || is weakly lower semi continuous, we have

0= nl,iinood’(xnwyni) = nlgrloo{||xni||2 - 2<xni/ ]yn,-> + ||]yﬂz||2}
’ ’ (2.4)

> ||p||* - 2¢p, Jx) + Tx[” = ¢ (p, x)-

By Lemma 2.1(a), we have p = x. Hence we have Jy,, — Jp. Since ||Jy,| — |Jpl and X*
has the Kadec-Klee property, we have Jy,, — Jp. By Remark 1.1, it follows that y,, — p.
Since || Jyx |l — ||Jpll, by using the Kadec-Klee property of X, we get y,, — p. If there exists
another subsequence {Jyy;} C {Jy,} such that y,, — g, then we have

2 2
0= Jimenn) = i ([l 20,0 ¢ 1 )
! ! (2.5)
=[lpll* - 26p. Ja) + l14ll” = ¢ (- ).
This implies that p = g. So v, — p. The conclusion of Lemma 2.8 is proved. O

Lemma 2.9. Let X and D be as in Lemma 2.8. Let T : D — CB(D) be a closed and quasi-¢-
asymptotically nonexpansive multivalued mapping with nonnegative real sequences {k,} C [1,+o0),
if kn — 1, then the fixed point set F(T) of T is a closed and convex subset of D.
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Proof. Let {x,} be a sequence in F(T), such that x, — x*. Since T is quasi-¢-asymptotically
nonexpansive multivalued mapping, we have

¢(xn/ Z) S k1¢(xnl x*) (26)
for all z € Tx* and for all n € N. Therefore,

P(x*,z) = nli_I:r;o(j)(xn, z) < nli_r};lokl(,b(xn, x*) =kip(x*, x*) = 0. (2.7)

By Lemma 2.1, we obtain z = x*, Hence, Tx* = {x*}. So, we have x* € F(T). This implies that
F(T) is closed.

Letp,g€ F(T)and t € (0,1), and put w = tp+(1-t)q. we prove that w € F(T). Indeed,
in view of the definition of ¢, let z,, € T"w, we have

P(w, z,) = || - 2(w, Jz,) + ||zl
= [wl? - 2(tp + (1 = £)q, Jzn) + || zall? (2.8)
= ol + td (p, 20) + (1 = p(q,za) - tlpl|* = (1 - O] lq]|".
Since

t(i)(P, Zn) +(1- t)(i)(q, Z")
< tknd(p,w) + (1 - Hkup(q, w)

= t{llpll* - 2(p, Jwo) + [l + (kn =~ 1) (p, w) } 29)
+ (1 =0{llall* - 2(q, Jw) + kel + (k- D (q,w) }
= tllpll* + (1 =Dllall® = ol + tkn = Db (p, ) + (1 = ) (kn = (4, ).
Substituting (2.8) into (2.9) and simplifying it, we have
P, 2,) < tkn ~ DP(p,w) + 1=~ D(ke - DP(gw) — 0, (asn— ).  (210)

Hence, we have z, — w. This implies that z,.;(€ TT"w) — w. Since T is closed, we have
Tw = {w}, thatis, w € F(T). This completes the proof of Lemma 2.9. O

Definition 2.10. A mapping T : D — CB(D) is said to be uniformly L-Lipschitz continuous,
if there exists a constant L > 0 such that ||x, — y,|| < L||lx — y||, where x,y € D, x,, € T"x,
yn €T"y.

3. Main Results

Theorem 3.1. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, let D be a nonempty, closed and convex subset of X, and let T : D — CB(D) be a closed and
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uniformly L-Lipschitz continuous quasi-¢-asymptotically nonexpansive multivalued mapping with
nonnegative real sequences {k,} C [1,+o0) and k, — 1 satisfying condition (2.2). Let {a,} be a
sequence in (0,1). If {x,} is the sequence generated by

x1 € X is arbitrary; D1=D,
Yn = T HanJxi + (1 —an)Jzul, zn€T"x,,

Dy = {Z eD,: ¢(Z,yn) < “nd)(zrxl) +(1- an)d)(zrxn) + §n}/
x1 (n=1,2,..),

(3.1)

Xne1 = Ip

n+l

where & = (kn = 1)sup,,cpq)¢(p, xn), F(T) is the fixed point set of T, and Ilp,,, is the generalized
projection of X onto Dyy1. If F(T) is nonempty, then {x,} converges strongly to Ilp(ryx1.

