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We use wavelet multiresolution decomposition and cross-wavelet analysis to reveal certain
properties in financial data related to mortgages to households and gross domestic product data
in Spain. Wavelet techniques possess many desirable properties, some of which are useful as a
vehicle for analysing economic and financial data. In our case, wavelets are useful for drawing
conclusions both in the time and frequency domains and for obtaining information on the different
phases through which the study variables progress.

1. Introduction

The literature on wavelets has expanded rapidly over the past 20 years. Many papers have
been published using wavelet methodology in a wide variety of disciplines. Applications
using wavelets are prominent in astronomy, engineering, medicine, physics, and many other
fields of study, including finance and economics in recent years, for instance, see [1–20].

The goal of this paper is to illustrate for scenario testing the application of the wavelet
technique, bearing the drawbacks in mind, in the multiresolution analysis for modelling
financial data related to mortgages to households (MH) and gross domestic product (GDP)
in order to obtain time and frequency information simultaneously.

The examples chosen reveal the importance of being able to decompose the original
signal into a trend component and various detail components, which allow the different
frequencies and their time model to be observed separately.
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The type of data involved (daily, weekly, monthly, quarterly, annual, or other
frequency schedules) is vital when drawing conclusions. These can be modelled using
wavelet decompositions to yield conclusions regarding frequencies that cannot be observed
directly in the original series. When highly disaggregated series (data with an hourly or
higher frequency) are available, however, it is also of interest to aggregate data in order to
obtain another type of periodicity (weekly, monthly, etc.).

Wavelets are certain families of orthogonal or quasi-orthogonal functions that possess
many desirable properties, some of which are useful in economics and finance, but many
of which are not. For example, in [17], Ramsey and Lampart explore four ways in
which wavelets might be used to enhance the empirical toolkit in economics and finance
(exploratory analysis, density estimation and local inhomogeneity, time scale decomposition,
forecasting, etc.). The drawbacks involve the sample characteristics and potential numerical
instabilities. Wavelet-based techniques rely on equally spaced data, a condition which does
not always hold in economic series. Even when it does, the cycles over which the economic
activity takes placemay not be homogeneous with respect to the type of data. Moreover, some
techniques based on wavelets require dyadic samples and a certain number of initial values
in order to begin the calculation process. Certain instabilities can also arise when attempting
to decompose a signal using very high-order polynomials, due to the requirement to calculate
their roots.

This paper has been organised into the following sections: Sections 2 and 3 offer a
brief summary of the methodology we employ in the data to establish the contrast among
the three types of domains: time, frequency, and scale. The wavelet technique, when applied
to the scale domain, can be understood as a necessary expansion of the Fourier and short-
time Fourier techniques because the functions used in wavelet theory are flexible enough to
be adapted to different frequency bandwidths by intervals. Given their practical interest, we
focus on discrete and continuous wavelet filters, specifically those devised by Daubechies
and Morlet [6, 10], chosen specifically for their theoretical properties.

In Section 4.1 we use MATLAB [12] and analyse the methodology by focusing on
practical cases involving MH monthly data in Spain and in one of its provinces, Santa Cruz
de Tenerife. Finally, in Section 4.2, we analyse the relationship between changes in GDP and
MH in both cases from 1995. The calculations are both done using the MATLAB Toolbox in
[4].

2. Multiresolution Decomposition

Next, we provide a brief theoretical overview that is available in more detail in [8],
among others. Our contribution focuses on the practical interpretation of the multiresolution
decomposition (MRD) of a discrete signal for the financial data selected.

In general, the MRD of the variable or signal st at the level N is given by
{aN, dN, dN−1, . . . , d1} such that st = aN + dN + dN−1 + · · · + d1:

st = a1
︸︷︷︸

a2
︸︷︷︸

. . .
︸︷︷︸

aN−1
︸︷︷︸

aN+dN

+dN−1

+d2

+ d1

(2.1)
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aN is called the trend signal at levelN and dn is the detail signal at level n constructed
using the father (or scaling function, representing the smooth, trend, or low-frequency) and
mother (representing the detailed or high-frequency) wavelets, respectively.

In economics, st is normally a discrete real time signal. Then, we can directly use a
discrete wavelet transform (DWT) or the continuous wavelet transform (CWT), if we assume
a continuous signal x = x(t) approximating st, under certain conditions.

