
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 912545, 11 pages
doi:10.1155/2012/912545

Research Article
Strong Convergence Theorems for Modifying
Halpern Iterations for Quasi-φ-Asymptotically
Nonexpansive Multivalued Mapping in
Banach Spaces with Applications

Li Yi

School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

Correspondence should be addressed to Li Yi, liyi@swust.edu.cn

Received 20 August 2012; Accepted 21 November 2012

Academic Editor: Nan-Jing Huang

Copyright q 2012 Li Yi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

An iterative sequence for quasi-φ-asymptotically nonexpansive multivalued mapping for modify-
ing Halpern’s iterations is introduced. Under suitable conditions, some strong convergence theo-
rems are proved. The results presented in the paper improve and extend the corresponding results
in the work by Chang et al. 2011.

1. Introduction

Throughout this paper, we denote byN and R the sets of positive integers and real numbers,
respectively. Let D be a nonempty closed subset of a real Banach space X. A mapping T :
D → D is said to be nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ D. Let N(D) and
CB(D) denote the family of nonempty subsets and nonempty closed bounded subsets of D,
respectively. The Hausdorff metric on CB(D) is defined by

H(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
y∈A2

d
(
y,A1

)}
(1.1)

for A1, A2 ∈ CB(D), where d(x,A1) = inf{‖x − y‖, y ∈ A1}. The multivalued mapping T :
D → CB(D) is called nonexpansive, ifH(Tx, Ty) ≤ ‖x−y‖, for all x, y ∈ D. An element p ∈ D
is called a fixed point of T : D → N(D), if p ∈ T(p). The set of fixed points of T is represented
by F(T).
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Let X be a real Banach space with dual X∗. We denote by J the normalized duality
mapping from X to 2X

∗
which is defined by

J(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, x ∈ X, (1.2)

where 〈·, ·〉 denotes the generalized duality pairing.
A Banach space X is said to be strictly convex, if ‖(x + y)/2‖ ≤ 1 for all x, y ∈ X with

‖x‖ = ‖y‖ = 1 and x /=y. A Banach space is said to be uniformly convex, if limn→∞‖xn−yn‖ = 0
for any two sequences {xn}, {yn} ⊂ X with ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 0.

The norm of Banach space X is said to be Gâteaux differentiable, if for each x, y ∈ S(x),
the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.3)

exists, where S(x) = {x : ‖x‖ = 1, x ∈ X}. In this case, X is said to be smooth. The norm of
Banach spaceX is said to be Fréchet differentiable, if for each x ∈ S(x), the limit (1.3) is attained
uniformly, for y ∈ S(x), and the norm is uniformly Fréchet differentiable if the limit (1.3) is
attained uniformly for x, y ∈ S(x). In this case, X is said to be uniformly smooth.

Remark 1.1. The following basic properties for Banach space X and for the normalized duality
mapping J can be found in Cioranescu [1].

(1) X (X∗, resp.) is uniformly convex if and only if X∗ (X, resp.) is uniformly smooth.

(2) If X is smooth, then J is single-valued and norm-to-weak∗ continuous.

(3) If X is reflexive, then J is onto.

(4) If X is strictly convex, then Jx
⋂
Jy /= ∅, for all x, y ∈ X.

(5) If X has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(6) If X is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of X.

(7) Each uniformly convex Banach spaceX has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ X, if xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x ∈ X.

(8) If X is a reflexive and strictly convex Banach space with a strictly convex dual X∗

and J∗ : X∗ → X is the normalized duality mapping in X∗, then J−1 = J∗, JJ∗ = IX∗

and J∗J = IX .

Next, we assume thatX is a smooth, strictly convex, and reflexive Banach space andD
is a nonempty, closed and convex subset of X. In the sequel, we always use φ : X × X → R+

to denote the Lyapunov functional defined by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y∥∥2

, x, y ∈ X. (1.4)
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It is obvious from the definition of the function φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ
(
x, y

) ≤ (‖x‖ + ∥∥y∥∥)2,
φ
(
y, x

)
= φ

(
y, z

)
+ φ(z, x) + 2〈z − y, Jx − Jz〉, x, y, z ∈ X,

(1.5)

φ
(
x, J−1

(
λJy + (1 − λ)Jz

)) ≤ λφ
(
x, y

)
+ (1 − λ)φ(x, z), (1.6)

for all λ ∈ [0, 1] and x, y, z ∈ X.
Following Alber [2], the generalized projection ΠD : X → D is defined by

ΠD(x) = arg inf
y∈D

φ
(
y, x

)
, ∀x ∈ X. (1.7)

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping.

