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Robust force/motion control strategies are presented for mobile manipulators under both holon-
omic and nonholonomic constraints in the presence of uncertainties and disturbances. The controls
are based on structural knowledge of the dynamics of the robot, and the actuator dynamics is
also taken into account. The proposed control is robust not only to structured uncertainty such
as mass variation but also to unstructured one such as disturbances. The system stability and the
boundness of tracking errors are proved using Lyapunov stability theory. The proposed control
strategies guarantee that the system motion converges to the desired manifold with prescribed
performance. Simulation results validate that not only the states of the system asymptotically
converge to the desired trajectory, but also the constraint force asymptotically converges to the
desired force.

1. Introduction

Mobile manipulators refer to robotic manipulators mounted on mobile platforms. Such sys-
tems combine the advantages of mobile platforms and robotic arms and reduce their draw-
backs [1–4]. For instance, the mobile platform extends the arm workspace, whereas the
arm offers much operational functionality. Applications for such systems could be found in
mining, construction, forestry, planetary exploration, teleoperation, and military [5–11].

Mobile manipulators possess complex and strongly coupled dynamics of mobile
platforms and manipulators [12–16]. A control approach by nonlinear feedback linearization
was presented for the mobile platform so that the manipulator is always positioned at
the preferred configurations measured by its manipulability [17]. In [14], the effect of the
dynamic interaction on the tracking performance of a mobile manipulator was studied, and
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nonlinear feedback control for the mobile manipulator was developed to compensate the
dynamic interaction. In [18], a basic framework for the coordination and control of vehicle-
arm systems was presented, which consists of two basic task-oriented control: end-effector
task control and platform self-posture control. The standard definition of manipulability was
generalized to the case of mobile manipulators, and the optimization of criteria inherited
from manipulability considerations were given to generate the controls of the system when
its end-effector motion was imposed [19]. In [20], a unified model for mobile manipulator
was derived, and nonlinear feedback was applied to linearize and decouple the model, and
decoupled force/position control of the end-effector along the same direction for mobile
manipulators was proposed and applied to nonholonomic cart pushing. The previously
mentioned literature concerning with control of the mobile manipulator requires the precise
information on the dynamics of the mobile manipulator; there may be some difficulty in
implementing them on the real system in practical applications.

Different researchers have investigated adaptive controls to deal with dynamics
uncertainty of mobile manipulators. Adaptive neural-network- (NN-) based controls for
the arm and the base had been proposed for the motion control of a mobile manipulator
[21, 22]; each NN control output comprises a linear control term and a compensation term for
parameter uncertainty and disturbances. Adaptive control was proposed for trajectory/force
control of mobile manipulators subjected to holonomic and nonholonomic constraints with
unknown inertia parameters [23, 24], which ensures the state of the system to asymptotically
converge to the desired trajectory and force. The principal limitation associated with these
schemes is that controllers are designed at the velocity input level or torque input level, and
the actuator dynamics are excluded.

As demonstrated in [25–27], actuator dynamics constitute an important component of
the complete robot dynamics, especially in the case of high-velocity movement and highly
varying loads. Many control methods have therefore been developed to take into account
the effects of actuator dynamics (see, e.g., [28–30]). However, the literature is sparse on the
control of the nonholonomic mobile manipulators including the actuator dynamics. In most
of the research works for controlling mobile manipulators, joint torques are control inputs
though in reality joints are driven by actuators (e.g., DCmotors), and therefore using actuator
input voltages as control inputs is more realistic. To this effect, actuator dynamics is combined
with the mobile manipulator’s dynamics in this paper.

This paper addresses the problem of stabilization of force/motion control for a class
of mobile manipulator systems with both holonomic and nonholonomic constraints in the
parameter uncertainties and external disturbances.

Unlike the force/motion control presented in [31–37], which is proposed for the
mechanical systems subject to either holonomic or nonholonomic constraints, in our paper,
the control is to deal with the system subject to both holonomic and nonholonomic con-
straints. After the dynamics based on decoupling force/motion is first presented, the robust
motion/force control is proposed for the system under the consideration of the actuator
dynamics uncertainty to complete the trajectory/force tracking. The paper hasmain contribu-
tions listed as follows.