In general, given a particular wavelet ψ the CWT is a function of two variablesW(u, s)
and is obtained by projecting the function x via

Wx,ψ(u, s) =
∫∞

−∞
x(t)ψu,s(t)dt, (2.2)

where ψu,s(t) = (1/
√

|s|)ψ((t−u)/s) is the translated (via u) and dilated (via s) version of the
original wavelet ψ. The variables u and s represent, respectively, the position of the wavelet
ψ in the time and frequency domains. This transform depicts the local variance of the time
series x.

Taking into account the properties of the Fourier Transform, Wx,ψ(u, s) may also be
represented in the frequency domain, as

Wx(u, s) =

√

|s|
2π

∫∞

−∞
Ψ∗(sα)X(α)eiωudα, (2.3)

whereΨ andX are the Fourier Transform of ψ and x, respectively,Ψ∗ symbolizes the complex
conjugate of Ψ and i =

√−1. Then, the wavelet power spectrum is defined as |Wx(u, s)|2.
Then, we may view the DWT as a discretization of the CWT through sampling

specific wavelet coefficients. We can see that the Fourier transform is a particular case when
ψu,s(t) = ψ(t − u) = e−2πtui (s = 1). The classical DWT is obtained from CWT using wavelets
with s = 2−j and u = k2−j where j and k are integers (dyadic basis) representing the set of
discrete translation and discrete dilations. The values

ψu,s(t) = 2j/2ψ
(

2j t − k
)

, s = 2−j , u = 2−jk (2.4)

for all integers j and k produce an orthogonal basis with a dyadic dilation.
In the wavelet transform, the scale, or dilation, operation is defined to preserve energy

and the quality filter is the ratio of its peak energy to its bandwidth.
The interpretation of the MRD using the DWT and its inverse (IDWT) is of interest in

terms of understanding the frequency at which activity in the time series occurs.
In our study, we will use MRD obtained with the Daubechies wavelets [5, 6] to

improve on the frequency-domain characteristics of the Haar wavelets and which may still
be interpreted as generalized differences of adjacent averages. We will use the discrete and
continuous versions.
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3. Cross-Wavelet Analysis: Transform, Power,
Coherency, and Phase-Difference

The cross-wavelet analysis is used in many applications to analyse, detect and quantify
relationships between two time series. The concepts of cross-wavelet power, wavelet
coherency and wavelet phase-difference are natural generalizations of the basic wavelet
analysis tools that enable us to appropriately deal with the time-frequency dependencies
between two time series.

Following the notation and definition in [2], for specific values of the arguments u and
s, the cross-wavelet transform of two series, x and y is defined as

Wxy =WxW
∗
y (3.1)

and the cross-wavelet power as |Wxy|, which can be interpreted as the local covariance
between these time series at each time and frequency. Note that when y = x, we obtain the
wavelet power spectrum.

If S denotes a smoothing operator in both time and scale, the complex wavelet
coherency between x and y is defined by

S
(

Wxy

)

[

S
(

|Wx|2
)

S
(
∣

∣Wy

∣

∣
2
)]1/2

. (3.2)

Smoothing is necessary because otherwise, coherency would be identically one at all scales
and times. Then, their module is called the wavelet coherency and their angle is called the
phase-difference. On the one hand, a phase-difference of zero indicates that the time series
move together at the specified time-frequency; a phase-difference located in the first quadrant
indicates that the series move in phase, but the time series y leads x, while one located in the
fourth quadrant indicates that x is leading. On the other hand, a phase-difference of π or
–π indicates an anti-phase relationship, a phase-difference located in the second quadrant
indicates that the series move out of phase, but the time series x leads y, while if located in
the third quadrant it indicates that y is leading.

In this paper, we will use the Morlet wavelets to illustrate these concepts in our
financial application.

4. Working with Financial Data

The data we will study are available from Spain’s National Statistics Institute (INE,
http://www.ine.es/) and comprise the following series.

(i) Mortgages to households monthly data in Spain (MHS) and Santa Cruz de Tenerife,
Canary Islands (MHSCT). 1995M1–2010M9.

(ii) Gross domestic product (GDP) quarterly data in Spain. Income (current prices)
1995Q1–2010Q3.
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So as to take advantage of all the available data and be able to properly use the two
series simultaneously, we arranged the data as follows.