Example 1.2 (see [3]). Let ΠD be the generalized projection from a smooth, reflexive and
strictly convex Banach space X onto a nonempty closed convex subset D of X, then ΠD is a
closed and quasi-φ-nonexpansive from X onto D.

In 1953, Mann [4] introduced the following iterative sequence {xn}:

xn+1 = αnxn + (1 − αn)Txn, (1.8)

where the initial guess x1 ∈ D is arbitrary, and {αn} is a real sequence in [0, 1]. It is known that
under appropriate settings the sequence {xn} converges weakly to a fixed point of T . How-
ever, even in a Hilbert space, Mann iteration may fail to converge strongly [5]. Some attempts
to construct iteration method guaranteeing the strong convergence have been made. For
example, Halpern [6] proposed the following so-called Halpern iteration:

xn+1 = αnu + (1 − αn)Txn, (1.9)

where u, x1 ∈ D are arbitrary given and {αn} is a real sequence in [0, 1]. Another approach
was proposed by Nakajo and Takahashi [7]. They generated a sequence as follows:

x1 ∈ X is arbitrary,

yn = αnu + (1 − αn)Txn,

Cn =
{
z ∈ D :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ D : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qnx1 (n = 1, 2, . . .),

(1.10)

where {αn} is a real sequence in [0, 1] and PK denotes the metric projection from a Hilbert
space H onto a closed and convex subset K of H. It should be noted here that the iteration
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previous works only in Hilbert space setting. To extend this iteration to a Banach space, the
concept of relatively nonexpansive mappings are introduced (see [8–12]).

Inspired byMatsushita and Takahashi, in this paper, we introducemodifyingHalpern-
Mann iterations sequence for finding a fixed point of multivalued mapping T : D → CB(D).

2. Preliminaries

In the sequel, we denote the strong convergence and weak convergence of the sequence {xn}
by xn → x and xn ⇀ x, respectively.

Lemma 2.1 (see [2]). Let X be a smooth, strictly convex, and reflexive Banach space, and let D be a
nonempty closed and convex subset of X. Then the following conclusions hold

(a) φ(x, y) = 0 if and only if x = y, for all x, y ∈ X;

(b) φ(x,ΠDy) + φ(ΠDy, y) ≤ φ(x, y), for all x ∈ D, for all y ∈ X;

(c) if x ∈ X and z ∈ D, then z = ΠDx ⇔ 〈z − y, Jx − Jz〉 ≥ 0, for all y ∈ D.

Remark 2.2. IfH is a real Hilbert space, then φ(x, y) = ‖x−y‖2 andΠD is the metric projection
PD of H onto D.

Definition 2.3. A point p ∈ D is said to be an asymptotic fixed point of T : D → CB(D), if
there exists a sequence {xn} ⊂ D such that xn ⇀ x ∈ X and d(xn, T(xn)) → 0. Denote the set
of all asymptotic fixed points of T by F̂(T).

Definition 2.4. (1) A multivalued mapping T : D → CB(D) is said to be relatively nonexpan-
sive, if F(T)/= ∅, F̂(T) = F(T), and φ(p, z) ≤ φ(p, x), for all x ∈ D, p ∈ F(T), z ∈ T(x).

(2) A multivalued mapping T : D → CB(D) is said to be closed, if for any sequence
{xn} ⊂ D with xn → x ∈ D and d(y, T(xn)) → 0, then d(y, T(x)) = 0.

Next, we present an example of relatively nonexpansive multivalued mapping.

