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We investigate the problem of finding a common solution of a general system of variational
inequalities, a variational inclusion, and a fixed-point problem of a strictly pseudocontractive
mapping in a real Hilbert space. Motivated by Nadezhkina and Takahashi’s hybrid-extragradient
method, we propose and analyze new hybrid-extragradient iterative algorithm for finding a
common solution. It is proven that three sequences generated by this algorithm converge strongly
to the same common solution under very mild conditions. Based on this result, we also construct
an iterative algorithm for finding a common fixed point of three mappings, such that one of these
mappings is nonexpansive, and the other two mappings are strictly pseudocontractive mappings.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty
closed convex subset of H, and let Pc be the metric projection from H onto C. LetS: C — C
be a self-mapping on C. We denote by Fix(S) the set of fixed points of S and by R the set of

all real numbers. A mapping A : C — H is called monotone if

(Ax - Ay,x-y) >0, VYx,yeC.

A mapping A : C — H is called L-Lipschitz continuous if there exists a constant L > 0, such

that

JAx- Ayl <Llx-yl, vxyec
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For a given mapping A : C — H, we consider the following variational inequality (VI) of
finding x* € C, such that

(Ax*,x—x") >0, VxeC. (1.3)

The solution set of the VI (1.3) is denoted by VI(C, A). The variational inequality was first
discussed by Lions [1] and now is well known. Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, and equilibrium problems; see, for example, [2—4]. To
construct a mathematical model which is as close as possible to a real complex problem, we
often have to use more than one constraint. Solving such problems, we have to obtain some
solution which is simultaneously the solution of two or more subproblem or the solution of
one subproblem on the solution set of another subproblem. Actually, these subproblems can
be given by problems of different types. For example, Antipin considered a finite-dimensional
variant of the variational inequality, where the solution should satisfy some related constraint
in inequality form [5] or some system of constraints in inequality and equality form [6].
Yamada [7] considered an infinite-dimensional variant of the solution of the variational
inequality on the fixed-point set of some mapping.

A mapping A : C — H is called a-inverse strongly monotone if there exists a constant
a > 0, such that

(Ax - Ay, x - y) > a||Ax - Ay Z Vx,y € C; (1.4)

see [8, 9]. It is obvious that an a-inverse strongly monotone mapping A is monotone and
Lipschitz continuous. A self-mapping S : C — C is called k-strictly pseudocontractive if
there exists a constant k € [0, 1), such that

|Sx = Sy||* < |x-y|> + k| (I - S)x - (I -S)y|]’, Vx, y€C; (1.5)

see [10]. In particular, if k = 0, then S is called a nonexpansive mapping; see [11].

A set-valued mapping M with domain D(M) and range R(M) in H is called
monotone if its graph G(M) = {(x,f) € Hx H : x € D(M), f € Mx} is a monotone set
in H x H; thatis, M is monotone if and only if

(. f), (v.8) EGM) = (x-y,f-g) >0. (1.6)

A monotone set-valued mapping M is called maximal if its graph G(M) is not properly
contained in the graph of any other monotone mapping in H.

Let @ be a single-valued mapping of C into H, and let M be a multivalued mapping
with D(M) = C. Consider the following variational inclusion: find x* € C, such that

0€ed(x*) + Mx*. (1.7)

We denote by € the solution set of the variational inclusion (1.7). In particular, if ® = M =0,
then Q = C.
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In 1998, Huang [12] studied problem (1.7) in the case where M is maximal monotone,
and @ is strongly monotone and Lipschitz continuous with D(M) = C = H. Subsequently,
Zeng et al. [13] further studied problem (1.7) in the case which is more general than Huang's
one [12]. Moreover, the authors [13] obtained the same strong convergence conclusion as
in Huang’s result [12]. In addition, the authors also gave the geometric convergence rate
estimate for approximate solutions.

In 2003, for finding an element of Fix(S) N VI(C, A) when C C H is nonempty, closed,
and convex, S : C — C is nonexpansive, and A : C — H is a-inverse strongly monotone.
Takahashi and Toyoda [14] introduced the following iterative algorithm:

Xp1 = XXy + (1 — a,)SPc(x, — M Axy,), Vn >0, (1.8)

where xy € C chosen arbitrarily, {a,} is a sequence in (0,1), and {1,} is a sequence in
(0,2a). They showed that, if Fix(S) N VI(C, A) #0, then the sequence {x,} converges weakly
to some z € Fix(S) N VI(C, A). In 2006, to solve this problem (i.e., to find an element
of Fix(S) n VI(C, A)), Nadezhkina and Takahashi [15] introduced an iterative algorithm
by a hybrid method. Generally speaking, the suggested algorithm is based on two well-
known types of methods, that is, on the extragradient-type method due to Korpelevich
[16] for solving variational inequality and so-called hybrid or outer-approximation method
due to Haugazeau (see [15]) for solving fixed point problem. It is worth emphasizing
that the idea of “hybrid” or “outer-approximation” types of methods was successfully
generalized and extended in many papers; see, for example, [17-23]. In addition, the idea
of the extragradient iterative algorithm introduced by Korpelevich [16] was successfully
generalized and extended not only in Euclidean but also in Hilbert and Banach spaces; see,
for example, [24-29].