Proof. (I) First, we prove that D,, are closed and convex subsets in D. By the assumption that D; =
D is closed and convex. Suppose that D, is closed and convex for some n > 1. In view of the
definition of ¢, we have

Dy = {Z €Dy (i)(Z,yn) Sand(z,x1) + (1 - an)p(z,x,) + ‘gn}
={zeD:¢(z,yn) < anp(z,x1) + (1 - ) P(z, xn) + éu} N Dy,

(3.2)
= {Z €D :2a,(z, Jx1) +2(1 — an)(z, Jxu) = 2(2, J zn)

< anllxal? + (1= an)lxall? = 1z} 0 D

This shows that D, is closed and convex. The conclusions are proved.
(II) Next, we prove that F(T) C Dy, for all n > 1. In fact, it is obvious that F(T) C D;.
Suppose F(T) C D,, for some n > 1. Hence, for any u € F(T) C D,, by (1.6), we have

P yn) = (T @1 + (1= )] z0))
< anp(u,x1) + (1 - @) (1, z0)
< (i, x1) + (1= @) knp (1 %)
= g, 31) + (1= an) {1, %) + (ko — DP(t, %)) (3:3)

<anp(u,x1) + (1 -ay) {(;b(u, xn) + (ky, — 1) sup (j)(u,xn)}
ueF(T)
= an(u,x1) + (1 — an)P(u, xu) + &u-
This shows that u € F(T) C D41 and so F(T) C D,,.

(III) Now, we prove that {x,} converges strongly to some point p*. In fact, since x,, = I'lp, x1,
from Lemma 2.1(c), we have

(xn—y,Jx1—Jx,) 20, Vy€D,. (3.4)
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Again since F(T) C D,, we have

(xp—u, Jx1 — Jx,) >0, VueF(T). (3.5)

It follows from Lemma 2.1(b) that for each u € F(T) and for each n > 1,
(I)(xn/ xl) = d)(Hanlr xl) < (I)(u, xl) - (i)(u/ xn) < (i)(u, X1). (36)

Therefore, {¢(x,, x1)} is bounded, and so is {x,}. Since x, = IIp,x; and x,.1 = Ilp,,,x1 €
Dy € Dy, we have ¢p(x,, x1) < ¢p(xp41,x1). This implies that {¢(x,, x1)} is nondecreasing.
Hence lim,, _, o, ¢(x,, x1) exists. Since X is reflexive, there exists a subsequence {x,,} C {x,}
such that x,, — p* (some point in D = D). Since D, is closed and convex and D,.; C D,.
This implies that D,, is weakly closed and p* € D,, for each n > 1. In view of x,,, = ]‘_‘[Dni X1, We
have

¢(xn, x1) S P(p*,x1), VYmi>1. 3.7)
Since the norm || - || is weakly lower semicontinuous, we have

lim inf ¢(x,, x1) = Tim inf( |l | = 240, J21) + 2]

> "I - 2p", Jx1) + s |2 (3.8)
= ¢(p*,X1),
and so
B(p, ) < Jim inf plxn, ) < lim sup g, x1) = $(p",): 69)

This shows that lim,,, .o, ¢(xp,, x1) = ¢(p*, x1), and we have ||x,,|| — [|p*||. Since x,,, — p*, by
the virtue of Kadec-Klee property of X, we obtain that x,, — p*. Since {¢(x,, x1)} is con-
vergent, this together with lim,, o ¢(xn, x1) = ¢(p*,x1) shows that lim,, o ¢(x,, x1) =
¢(p*, x1). If there exists some subsequence {xnj} C {x,} such that x, — g, then from
Lemma 2.1, we have

d(p*,q) = limwd)(xni,xnj) = lim ¢<xm,HDnl_x1>

ninj— ninj — oo

< lim [(])(xm,xl)—(ﬁ(HDnl_xl,xl)]: limoo[qb(xni,xl)—(])<xnj,x1>] (3.10)

Tli,njHOO n,-,nj —
=p(p",x1) - 9(p", x1) =0,
that is, p* = g and hence

Xn — p*. (3.11)
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By the way, from (3.11), it is easy to see that

én = (kn = 1) sup ¢(p,xn) — 0. (3.12)
peF(T)

(IV) Now, we prove that p* € F(T). In fact, since x,+1 € Dy4q, from (3.1), (3.11), and
(3.12), we have

¢(xn+11 yn) < an(,b(xnﬂ/ xl) + (]- - an)(;b(xrﬁlr xn) + gn — 0. (313)
Since x, — p*, it follows from (3.13) and Lemma 2.8 that
Yn — P (3.14)