Example 2.5 (see [13]). LetX be a smooth, strictly convex, and reflexive Banach space, letD be
a nonempty closed and convex subset of X, and let f : D ×D → R be a bifunction satisfying
the conditions: (A1) f(x, x) = 0, for all x ∈ D; (A2) f(x, y) + f(y, x) ≤ 0, for all x, y ∈ D;
(A3) limt→ 0 f(tz + (1 − t)x, y) ≤ f(x, y), for each x, y, z ∈ D; (A4) the function y �→ f(x, y) is
convex and lower semicontinuous, for each x ∈ D. The “so-called” equilibrium problem for
f is to find a x∗ ∈ D such that f(x∗, y) ≥ 0, for all y ∈ D. The set of its solutions is denoted by
EP(f).

Let r > 0, x ∈ X and define mapping Tr : X → D as follows:

Tr(x) =
{
x ∈ D, f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ D

}
, ∀x ∈ X, (2.1)

then (1) Tr is single-valued, and so {z} = Tr(x); (2) Tr is a relatively nonexpansive mapping,
therefore it is a closed and quasi-φ-nonexpansive mapping; (3) F(Tr) = EP(f).

Definition 2.6. (1) A multivalued mapping T : D → CB(D) is said to be quasi-φ-nonexpan-
sive, if F(T)/= ∅, and φ(p, z) ≤ φ(p, x), for all x ∈ D, p ∈ F(T), z ∈ T(x).
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(2) Amultivalued mapping T : D → CB(D) is said to be quasi-φ-asymptotically non-
expansive, if F(T)/= ∅, and there exists a real sequence kn ⊂ [1,+∞), kn → 1 such that

φ
(
p, zn

) ≤ knφ
(
p, x

)
, ∀x ∈ D, p ∈ F(T), zn ∈ Tn(x). (2.2)

(3) A multivalued mapping T : D → CB(D) is said to be totally quasi-φ-asymptoti-
cally nonexpansive, if F(T)/= ∅, and there exist nonnegative real sequences {vn}, {μn}with vn,
μn → 0 (as n → ∞) and a strictly increasing continuous function ζ : R+ → R+ with ζ(0) = 0
such that

φ
(
p, zn

) ≤ φ
(
p, x

)
+ vnζ

[
φ
(
p, x

)]
+ μn, ∀x ∈ D, ∀n ≥ 1, p ∈ F(T), zn ∈ Tn(x). (2.3)

Remark 2.7. From the definitions, it is obvious that a relatively nonexpansive multivalued
mapping is a quasi-φ-nonexpansive multivalued mapping, and a quasi-φ-nonexpansive
multivalued mapping is a quasi-φ-asymptotically nonexpansive multivalued mapping, but
the converse is not true.

Lemma 2.8. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and letD be a nonempty closed and convex subset ofX. Let {xn} and {yn} be two sequences
in D such that xn → p and φ(xn, yn) → 0, where φ is the function defined by (1.4), then yn → p.

Proof. For φ(xn, yn) → 0, we have (‖xn‖ − ‖yn‖)2 → 0. This implies that ‖yn‖ → ‖p‖ and so
‖Jyn‖ → ‖Jp‖. Since D is uniformly smooth, X∗ is reflexive and JX = X∗, therefore, there
exist a subsequence {Jyni} ⊂ {Jyn} and a point x ∈ X such that Jyni ⇀ Jx. Because the norm
‖ · ‖ is weakly lower semi continuous, we have

0 = lim
ni →∞

φ
(
xni , yni

)
= lim

ni →∞

{
‖xni‖2 − 2

〈
xni , Jyni

〉
+
∥∥Jyni

∥∥2
}

≥ ∥∥p∥∥2 − 2〈p, Jx〉 + ‖Jx‖2 = φ
(
p, x

)
.

(2.4)

By Lemma 2.1(a), we have p = x. Hence we have Jyni ⇀ Jp. Since ‖Jyni‖ → ‖Jp‖ and X∗

has the Kadec-Klee property, we have Jyni → Jp. By Remark 1.1, it follows that yni ⇀ p.
Since ‖Jyni‖ → ‖Jp‖, by using the Kadec-Klee property of X, we get yni → p. If there exists
another subsequence {Jynj} ⊂ {Jyn} such that ynj → q, then we have

0 = lim
nj →∞

φ
(
xnj , ynj

)
= lim

nj →∞

{∥∥∥xnj

∥∥∥2 − 2
〈
xnj , Jynj

〉
+
∥∥∥Jynj

∥∥∥2
}

=
∥∥p∥∥2 − 2〈p, Jq〉 + ∥∥q∥∥2 = φ

(
p, q

)
.