(i) Since in 2003 the INEmodified themethodology used to compile MHS andMHSCT
data, we have two series for each case, 1995M1–2003M12 and 2003M1–2010M9,
each of which relies on a different methodology. In order to use all of the available
data while maintaining continuity in the time series data, wemodified the 1995M1–
2002M12 series by using a common statistical technique that relies on using a
linking factor to account for the combination of the two series for each case.
However, for these data series the INE does not specify the evaluated linking factor
for the methodological change, only the methodology used. That is to say, said
linking factor was calculated for each case as the ratio between the sum of the 2003
monthly data in the new series and the same one in the old series, resulting in a
linking factor of 1.298853 for MHS and 1.126480 for MHSCT, respectively.

(ii) Since the available GDP data are quarterly, and so as to use them alongside the
available MH monthly data without aggregating data, we interpolated the GDP
series to yield a theoretical GDP monthly series.

The interpolation leads to a more suitable sample size to data series in keeping with
[15]. Thus, we used two series containing 189 data points each.

The examples to be considered involve series of varying natures which exhibit a
certain periodic behaviour. We use continuous wavelets to reveal the different cycles that are
hidden within the data and to detect certain irregularities in the periodicity as well as one-
time exchanges. The calculations and graphs of the MRD using Daubechies wavelets (db3)
are done on MATLAB with WAVELETS 1-D and those corresponding to the cross-wavelet
analysis between time series on a modified MATLAB Toolbox of the so-called ASToolbox in
[4]. The calculation using continuous wavelet analysis requires more computational time but
yields graphs and results that are easier to interpret.

We will use two standard economic data types: first the percentage rates or INDEX as
a ratio between two variables (Section 4.1), and growth rates as a measure of the evolution
of a variable over time (Section 4.2). In Section 4.1, Fast Fourier Transform (FFT) and
Daubechies discrete wavelets (db3) are used for data modeling. Next, a sensitivity analysis
is performed by testing four different assumptions regarding the short-term future, this time
using continuous wavelets to facilitate a visual comparison between different models of these
assumptions.

Since we will use the word index simultaneously in both a financial and mathematical
context, we will write it in uppercase letters when referring to the economic variable
(growth rate or INDEX) and in lowercase letters when referring to the mathematical variable
(frequency index).

4.1. Multiresolution Decomposition into INDEX Variables Using MH and
GDP Monthly Data

In this section we illustrate the assumptions made and compare different cases using several
figures.

Case 1. MRD to the Spain INDEX between MHS and GDP monthly data.
Figure 1(a) shows the data for the INDEX=MHS/GDP for Spain, as well as the

approximations we obtained using the Daubechies discrete wavelet filter (db3) at levels 2
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Figure 1: (a) db3 filter of Spain INDEX, (b) detail series and FFT of Spain INDEX.

and 3. Figure 1(b) shows the details for the first three levels along with their corresponding
Fast Fourier Transforms (FFT). The most relevant frequency indices are indicated in Table 1.

Next, using the Daubechies continuous wavelet filter (db3), we illustrate in Figure 2
the coefficients of the decomposition on different scales. Taking into account the information
in [12], we observe an increase in energy in the second part of the range that is independent
of the typical boundary instability problems.

Keeping in mind the reliability limitations of any study on statistical predictions, we
next conduct a sensitivity analysis using four assumptions and show the ability of MRD
to highlight differences based on the assumptions. We then compare each assumption with
known data from the 2010M10. Note that Figures 3 to 7 below are identical to Figure 2 until
2010M10.
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Figure 2: Daubechies continuous wavelet db3 filter of Spain INDEX.

Table 1: Relevant frequency indices of Spain INDEX.

db3 Irregularities or one-time exchanges Most relevant frequency index Monthly period
d1 After 60, the most important one 129 48 4 months
d2 After 60 the most important one 134 48 4 months

First assumption: We consider two different periods in the future. Current low credit
levels are maintained during the first period (Figure 3(a)), and an effort is made in the second
transition period to a higher stable level (Figure 3(b)). The most relevant frequency indices
are indicated in Tables 2 and 3, respectively.