Since {x,} is bounded and T is quasi-¢-asymptotically nonexpansive multivalued mapping,
T"x, is bounded. In view of a;, — 0. Hence from (3.1), we have that

Jim (| Ty = Jza|| = lim [[J21 = Jzall = 0. (3.15)
Since Jy, — Jp*, this implies Jz, — Jp*. From Remark 1.1, it yields that
zZy —p'. (3.16)
Again since
Izall = {lp" |l = 1T zall = [[T*|| < |J2zn = Jp*|| — O, (3.17)
this together with (3.16) and the Kadec-Klee-property of X shows that
Zy — pr. (3.18)
On the other hand, by the assumptions that T is L-Lipschitz continuous, thus we have

A(Tzp, zn) < A(Tzp, zpi1) + | Zne1 = Xns1 || + %01 = x0]| + |20 = 24|
(3.19)
< (L + 1)“xn+1 = xn” + ||Zn+l - xn+l” + ”xn - ZnH'

From (3.18) and x,, — p*, we have that d(Tz,, z,) — 0.In view of the closeness of T, it yields
that T(p*) = {p*}, this implies that p* € F(T).

(V) Finally, we prove that p* = Ilpqx1 and so x, — Ilpryx1. Let w = Tlpyxy. Since
w € F(T) c D,, we have ¢(p*, x1) < ¢(w, x1). This implies that

$(p*,x1) = lim P(xy, x1) < p(w, x1), (3.20)



10 Journal of Applied Mathematics

which yields that p* = w = Ilpr)x;. Therefore, x, — Ilpyxi. This completes the proof of
Theorem 3.1. O

By Remark 2.7, the following corollaries are obtained.

Corollary 3.2. Let X and D be as in Theorem 3.1, and let T : D — CB(D) be a closed and uni-
formly L-Lipschitz continuous a relatively nonexpansive multivalued mapping. Let {a,} in (0,1)
with lim,, _, o, &, = 0. Let {x,,} be the sequence generated by
x1 € X is arbitrary; D1 =D,
Yn =] HanJxr + (L —an)Jzal, 2zn € Txy,
Dyii={z€Dy:¢(z,yn) < anp(z,x1) + (1 - an)P(z,xn) },
x1 (n=1,2,..),

(3.21)

Xu+1 = Ip,

n+l

where F(T) is the set of fixed points of T, and Ilp
{xn} converges strongly to Ilpr)x;.

is the generalized projection of X onto Dy.q, then

n+l1

Corollary 3.3. Let X and D be as in Theorem 3.1, and let T : D — CB(D) be a closed and uniformly
L-Lipschitz continuous quasi-¢-nonexpansive multivalued mapping. Let {a,} be a sequence of real
numbers such that a,, € (0,1) for all n € N, and satisfying: lim, _, o, a, = 0. Let {x,} be the sequence
generated by (3.21). Then, {x,} converges strongly to I r)x;.

4. Application

We utilize Corollary 3.3 to study a modified Halpern iterative algorithm for a system of equi-
librium problems.

Theorem 4.1. Let D, X, and {a,} be the same as in Theorem 3.1. Let f : DxD — R be a bifunction
satisfying conditions (A1)—(A4) as given in Example 2.5. Let T, : X — D be a mapping defined by
(2.1), that is,

T, (x) = {x €D, f(zy)+ %(y—z,]z—]x) >0,Yy € D}, Vx € X. (4.1)

Let {x,} be the sequence generated by

x1 € X s arbitrary; D1 =D,

f(un/y) + %<y_un/]un_]xn> >0, YyeD, r>0, u, €Trxy,

Yo = J HanJxr + (1 - a) Jun], (4.2)

Dya={z€Dy:¢(z,yn) <anp(z,x1) + (1 - ) P(z,x4) },

Xps1 =1lp, ,x1 (n=1,2,.. -
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If F(T,) #0, then {x,} converges strongly to Ilpx1 which is a common solution of the system of
equilibrium problems for f.

Proof. In Example 2.5, we have pointed out that u,, = T, (x,,), F(T;) = EP(f), and T is a closed
and quasi-¢-nonexpansive mapping. Hence (4.2) can be rewritten as follows:

x1 € X isarbitrary; D;=D,

Yn = ]_1 [an]x1+ (1 —ay)Ju,], u, €Trxy,

(4.3)
Dy ={z€Dy:¢(z,yn) < anp(z,x1) + (1 - an)P(z,xn) },
Xp1 =1p,,x1 (n=1,2,...).
Therefore the conclusion of Theorem 4.1 can be obtained from Corollary 3.3. O
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