(2.5)

This implies that p = q. So yn → p. The conclusion of Lemma 2.8 is proved.

Lemma 2.9. Let X and D be as in Lemma 2.8. Let T : D → CB(D) be a closed and quasi-φ-
asymptotically nonexpansive multivalued mapping with nonnegative real sequences {kn} ⊂ [1,+∞),
if kn → 1, then the fixed point set F(T) of T is a closed and convex subset of D.



6 Journal of Applied Mathematics

Proof. Let {xn} be a sequence in F(T), such that xn → x∗. Since T is quasi-φ-asymptotically
nonexpansive multivalued mapping, we have

φ(xn, z) ≤ k1φ(xn, x
∗) (2.6)

for all z ∈ Tx∗ and for all n ∈ N. Therefore,

φ(x∗, z) = lim
n→∞

φ(xn, z) ≤ lim
n→∞

k1φ(xn, x
∗) = k1φ(x∗, x∗) = 0. (2.7)

By Lemma 2.1, we obtain z = x∗, Hence, Tx∗ = {x∗}. So, we have x∗ ∈ F(T). This implies that
F(T) is closed.

Let p, q ∈ F(T) and t ∈ (0, 1), and putw = tp+(1− t)q. we prove thatw ∈ F(T). Indeed,
in view of the definition of φ, let zn ∈ Tnw, we have

φ(w, zn) = ‖w‖2 − 2〈w, Jzn〉 + ‖zn‖2

= ‖w‖2 − 2〈tp + (1 − t)q, Jzn〉 + ‖zn‖2

= ‖w‖2 + tφ
(
p, zn

)
+ (1 − t)φ

(
q, zn

) − t
∥∥p∥∥2 − (1 − t)

∥∥q∥∥2
.

(2.8)

Since

tφ
(
p, zn

)
+ (1 − t)φ

(
q, zn

)
≤ tknφ

(
p,w

)
+ (1 − t)knφ

(
q,w

)
= t

{∥∥p∥∥2 − 2〈p, Jw〉 + ‖w‖2 + (kn − 1)φ
(
p,w

)}

+ (1 − t)
{∥∥q∥∥2 − 2

〈
q, Jw

〉
+ ‖w‖2 + (kn − 1)φ

(
q,w

)}

= t
∥∥p∥∥2 + (1 − t)

∥∥q∥∥2 − ‖w‖2 + t(kn − 1)φ
(
p,w

)
+ (1 − t)(kn − 1)φ

(
q,w

)
.

(2.9)

Substituting (2.8) into (2.9) and simplifying it, we have

φ(w, zn) ≤ t(kn − 1)φ
(
p,w

)
+ (1 − t)(kn − 1)φ

(
q,w

) −→ 0, (as n −→ ∞). (2.10)

Hence, we have zn → w. This implies that zn+1(∈ TTnw) → w. Since T is closed, we have
Tw = {w}, that is, w ∈ F(T). This completes the proof of Lemma 2.9.

Definition 2.10. A mapping T : D → CB(D) is said to be uniformly L-Lipschitz continuous,
if there exists a constant L > 0 such that ‖xn − yn‖ ≤ L‖x − y‖, where x, y ∈ D, xn ∈ Tnx,
yn ∈ Tny.

3. Main Results

Theorem 3.1. Let X be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, letD be a nonempty, closed and convex subset ofX, and let T : D → CB(D) be a closed and
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uniformly L-Lipschitz continuous quasi-φ-asymptotically nonexpansive multivalued mapping with
nonnegative real sequences {kn} ⊂ [1,+∞) and kn → 1 satisfying condition (2.2). Let {αn} be a
sequence in (0, 1). If {xn} is the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jzn], zn ∈ Tnxn,

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .),

(3.1)

where ξn = (kn − 1)supp∈F(T)φ(p, xn), F(T) is the fixed point set of T , and ΠDn+1 is the generalized
projection of X onto Dn+1. If F(T) is nonempty, then {xn} converges strongly toΠF(T)x1.