(i) Decoupling robust motion/force control strategies are presented for mobile
manipulator with both holonomic and nonholonomic constraints in the parameter
uncertainties and external disturbances, and nonregressor-based control design is
developed in a unified manner without imposing any restriction on the system
dynamics.
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(ii) The actuators (e.g., DC motor) dynamics of both the mobile platform and the arm
are integrated with mobile manipulator dynamics and kinematics so that the actu-
ator input voltages are the control inputs thus making the system more realistic.

Simulation results are described in detail that show the effectiveness of the proposed
control law.

The rest of the paper is organized as follows. The system description of mobile
manipulator subject to nonholonomic constraints and holonomic is briefly described in
Section 2. Problem statement for the system control is given in Section 4. The main results of
robust adaptive control design are presented in Section 5. Simulation studies are presented by
comparison between the proposed robust control with nonrobust control in Section 6. Conc-
luding remarks are given in Section 7.

2. System Description

Consider an n DOF mobile manipulator with nonholonomic mobile base. The constrained
mechanical system can be described as

M
(
q
)
q̈ + C

(
q, q̇

)
q̇ +G

(
q
)
+ d(t) = B

(
q
)
τ + f, (2.1)

where q = [q1, . . . , qn]
T ∈ Rn denote the generalized coordinates; M(q) ∈ Rn×n is the sym-

metric bounded positive definite inertia matrix; C(q̇, q)q̇ ∈ Rn denotes the Centripetal and
Coriolis torques; G(q) ∈ Rn is the gravitational torque vector; d(t) denotes the external
disturbances; τ ∈ Rm is the control inputs; B(q) ∈ Rn×m is a full rank input transformation
matrix and is assumed to be known because it is a function of fixed geometry of the system;
f ∈ Rm denotes the vector of constraint forces; J ∈ Rn×m is Jacobian matrix; λ = [λn, λh] ∈ Rm

is Lagrange multipliers corresponding to the nonholonomic and holonomic constraints.
The generalized coordinates may be separated into two sets q = [qv, qa]

T , where qv ∈
Rv describes the generalized coordinates for the mobile platform, qa ∈ Rr is the coordinates
of the manipulator, and n = v + r.

Assumption 2.1 (see [38–40]). The mobile manipulator is subject to known nonholonomic
constraints.

Assumption 2.2. The system (2.8) is subjected to k independent holonomic constraints, which
can be written as

h
(
q
)
= 0, h

(
q
) ∈ Rk, (2.2)

where h(q) is full rank, then J(q) = ∂h/∂q.

Remark 2.3. In actual implementation, we can adopt the methods of producing enough
friction between the wheels of the mobile platform and the ground such that this assumption
holds [41–43].
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The vehicle is subjected to nonholonomic constraints, the l nonintegrable and inde-
pendent velocity constraints can be expressed as

A
(
qv
)
q̇v = 0, (2.3)

where A(qv) = [AT
1 (qv), . . . , A

T
l (qv)]

T : Rv → Rl×v is the kinematic constraint matrix which
is assumed to have full rank l. In the paper, the vehicle is assumed to be completely non-
holonomic. The effect of the constraints can be viewed as a restriction of the dynamics on the
manifold Ωn as

Ωn =
{(

qv, q̇v
) | A(

qv
)
q̇v = 0

}
. (2.4)

The generalized constraint forces for the nonholonomic constraints can be given by

fn = AT(qv
)
λn. (2.5)

Assume that the annihilator of the codistribution spanned by the covector fields
A1(qv), . . . , Al(qv) is a (v− l)-dimensional smooth nonsingular distributionΔ on Rv. This dis-
tribution Δ is spanned by a set of (v − l) smooth and linearly independent vector fields
H1(qv), . . . ,Hv−l(qv); that is, Δ = span{H1(qv), . . . ,Hv−l(q)}, which satisfy, in local coordi-
nates, the following relation:

HT(qv
)
AT(qv

)
= 0, (2.6)

where H(qv) = [H1(qv), . . . ,Hnv−l(qv)] ∈ Rv×(v−l). Note that HTH is of full rank. Constraints
(2.3) imply the existence of vector η̇ ∈ Rv−l [44], such that

q̇v = H
(
qv
)
η̇. (2.7)

Considering the nonholonomic constraints (2.3) and its derivative, the dynamics of
mobile manipulator can be expressed as

[
HTMvH HTMva

MavH Ma

][
η̈
q̈a

]
+
[
HTMvḢ +HTCvH HTCva

MavḢ + CavH Ca

][
η̇
q̇a

]
+
[
HTGv

Ga

]
+
[
HTdv

da

]

=
[
HTBvτv
Baτa

]
+
[
0 0
Jv Ja

]T[
0
λh

]
.