Second assumption: In the future, credit levels continue to be cut for some time.
We observe in Figure 4 the newmodel. The most relevant frequency indices are equals

to Table 2.
Third assumption: In the future, return to high credit levels through refinancing.

Now, we observe in Figure 5 the new model. The most relevant frequency indices are
equal to Table 2.

Fourth assumption: In the future, corrective measures are taken following the initial
rise in Spain INDEX. The most relevant frequency indices are indicated in Table 4.

Note that the relevant index in d2, frequency index 65, is the same in every case, though
significant differences are evident in the global model due to different assumptions at the end
of the interval (compare the coefficients at the different scales from 1 to 64 indicated on the
vertical axis in Figures 3–6).

In order to assess these assumptions, in Figure 7 we show the decomposition that is
obtained for the aforementioned series until 2011M2, noting that the new data for the period
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Figure 3: (a) First assumption. Inclusion of the first period, (b) first assumption. Inclusion of the first and
second periods.

Table 2: First assumption. Relevant frequency indices of Spain INDEX after first period added in the
sensitivity analysis.

db3 Irregularities or one-time exchanges Most relevant frequency Index Monthly period
d1 Central interval 65 4 months
d2 Central interval 65 4 months

Table 3: First assumption. Relevant frequency indices of Spain INDEX after first and second periods added
in the sensitivity analysis.

db3 Irregularities or one-time exchanges Most relevant frequency index Monthly period
d1 First half 107 4 months
d2 First half 107 4 months

2010M10–2011M2 more closely agree with the start of the trace for the second and third
assumptions (compare Figures 4, 5, and 7).

Case 2. MRD to the SCTfe INDEX between MHSCT and GDP monthly data.
We now consider an analogous study with MHSCT, that is, using a similar INDEX for

the Spanish province of Santa Cruz de Tenerife SCTfe INDEX=MHSCT/GDP, over the period
1995M1–2010M9 (Figure 8(a)).

Figure 8(b) shows the details and the FFT of SCTfe INDEX. Note the significant
differences with the general case for Spain. In particular, many more irregularities were
detected at the provincial level than nationally (compare Tables 1 and 5).
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Figure 4: Second assumption.
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Figure 5: Third assumption.
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Figure 6: Fourth assumption.

Table 4: Fourth assumption. Relevant frequency indices of Spain INDEX after data added in the sensitivity
analysis.

db3 Irregularities or one-time exchanges Most relevant frequency index Monthly period
d1 129 90 3 months
d2 Central interval 65 4 months

These differences suggest the convenience of showing the new SCTfe/Spain INDEX
to compare both variables. Its decomposition is shown in Figure 9.

Furthermore, if we resort to continuous wavelets and study the coefficients of the
decomposition, we obtain Figure 10, which shows an increase in the relative density starting
in 2004. Table 6 includes the most relevant frequency indices.

4.2. Comparative Analysis. Quarterly Growth Rates of MHS and GDP

Next, we analyse two new financial variables: QG MHS and QG GDP, that is, quarterly
growth rates of MHS and GDP obtained from monthly data series in order to compare our
results with [18] relative to the German case. The data are shown in Figure 11.

Figures 12 and 13 show the percentage of energy for each wavelet coefficient using db3
and the wavelet power spectrum, respectively, which may be more informative.

The change in the dynamics of time series QGMHS and QG GDP is nearly impossible
to spot in Figure 13(a). Furthermore, if we use traditional spectral analysis, the information
on the dynamic response in the time domain is completely lost (Figure 13(d)). Comparing
with Figure 13(c) for each time series, we observe that spectral analysis gives us essentially
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Figure 7: Comparison of data with theoretical assumptions.
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Figure 8: (a) db3 filter of SCTfe INDEX, (b) detail series and FFT of SCTfe INDEX.
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Table 5: Relevant frequency indices of Spain INDEX and SCTfe INDEX. Comparison.