Proof. (I) First, we prove thatDn are closed and convex subsets inD. By the assumption thatD1 =
D is closed and convex. Suppose that Dn is closed and convex for some n ≥ 1. In view of the
definition of φ, we have

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
}

=
{
z ∈ D : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn) + ξn
} ∩Dn

=
{
z ∈ D : 2αn〈z, Jx1〉 + 2(1 − αn)〈z, Jxn〉 − 2〈z, Jzn〉

≤ αn‖x1‖2 + (1 − αn)‖xn‖2 − ‖zn‖2
}
∩Dn.

(3.2)

This shows that Dn+1 is closed and convex. The conclusions are proved.
(II) Next, we prove that F(T) ⊂ Dn, for all n ≥ 1. In fact, it is obvious that F(T) ⊂ D1.

Suppose F(T) ⊂ Dn, for some n ≥ 1. Hence, for any u ∈ F(T) ⊂ Dn, by (1.6), we have

φ
(
u, yn

)
= φ

(
u, J−1(αnJx1 + (1 − αn)Jzn)

)
≤ αnφ(u, x1) + (1 − αn)φ(u, zn)

≤ αnφ(u, x1) + (1 − αn)knφ(u, xn)

= αnφ(u, x1) + (1 − αn)
{
φ(u, xn) + (kn − 1)φ(u, xn)

}

≤ αnφ(u, x1) + (1 − αn)

{
φ(u, xn) + (kn − 1) sup

u∈F(T)
φ(u, xn)

}

= αnφ(u, x1) + (1 − αn)φ(u, xn) + ξn.

(3.3)

This shows that u ∈ F(T) ⊂ Dn+1 and so F(T) ⊂ Dn.
(III)Now, we prove that {xn} converges strongly to some point p∗. In fact, since xn = ΠDnx1,

from Lemma 2.1(c), we have

〈xn − y, Jx1 − Jxn〉 ≥ 0, ∀y ∈ Dn. (3.4)
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Again since F(T) ⊂ Dn, we have

〈xn − u, Jx1 − Jxn〉 ≥ 0, ∀u ∈ F(T). (3.5)

It follows from Lemma 2.1(b) that for each u ∈ F(T) and for each n ≥ 1,

φ(xn, x1) = φ(ΠDnx1, x1) ≤ φ(u, x1) − φ(u, xn) ≤ φ(u, x1). (3.6)

Therefore, {φ(xn, x1)} is bounded, and so is {xn}. Since xn = ΠDnx1 and xn+1 = ΠDn+1x1 ∈
Dn+1 ⊂ Dn, we have φ(xn, x1) ≤ φ(xn+1, x1). This implies that {φ(xn, x1)} is nondecreasing.
Hence limn→∞ φ(xn, x1) exists. Since X is reflexive, there exists a subsequence {xni} ⊂ {xn}
such that xni ⇀ p∗ (some point in D = D1). Since Dn is closed and convex and Dn+1 ⊂ Dn.
This implies that Dn is weakly closed and p∗ ∈ Dn for each n ≥ 1. In view of xni = ΠDni

x1, we
have

φ(xni , x1) ≤ φ
(
p∗, x1

)
, ∀ni ≥ 1. (3.7)

Since the norm ‖ · ‖ is weakly lower semicontinuous, we have

lim
ni →∞

infφ(xn, x1) = lim
ni →∞

inf
(
‖xni‖2 − 2〈xni , Jx1〉 + ‖x1‖2

)

≥ ∥∥p∗∥∥2 − 2
〈
p∗, Jx1

〉
+ ‖x1‖2

= φ
(
p∗, x1

)
,

(3.8)

and so

φ
(
p∗, x1

) ≤ lim
ni →∞

infφ(xn, x1) ≤ lim
ni →∞

supφ(xn, x1) = φ
(
p∗, x1

)
. (3.9)