(2.8)

From Assumption 2.2, the holonomic constraint force fh can be converted to the joint
space as fh = JTλh. Hence, the holonomic constraint on the robot’s end effector can be
viewed as restricting only the dynamics on the constraint manifold Ωh defined by Ωh =
{(q, q̇) | h(q) = 0, J(q)q̇ = 0}. The vector qa can be further rearranged and partitioned
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into qa = [q1a, q
2
a]

T ; q1a ∈ Rr−k describes the constrainedmotion of themanipulator, and q2a ∈ Rk

denotes the remaining joint variable. Then,

J
(
q
)
=

[
∂h

∂η
,
∂h

∂q1a
,
∂h

∂q2a

]

. (2.9)

From [45], it could be concluded q is the function of ζ = [η, q1a]
T , that is, q = q(ζ), and we

have q̇ = L(ζ)ζ̇, where L(ζ) = ∂q/∂ζ, q̈ = L(ζ)ζ̈ + L̇(ζ)ζ̇, and L(ζ), J1(ζ) = J(q(ζ)) satisfy the
relationship

LT (ζ)J1T (ζ) = 0. (2.10)

The dynamic model (2.8), when it restricted to the constraint surface, can be transformed into
the reduced model:

M1L(ζ)ζ̈ + C1ζ̇ +G1 + d1(t) = u + J1Tλh, (2.11)

where

M1 =
[
HTMvH HTMva

MavH Ma

]
,

C1 =
[
HTMvḢ HTMva

MavH Ma

]
L̇(ζ) +

[
HTMvḢ +HTCvH HTCva

MavḢ + Cav Ca

]
L(ζ),

G1 =
[
HTGv

Ga

]
, d1(t) =

[
HTdv

da

]
,

u = B1τ, B1 =
[
HTBv 0

0 Ba

]
, ζ =

[
η
q1a

]
.

(2.12)

Multiplying LT by both sides of (2.11), we can obtain

ML(ζ)ζ̈ + CL

(
ζ, ζ̇

)
ζ̇ +GL + dL(t) = LTB1τ. (2.13)

The force multipliers λh can be obtained by (2.11):

λh = Z(ζ)
(
C1(ζ, ζ̇

)
ζ̇ +G1 + d1(t) − B1τ

)
, (2.14)

where ML = LTM1L, CL = LTC1, GL = LTG1, Z = (J1(M1)−1J1T )−1J1(M1)−1.

Property 1. The matrix ML is symmetric and positive definite.

Property 2. The matrix ṀL − 2CL is skew symmetric.
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Property 3 (see [46]). For holonomic systems, matrices J1(ζ), L(ζ) are uniformly bounded and
uniformly continuous if ζ is uniformly bounded and continuous, respectively.

Property 4. There exist some finite positive constants ci > 0 (1 ≤ i ≤ 4) and finite nonnegative
constant ci ≥ 0 (i = 5) such that for all ζ ∈ Rn, for all ζ̇ ∈ Rn, ‖ML(ζ)‖ ≤ c1, ‖CL(ζ, ζ̇)‖ ≤
c2 + c3‖ζ̇‖, ‖GL(ζ)‖ ≤ c4, and supt≥0‖dL(t)‖ ≤ c5.