Spain Santa Cruz de Tenerife

db3
Irregularities
or one-time
exchanges

Most relevant
frequency
index

Monthly
period

Irregularities or
punctual
exchanges

Most relevant
frequency Index Monthly period

d1 120–160 46 4 100–160 64, 89 2–4
d2 90–160 46 4 100–150 31, 46 4–6
d3 88–180 16 12 100–180 16 12
d4 92, 172 8, 10, 12 15–24 100–160 12 15

0 20 40 60 80 100 120 140 160 180 200
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Index
a2

a3

(a)

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200

−0.01

0

0.01

−5

0

5

0 50 100

0 50 100

0 50 100

0

0.005

0.01

0

5

×10−3

0

2

4

−0.01

0

0.01

×10−3

×10−3

d
1

d
3

d
2

(b)

Figure 9: db3 filter, detail series, and FFT of SCTfe/Spain INDEX.
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Figure 10: Daubechies continuous wavelet db3 filter of SCTfe/Spain INDEX.

Table 6: Relevant frequency indices of SCTfe/Spain INDEX.

db3 Irregularities or one-time exchanges Most relevant frequency index Monthly period

d1
From 35 to 59 85 2 months
From 159

d2 38 32 6 months

the same information as the global wavelet power spectrum, which is an average, over time,
of the wavelet power spectrum.

Figure 13(b) show the wavelet power spectra themselves, an important advantage of
wavelet analysis over spectral analysis. On the horizontal axis we have the time dimension.
The vertical axis gives us the periods. The power is given by the colour. The colour code
indicates ranges of power from blue (low power) to red (high power). The white lines show
the maxima of the undulations of the wavelet power spectrum, thus giving us an estimate of
the cycle period. In the first case, the wavelet power spectrum of MHS varies considerably
over time, especially after the year 2000. The maximum of the spectrum, indicated by white
lines, has periodicities of around 4.5 and 7 years. We observe a white line on period seven
across the entire horizontal axis, meaning that period seven has a permanent cycle, a cycle
that intensified starting in the year 2000. For the GDP in the second case, the eight-year
wavelet power spectrum shows also significant effects at higher frequencies after 2005.
Comparing the power spectra of time series QG MHS and QG GDP might support similar
conclusions as [19] for the German case, in the sense that there are differences in the relevant
periodicities of MHS and GDP.

The wavelet cross spectrum (Figure 14) and coherency (Figure 15) provide wavelet-
based alternatives for the Fourier-based cross spectrum and coherency. These wavelet
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estimators are suitable for non-stationary signals. Using a complex-valued analysing wavelet,
we can also examine intervals in the time-scale plane where the two time series exhibit
common phase behaviour. See, for example, [2] for more detail. Wavelet coherency can be
interpreted as the local squared correlation coefficient in the time-scale plane. Figure 15(b)
shows the wavelet coherency time-period for easier interpretation. We observe two different
coherency intervals between these two time series. The first time part exhibits strong
coherence to large periods and low coherence for small periods. In the second time part there
is a strong coherency for nearly all periods.

Figures 15(c)-15(d) illustrate the phases and phase-difference computed for two
different frequency bands (1∼1.5 frequency band in (c) and 5∼6 frequency band in (d)). The
green and blue lines represent the GDP and MH phases, respectively. The red line represents
the phase-difference. Note that the series are in phase, with the coherency being higher for
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Figure 13: Wavelet Power Spectrum of quarterly change of MHS and GDP.
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Figure 14: Wavelet cross spectrum between quarterly change of MHS and GDP.

small frequency bands. In the 1∼1.5 frequency band, the fact that the small cycles are in phase
(positively correlated) is evidenced by the phase-difference, which is consistently situated
between –π/2 and π/2. Finally, we can see in this band that the GDP cycle was leading from
1995 to 2007 and lagging from 2007, as evidenced by the positive phase difference in the first
interval and the negative phase difference in the second. Looking at the 5∼6 frequency band,
we note that the series are nearly out of phase around the year 2000 (negatively correlated),
with the GDP leading in every period.
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Figure 15: Wavelet coherency between MHS and GDP.

5. Conclusions

In this paper, we have used wavelets to illustrate the relationship between MH and GDP in
Spain and in one of its provinces, Santa Cruz de Tenerife. We believe the wavelet technique is
appropriate for designing a credit policy based on GDP data at both the national and regional
level.

Wavelets, like all spectral methods, can distinguish between different relationships
that occur at the same time but at different frequencies. However, they are also suited to
capturing structural breaks and transient stationary and non-stationary relationships.

In general, this tool is useful for all types of time-data comparisons when we are
interested in drawing conclusions in both the time and frequency domains, as well as in
obtaining information on the different phases through which the study variables progress.
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