This shows that limni →∞ φ(xni , x1) = φ(p∗, x1), and we have ‖xni‖ → ‖p∗‖. Since xni ⇀ p∗, by
the virtue of Kadec-Klee property of X, we obtain that xni → p∗. Since {φ(xn, x1)} is con-
vergent, this together with limni →∞ φ(xni , x1) = φ(p∗, x1) shows that limni →∞ φ(xn, x1) =
φ(p∗, x1). If there exists some subsequence {xnj} ⊂ {xn} such that xn → q, then from
Lemma 2.1, we have

φ
(
p∗, q

)
= lim

ni,nj →∞
φ
(
xni , xnj

)
= lim

ni,nj →∞
φ
(
xni ,ΠDnj

x1

)

≤ lim
ni,nj →∞

[
φ(xni , x1) − φ

(
ΠDnj

x1, x1

)]
= lim

ni,nj →∞

[
φ(xni , x1) − φ

(
xnj , x1

)]

= φ
(
p∗, x1

) − φ
(
p∗, x1

)
= 0,

(3.10)

that is, p∗ = q and hence

xn −→ p∗. (3.11)
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By the way, from (3.11), it is easy to see that

ξn = (kn − 1) sup
p∈F(T)

φ
(
p, xn

) −→ 0. (3.12)

(IV) Now, we prove that p∗ ∈ F(T). In fact, since xn+1 ∈ Dn+1, from (3.1), (3.11), and
(3.12), we have

φ
(
xn+1, yn

) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + ξn −→ 0. (3.13)

Since xn → p∗, it follows from (3.13) and Lemma 2.8 that

yn −→ p∗. (3.14)

Since {xn} is bounded and T is quasi-φ-asymptotically nonexpansive multivalued mapping,
Tnxn is bounded. In view of αn → 0. Hence from (3.1), we have that

lim
n→∞

∥∥Jyn − Jzn
∥∥ = lim

n→∞
‖Jx1 − Jzn‖ = 0. (3.15)

Since Jyn → Jp∗, this implies Jzn → Jp∗. From Remark 1.1, it yields that

zn ⇀ p∗. (3.16)

Again since

‖zn‖ −
∥∥p∗∥∥ = ‖Jzn‖ −

∥∥Jp∗∥∥ ≤ ∥∥Jzn − Jp∗
∥∥ −→ 0, (3.17)

this together with (3.16) and the Kadec-Klee-property of X shows that

zn −→ p∗. (3.18)

On the other hand, by the assumptions that T is L-Lipschitz continuous, thus we have

d(Tzn, zn) ≤ d(Tzn, zn+1) + ‖zn+1 − xn+1‖ + ‖xn+1 − xn‖ + ‖xn − zn‖
≤ (L + 1)‖xn+1 − xn‖ + ‖zn+1 − xn+1‖ + ‖xn − zn‖.

(3.19)

From (3.18) and xn → p∗, we have that d(Tzn, zn) → 0. In view of the closeness of T , it yields
that T(p∗) = {p∗}, this implies that p∗ ∈ F(T).

(V) Finally, we prove that p∗ = ΠF(T)x1 and so xn → ΠF(T)x1. Let w = ΠF(T)x1. Since
w ∈ F(T) ⊂ Dn, we have φ(p∗, x1) ≤ φ(w,x1). This implies that

φ
(
p∗, x1

)
= lim

n→∞
φ(xn, x1) ≤ φ(w,x1), (3.20)
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which yields that p∗ = w = ΠF(T)x1. Therefore, xn → ΠF(T)x1. This completes the proof of
Theorem 3.1.

By Remark 2.7, the following corollaries are obtained.

Corollary 3.2. Let X and D be as in Theorem 3.1, and let T : D → CB(D) be a closed and uni-
formly L-Lipschitz continuous a relatively nonexpansive multivalued mapping. Let {αn} in (0, 1)
with limn→∞ αn = 0. Let {xn} be the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jzn], zn ∈ Txn,

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .),

(3.21)

where F(T) is the set of fixed points of T , andΠDn+1 is the generalized projection of X ontoDn+1, then
{xn} converges strongly toΠF(T)x1.