3. Actuator Dynamics

The joints of the mobile manipulators are assumed to be driven by DC motors. Consider the
following notations used to model a DC motor: ν ∈ Rm represents the control input voltage
vector; I denotes an m-element vector of motor armature current; KN ∈ Rm×m is a positive
definite diagonal matrix which characterizes the electromechanical conversion between
current and torque; La = diag[La1, La2, La3, . . . , Lam], Ra = diag[Ra1, Ra2, Ra3, . . . , Ram], Ke =
diag[Ke1, Ke2, Ke3, . . . , Kem], ω = [ω1, ω2, . . . , ωm]

T represent the equivalent armature induct-
ances, resistances, back EMF constants, angular velocities of the driving motors, respectively;
Gr = diag(gri) ∈ Rm×m denotes the gear ratio for m joints; τm are the torque exerted by the
motor. In order to apply the DC servomotors for actuating an n-DOF mobile manipulator,
assuming no energy losses, a relationship between the ith joint velocity q̇i and the motor shaft
velocity ωi can be presented as gri = ωi/q̇i = τi/τmi with the gear ratio of the ith joint gri, the
ith motor shaft torque τmi, and the ith joint torque τi. The motor shaft torque is proportional
to the motor current τm = KNI. The back EMF is proportional to the angular velocity of the
motor shaft; then we can obtain

La
dI

dt
+ RaI +Keω = v. (3.1)

In the actuator dynamics (3.1), the relationship between ω and ζ̇ is dependent on the type of
mechanical system and can be generally expressed as

ω = GrTζ̇. (3.2)

The structure of T depends on the mechanical systems to be controlled. For instance, in the
simulation example, a two-wheel differential drive 2-DOF mobile manipulator is used to
illustrate the control design. From [47], we have

v =

(
rθ̇l + rθ̇r

)

2
,

θ̇ =

(
rθ̇r − rθ̇l

)

2l
,

θ̇1 = θ̇1,

θ̇2 = θ̇2,

(3.3)
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Figure 1: The 2-DOF mobile manipulator.

where θ̇l and θ̇r are the angular velocities of the two wheels, respectively, and v is the linear
velocity of the mobile platform, as shown in Figure 1. Since ẏ = v cos θ, we have

[
θ̇l θ̇r θ̇1 θ̇2

]T = T
[
ẏ θ̇ θ̇1 θ̇2

]T
,

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
r cos θ

l

r
0 0

1
r cos θ

− l

r
0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
(3.4)

where r and l are shown in Figure 1.
Eliminating ω from the actuator dynamics (3.1) by substituting (3.2), one obtains

LTB1GrKNI = ML(ζ)ζ̈ + CL

(
ζ, ζ̇

)
ζ̇ +GL + dL(t), (3.5)

λh = Z(ζ)
(
C2ζ̇ +G2 + d2(t) − B1GrKNI

)
, (3.6)

ν = La
dI

dt
+ RaI +KeGrTζ̇. (3.7)

Until now we have brought the kinematics (2.3), dynamics (3.5), (3.6) and actuator
dynamics (3.7) of the considered nonholonomic system from the generalized coordinate
system q ∈ Rn to feasible independent generalized velocities ζ ∈ Rn−l−k without violating
the nonholonomic constraint (2.3).
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4. Problem Statement

Since the system is subjected to the nonholonomic constraint (2.3) and holonomic constraint
(2.2), the states qv, q1a, q

2
a are not independent. By a proper partition of qa, q2a is uniquely

determined by ζ = [η, q1a]
T . Therefore, it is not necessary to consider the control of q2a.

Given a desired motion trajectory ζd(t) = [ηdq1a
d]T and a desired constraint force fd(t),

or, equivalently, a desired multiplier λh(t), the trajectory and force tracking control is to
determine a control law such that for any (ζ(0), ζ̇(0)) ∈ Ω, ζ, ζ̇, λ asymptotically converge
to a manifold Ωd specified as Ω where

Ωd =
{(

ζ, ζ̇, λh
) | ζ = ζd, ζ̇ = ζ̇d, λ = λd

}
. (4.1)

The controller design will consist of two stages: (i) a virtual adaptive control input Id

is designed so that the subsystems (3.5) and (3.6) converge to the desired values, and (ii) the
actual control input ν is designed in such a way that I → Id. In turn, this allows ζ − ζd and
λ − λd to be stabilized to the origin.

Assumption 4.1. The desired reference trajectory ζd(t) is assumed to be bounded and uni-
formly continuous and has bounded and uniformly continuous derivatives up to the second
order. The desired Lagrangian multiplier λd(t) is also bounded and uniformly continuous.

5. Robust Control Design

5.1. Kinematic and Dynamic Subsystems

Let eζ = ζ − ζd, ζ̇r = ζ̇d − kζeζ, r = ėζ + kζeζ with kζ > 0, eβ = λ − λd. A decoupled control
scheme is introduced to control generalized position and constraint force separatively.

Consider the virtual control input I is designed as

I = K−1
NG−1

r B1−1τ. (5.1)

Let the control u be as the form

u = L+Tua − J1Tub,

ua = B1GrKNaIa,

ub = B1GrKNbIb,

(5.2)

where ua, Ia ∈ Rn−l−k and ub, Ib ∈ Rk and L+T = (LTL)−1LT . Then, (2.13) and (2.14) can be
changed to

ML(ζ)ζ̈ + CL

(
ζ, ζ̇

)
ζ̇ +GL + dL(t) = B1GrKNaIa, (5.3)

Z(ζ)
(
C1(ζ, ζ̇

)
ζ̇ +G1 + d1(t) − L+TB1GrKNaIa

)
+ B1GrKNbIb = λh. (5.4)
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Consider the following control laws:

B1GrKNaI
d
a = −Kpr −Ki

∫
rdt − rΦ2

Φγ(‖r‖) + δ
, (5.5)

Φ = CTΨ, (5.6)

B1GrKNbI
d
b =

χ2

χ + δ
+ λdh −Kfeλ, (5.7)

χ = c1‖Z(ζ)‖
∥
∥
∥L+T

∥
∥
∥
∥
∥
∥
∥
d

dt

[
ζ̇d
]∥∥
∥
∥, (5.8)

where C =
[
c1 c2 c3 c4 c5

]
; Ψ =

[ ‖(d/dt)[ζ̇r]‖ ‖ζ̇r‖ ‖ζ̇‖ ‖ζ̇r‖ 11
]T ; Kp,Ki,Kf are

positive definite. γ(‖r‖) can be defined as follows: if ‖r‖ ≤ ρ, γ(‖r‖) = ρ, else γ(‖r‖) = ‖r‖, ρ
is a small value, δ(t) is a time-varying positive function converging to zero as t → ∞, such
that

∫ t
0 δ(ω)dω = a < ∞. There are many choices for δ(t) that satisfies the condition.

5.2. Control Design at the Actuator Level

Till now,we have designed a virtual controller I and ζ for kinematic and dynamic subsystems.
ζ tending to ζd can be guaranteed, if the actual input control signal of the dynamic system I
be of the form Id which can be realized from the actuator dynamics by the design of the actual
control input ν. On the basis of the above statements we can conclude that if ν is designed in
such a way that I tends to Id, then (ζ − ζd) → 0 and (λ − λd) → 0.

Defining I = eI + Id and substituting I and ζ̇ of (3.7) one gets

LaėI + RaeI +KeGrTėζ = −Laİ
d − RaI

d −KeGrTζ̇
d + ν. (5.9)

The actuator parameters KN , La, Ra, and Ke are considered unknown for control
design; however, there exist L0, R0, and Ke0, such that

‖La − L0‖ ≤ α1, ‖Ra − R0‖ ≤ α2, ‖Ke −Ke0‖ ≤ α3. (5.10)

Consider the robust control law

ν = ν0 −
3∑

i=1

eIμ
2
i

‖eI‖μi + δ
−KdeI, (5.11)
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where

ν0 = L0İ
d + R0I

d +Ke0GrTζ̇
d,

μ1 = α1

∥
∥
∥
∥

(
d

dt

)
Id
∥
∥
∥
∥,

μ2 = α2

∥
∥
∥Id

∥
∥
∥,

μ3 = α3

∥
∥
∥
∥

(
d

dt

)
ζd
∥
∥
∥
∥.

(5.12)

5.3. Stability Analysis for the System

Theorem 5.1. Consider the mechanical system described by (2.1), (2.3), and (2.2); using the control
law (5.5) and (5.7), the following hold for any (q(0), q̇(0)) ∈ Ωn ∩Ωh:

(i) r and eI converge to a set containing the origin with the convergence rate as t → ∞;

(ii) eq and ėq asymptotically converge to 0 as t → ∞;

(iii) eλ and τ are bounded for all t ≥ 0.