Corollary 3.3. LetX andD be as in Theorem 3.1, and let T : D → CB(D) be a closed and uniformly
L-Lipschitz continuous quasi-φ-nonexpansive multivalued mapping. Let {αn} be a sequence of real
numbers such that αn ∈ (0, 1) for all n ∈ N, and satisfying: limn→∞ αn = 0. Let {xn} be the sequence
generated by (3.21). Then, {xn} converges strongly toΠF(T)x1.

4. Application

We utilize Corollary 3.3 to study a modified Halpern iterative algorithm for a system of equi-
librium problems.

Theorem 4.1. LetD,X, and {αn} be the same as in Theorem 3.1. Let f : D×D → R be a bifunction
satisfying conditions (A1)–(A4) as given in Example 2.5. Let Tr : X → D be a mapping defined by
(2.1), that is,

Tr(x) =
{
x ∈ D, f

(
z, y

)
+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ D

}
, ∀x ∈ X. (4.1)

Let {xn} be the sequence generated by

x1 ∈ X is arbitrary; D1 = D,

f
(
un, y

)
+
1
r

〈
y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ D, r > 0, un ∈ Trxn,

yn = J−1[αnJx1 + (1 − αn)Jun],

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .).

(4.2)
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If F(Tr)/= ∅, then {xn} converges strongly to ΠF(T)x1 which is a common solution of the system of
equilibrium problems for f .

Proof. In Example 2.5, we have pointed out that un = Tr(xn), F(Tr) = EP(f), and Tr is a closed
and quasi-φ-nonexpansive mapping. Hence (4.2) can be rewritten as follows:

x1 ∈ X is arbitrary; D1 = D,

yn = J−1[αnJx1 + (1 − αn)Jun], un ∈ Trxn,

Dn+1 =
{
z ∈ Dn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠDn+1x1 (n = 1, 2, . . .).

(4.3)

Therefore the conclusion of Theorem 4.1 can be obtained from Corollary 3.3.

References

[1] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of Mathe-
matics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[2] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and applica-
tions,” in Theory and Applications of Nonlinear Operators of Accretive andMonotone Type, A. G. Kartosator,
Ed., vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Marcel Dekker, New York, NY,
USA, 1996.

[3] S. S. Chang, C. K. Chan, and H. W. J. Lee, “Modified block iterative algorithm for quasi-φ-asymp-
totically nonexpansive mappings and equilibrium problem in Banach spaces,” Applied Mathematics
and Computation, vol. 217, no. 18, pp. 7520–7530, 2011.

[4] W. R. Mann, “Mean value methods in iteration,” Proceedings of the American Mathematical Society, vol.
4, pp. 506–510, 1953.

[5] A. Genel and J. Lindenstrauss, “An example concerning fixed points,” Israel Journal of Mathematics,
vol. 22, no. 1, pp. 81–86, 1975.

[6] B. Halpern, “Fixed points of nonexpansive maps,” Bulletin of the American Mathematical Society, vol.
73, pp. 957–961, 1967.

[7] K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and non-
expansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372–379,
2003.

[8] S. Y. Matsushita and W. Takahashi, “Weak and strong convergence theorems for relatively nonex-
pansive mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2004, no. 1, pp. 37–47,
2004.

[9] S. Matsushita and W. Takahashi, “An iterative algorithm for relatively nonexpansive mappings by
hybridmethod and applications,” in Proceedings of the 3rd International Conference on Nonlinear Analysis
and Convex Analysis, pp. 305–313, 2004.

[10] S.-y. Matsushita and W. Takahashi, “A strong convergence theorem for relatively nonexpansive map-
pings in a Banach space,” Journal of Approximation Theory, vol. 134, no. 2, pp. 257–266, 2005.

[11] X. Qin, Y. J. Cho, S. M. Kang, and H. Zhou, “Convergence of a modified Halpern-type iteration algo-
rithm for quasi-φ-nonexpansive mappings,” Applied Mathematics Letters. An International Journal of
Rapid Publication, vol. 22, no. 7, pp. 1051–1055, 2009.

[12] Z. Wang, Y. Su, D. Wang, and Y. Dong, “A modified Halpern-type iteration algorithm for a family
of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces,”
Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2364–2371, 2011.

[13] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