Proof. (i) By combing (3.5)with (5.5), the closed-loop system dynamics can be rewritten as

MLṙ = B1GrKNaI
d
a + B1GrKNaeI −

(
MLζ̈r + CLζ̇r +GL + dL

) − CLr. (5.13)

Substituting (5.5) into (5.13), the closed-loop dynamic equation is obtained:

MLṙ = −Kpr −Ki

∫
r dt − rΦ2

Φγ(‖r‖) + δ
− μ − CLr + B1GrKNaeI, (5.14)

where μ = MLζ̈r + CLζ̇r +GL + dL.
Consider the function

V = V1 + V2,

V1 =
1
2
rTMLr +

1
2

(∫
rdt

)T

Ki

∫
rdt + eTζ kζKNaKpeζ,

V2 =
1
2
eTI KNaLaeI .

(5.15)

Then, differentiating V1 with respect to time, we have

V̇1 = rT
(
MLṙ +

1
2
ṀLr +Ki

∫
rdt

)
+ 2eTζ kζKNaKpėζ. (5.16)
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From Property 1, we have (1/2)λmin(ML)rTr ≤ V ≤ (1/2)λmax(ML)rTr. By using Property 2,
the time derivative of V along the trajectory of (5.14) is

V̇1 = −rTKpr − rTμ − ‖r‖2Φ2

Φγ(‖r‖) + δ
+ 2eTζ kζKNaKpėζ + rTB1GrKNaeI

≤ −rTKpr − ‖r‖2Φ2

Φγ(‖r‖) + δ
+ ‖r‖Φ + 2eTζ kζKNaKpėζ + rTB1GrKNaeI

≤ −rTKpr −
‖r‖2Φ2 − γ(‖r‖)Φ2‖r‖ − ‖r‖Φδ

Φγ(‖r‖) + δ
+ 2eTζ kζKNaKpėζ + rTB1GrKNaeI,

(5.17)

when ‖r‖ ≥ ρ; therefore,

V̇1 ≤ −rTKpr + δ + 2eTζ kζKNaKdr − 2eTζ kζKNaKpkζeζ + rTB1GrKNaeI. (5.18)

Differentiating V2(t)with respect to time, using (3.7), one has

V̇2 = −eTI KNa

[
Laİ

d
a + RaI

d
a +KeGrTζ̇

d + RaeI +KeGrTėζ − ν
]
. (5.19)

Substituting ν in (5.19) by the control law (5.11), one has

V̇2 = − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ − eTI KNa(La − L0)İd

− eTI KNa(Ra − R0)Id − eTI KNa(Ke −Ke0)GrTζ̇
d − eTI KNa

3∑

i=1

μ2
i eI

‖eI‖μi + δ

≤ − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ + α1KNa‖eI‖
∥∥∥İd

∥∥∥

+ α2KNa‖eI‖
∥∥∥Ida

∥∥∥ + α3KNaGrT‖eI‖
∥∥∥ζd

∥∥∥ −KNa

3∑

i=1

‖eI‖2μ2
i

‖eI‖μi + δ

≤ − eTI KNa(Kd + Ra)eI − eTI KNaKeGrTėζ +KNa

3∑

i=1

αiδ

= − eTI KNa(Kd + Ra)eI − eTI KNKeGrTr + eTI KNaKeGrTkζeζ +KNaδ
3∑

i=1

αi.

(5.20)

Integrating (5.18) and (5.20), V̇ can be expressed as

V̇ ≤ − rTKpr + δ + 2eTζ kζKNaKpr − 2eTζ kζKNaKpkζeζ + rTB1GrKNaeI

− eTI KNa(Kd + Ra)eI − eTI KNaKeGrTr + eTI KNaKeGrTkζeζ +KNaδ
3∑

i=1

αi.
(5.21)
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We can obtain

V̇ ≤ −[rT eζ eI
]
Q

⎡

⎣
KNa 0 0
0 KNa 0
0 0 KNa

⎤

⎦

⎡

⎣
r
eζ
eI

⎤

⎦, (5.22)

where

Q =

⎡

⎢
⎢
⎢
⎢
⎣

Kp −Kpkζ
1
2
Gr

(
KeT − B1)

−kζKp 2kζKpTkζ −1
2
KeGrTkζ

1
2
Gr

(
KeT − B1) −1

2
KeGrTkζ (Kd + Ra)

⎤

⎥
⎥
⎥
⎥
⎦
. (5.23)

The termQ on the right-hand side (5.22) can always be negative definite by choosing suitable
Kp andKd. Since [Kna] is positive definite, we only need to choose Kp andKd such that Q is
positive definite. Therefore, Kd and Kp can always be chosen to satisfy

(Kd + R) > K−1
p

[
1
2
Gr

(
KeT − B1) −1

2
KeGrTkζ

][ 2I k−1
ζ

k−1
ζ

k−1
ζ
T−1k−1

ζ

]
⎡

⎢
⎣

1
2
Gr

(
KeT − B1)

−1
2
KeGrTkζ

⎤

⎥
⎦. (5.24)

If ‖r‖ ≤ ρ, it is easy to obtain V̇ ≤ 0. r, eζ, and eI converge to a set containing the origin
with t → ∞.

(ii) V is bounded, which implies that r ∈ Ln−k
∞ . From r = ėζ + kζeζ, it can be obtained

that eζ, ėζ ∈ Ln−k
∞ . As we have established eζ, ėζ ∈ L∞, from Assumption 4.1, we conclude that

ζ(t), ζ̇(t), ζ̇r(t), ζ̈r(t) ∈ Ln−k
∞ and q̇ ∈ Ln

∞.
Therefore, all the signals on the right hand side of (5.14) are bounded, and we can

conclude that ṙ and therefore ζ̈ are bounded. Thus, r → 0 as t → ∞ can be obtained.
Consequently, we have eζ → 0, ėζ → 0 as t → ∞. It follows that eq, ėq → 0 as t → ∞.

(iii) Substituting the control (5.5) and (5.7) into the reduced order dynamic system
model (5.4) yields

(
1 +Kf

)
eλ = Z(ζ)

(
C1(ζ, ζ̇

)
ζ̇ +G1 + d1(t) − L+TGrKNaIa

)
+ B1GrKNbI

d
b + B1GrKNbeI

= −Z(ζ)L+TML(ζ)
(
ζ̈
)
+

χ2

χ + δ
+ B1GrKNbeI .

(5.25)

Since ζ̇ = 0 when I ∈ Rk, (3.7) could be changed as

La
dIb
dt

+ RaIb = νb. (5.26)



Journal of Applied Mathematics 13

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

Time (s)

−0.5

−1

−1.5

−2

θ1

θ1d

θd

θ

Po
si

ti
on

s
(m

, r
ad

)

y

yd

Figure 2: The positions of the joints.
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ẏ

V
el

oc
it

ie
s(

m
/

s,
 r

ad
/

s)

Figure 3: The velocities of the joints.

Therefore, r = 0 and eζ = 0 in the force space; (5.20) could be changed as

V̇2 = −eTI KNb(Kd + R)eI +KNbδ
3∑

i=1

αi. (5.27)

Since KNb is bounded, V̇ < 0, we can obtain eI → 0 as t → ∞. The proof is completed by
noticing that ζ̈, Z(q),KNb and eI are bounded. Moreover, ζ → ζd, and −Z(ζ)L+TML(ζ)(ζ̈d) +
χ2/(χ + δ) ≤ δ, eI → 0, the right-hand side terms of (5.25), tend uniformly asymptotically to
zero; then it follows that eλ → 0, then f(t) → fd(t).

Since r, ζ, ζ̇, ζr , ζ̇r , ζ̈r , eλ and eI are all bounded, it is easy to conclude that τ is bounded
from (5.2).

6. Simulations

To verify the effectiveness of the proposed control algorithm, let us consider a 2-DOF mani-
pulator mounted on two-wheels-drivenmobile base [23] shown in Figure 1. Themobile man-
ipulator is subjected to the following constraints: ẋ cos θ + ẏ sin θ = 0. Using Lagrangian
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approach, we can obtain the standard form with qv = [x, y, θ]T , qa = [θ1, θ2]
T , q = [qv, qa]

T ,
and Av = [cos θ, sin θ, 0]T :

Mv =

⎡

⎢
⎢
⎢
⎢
⎣

mp12 +
2Iwsin2θ

r2
−2Iw

r2
sin θ cos θ −m12d sin θ

−2Iw
r2

sin θ cos θ mp12 +
2Iwcos2θ

r2
m12d cos θ

−m12d sin θ m12d cos θ M1
11

⎤

⎥
⎥
⎥
⎥
⎦
,

M1
11 = Ip + I12 +m12d

2 +
2IwL2

r2
, Ma = diag[I12, I2],

Mva =

⎡

⎣
0.0 0.0
0.0 0.0
I12 0.0

⎤

⎦,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

sin θ
r

−sin θ
r

0.0 0.0

−cos θ
r

cos θ
r

0.0 0.0

− l

r

l

r
0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Cv =

⎡

⎢⎢⎢⎢
⎣

2Iw
r2

θ̇ sin θ cos θ
2Iw
r2

θ̇ sin2 θ −m12dθ̇ cos θ 0.0

−2Iw
r2

θ̇ cos2 θ
2Iw
r2

θ̇ sin θ cos θ m12dθ̇ cos θ 0.0

0.0 0.0 0.0 0.0

⎤

⎥⎥⎥⎥
⎦
,

Cva = 0.0, Ca = 0.0, Gv = [0.0, 0.0, 0.0]T , Ga =
[
0.0, m2gl2 sin θ2

]T
,

H =

⎡

⎢⎢⎢⎢⎢
⎣

− tan θ 0.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

⎤

⎥⎥⎥⎥⎥
⎦
,

τv = [τl, τr]T , τa = [τ1, τ2]T ,

mp12 = mp +m12, m12 = m1 +m2, I12 = I1 + I2.

(6.1)

Let the desired trajectory qd = [xd, yd, θd, θ1d, θ2d]
T and the end effector be subject to

the geometric constraint Φ = l1 + l2 sin(θ2) = 0, and yd = 1.5 sin(t), θd = 1.0 sin(t), θ1d =
π/4(1 − cos(t)), λd = 10.0N.

The trajectory and force tracking control problem is to design control law τ such that
(4.1) holds and all internal signals are bounded.
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Figure 5: Tracking the desired currents.

In the simulation, we assume the parameter mp = m1 = m2 = 1.0, Iw = Ip = 1.0, 2I1 =
I2 = 1.0, I = 0.5, d = L = R = 1.0, 2l1 = 1.0, 2l2 = 0.6, q(0) = [0, 2.0, 0.6, 0.5]T , q̇(0) =
[0.0, 0.0, 0.0, 0.0]T , KN = diag[0.01], Gr = diag[100], La = [0.005, 0.005, 0.005, 0.005]T , Ra =
[2.5, 2.5, 2.5, 2.5]T , and Ke = [0.02, 0.02, 0.02, 0.02]T . The disturbance on the mobile base
is set 0.1 sin(t) and 0.1 cos(t). By Theorem 5.1, the control gains are selected as Kp =
diag[1.0, 1.0, 1.0], kζ = diag[1.0, 1.0, 1.0], Ki = 0.0 and Kf = 0.995, C = [8.0, 8.0, 8.0, 8.0, 8.0]T ,
KN = 0.1, Kd = diag[10, 10, 10, 10], α1 = 0.008, α2 = 4.0, α3 = 0.03. The disturbance on the
mobile base is set 0.1 sin(t) and 0.1 cos(t). The simulation results for motion/force are shown
in Figures 2, 3, 4, 5, 6, 7, 8, and 9. The desired currents tracking and input voltages on the
motors are shown in Figures 5, 6, 8, and 9. The simulation results show that the trajectory
and force tracking errors asymptotically tend to zero, which validate the effectiveness of the
control law in Theorem 5.1.

7. Conclusion

In this paper, effective robust control strategies have been presented systematically to con-
trol the holonomic constrained nonholonomic mobile manipulator in the presence of uncer-
tainties and disturbances, and actuator dynamics is considered in the robust control. All con-
trol strategies have been designed to drive the system motion converge to the desired
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manifold and at the same time guarantee the boundedness of the constrained force. The
proposed controls are nonregressor based and require no information on the system dynam-
ics. Simulation studies have verified the effectiveness of the proposed controller.
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