Theorem NT (see [15, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C — H be a monotone and k-Lipschitz-continuous mapping, and let S : C — C be
a nonexpansive mapping such that Fix(S) N VI(C, A) #0. Let {x,}, {yn} and {z,} be the sequences
generated by

Yn = Pc(xn — Xy Axy),
zn = Xy + (1 = an) SPc(xn — AuAyn),
Co={z€C:llzn—zl <llxn—zl}, (1.9)
Qun={zeC:(xp—z,x0—x,) >0},
Xn1 = Pc,ng,x0, ¥n 20,
where xy € C is chosen arbitrarily, {\,} C [a,b] for some a,b € (0,1/k), and {a,} C [0, c] for some
¢ € [0,1). Then the sequences {xy}, {yn}, and {z,} converge strongly to Prix(s)nvi(c,a)Xo-

It is easy to see that the class of a-inverse strongly monotone mappings in the above
mentioned problem of Takahashi and Toyoda [14] is the quite important class of mappings
in various classes of well-known mappings. It is also easy to see that while a-inverse
strongly monotone mappings are tightly connected with the important class of nonexpansive
mappings, a-inverse strongly monotone mappings are also tightly connected with the more



4 Journal of Applied Mathematics

general and also quite important class of strictly pseudocontractive mappings. That is, if a
mapping S : C — C is nonexpansive, then the mapping I — S is (1/2-) inverse strongly
monotone; moreover, Fix(S) = VI(C,I - S) (see, e.g., [14]). The construction of fixed points
of nonexpansive mappings via Mann’s algorithm has extensively been investigated in the
literature (see, e.g., [30, 31] and references therein). At the same time, if a mapping S: C — C
is k-strictly pseudocontractive, then the mapping I - S is (1-k) /2-inverse strongly monotone
and 2/ (1 — k)-Lipschitz continuous.

Let B;,B, : C — H be two mappings. Recently, Ceng et al. [32] introduced and
considered the following problem of finding (x*,y*) € C x C, such that

(mBy* +x* —y*, x — x*) Vx € C,

>0,
(1.10)
(2Box* +y* —x*,x-y*) >0, VxeC,

which is called a general system of variational inequalities (GSVI), where p; > 0 and pp > 0
are two constants. The set of solutions of problem (1.10) is denoted by GSVI(C, By, By). In
particular, if By = B, = A, then problem (1.10) reduces to the new system of variational
inequalities (NSVI), introduced and studied by Verma [33]. Further, if x* = y* additionally,
then the NSVI reduces to the VI (1.3).

In particular, if By = A and B, = 0, then the GSVI (1.10) is equivalent to the VI (1.3).

Indeed, in this case, the GSVI (1.10) is equivalent to the following problem of finding
(x*,y*) € C x C, such that

(mBy* +x*—y*,x—x*)y >0, VxeC, 411)
—xt,x-y*)>0, VxeC. '
y y

Thus we must have x* = y*. As a matter of fact, if x* # y*, then by setting x = x* we have
0> [l —y[I" = (" —x"x" ~ ") 20, (112)

which hence leads to a contradiction. Therefore, the GSVI (1.10) coincides with the VI (1.3).
Recently, Ceng at al. [32] transformed problem (1.10) into a fixed-point problem in the
following way.

Lemma 1.1 (see [32]). For given X,y € C, (x, V) is a solution of problem (1.10) if and only if X is a
fixed point of the mapping G : C — C defined by

G(x) = PC [PC (x - yszx) - /ilBlpc (x - mBzx)], Vx € C, (113)

where y = Pc(x — pp Byx).

In particular, if the mapping B; : C — H is fi-inverse strongly monotone fori = 1,2,
then the mapping G is nonexpansive provided y; € (0,2f;] fori=1,2.

Utilizing Lemma 1.1, they introduced and studied a relaxed extragradient method for
solving the GSVI (1.10). Throughout this paper, the set of fixed points of the mapping G
is denoted by E=. Based on the relaxed extragradient method and viscosity approximation
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method, Yao et al. [34] proposed and analyzed an iterative algorithm for finding a common
solution of the GSVI (1.10) and the fixed point problem of a strictly pseudocontractive
mapping S: C — C.

Subsequently, Ceng et al. [35] further presented and analyzed an iterative scheme for
finding a common element of the solution set of the VI (1.3), the solution set of the GSVI
(1.10), and the fixed point set of a strictly pseudo-contractive mapping S: C — C.

Theorem CGY (see [35, Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C — H be a-inverse strongly monotone, and let B; : C — H be pi-inverse
strongly monotone for i = 1,2. Let S : C — C be a k-strictly pseudocontractive mapping such that
Fix(S)NENVI(C, A) #0. Let Q : C — C be a p-contraction with p € [0,1/2). For given xy € C
arbitrarily, let the sequences {x,}, {y,}, and {z,} be generated iteratively by
Zy = PC(xn - -)LnAxn)/
Yn = 0,Qxy + (1 — ay) Pc [Pc(2zn — p2Bazn) — p1B1Pc (20 — p2Baza)], (1.14)

Xps1 = PuXn + YuYn + 6,5y, Yn>0,

where p; € (0,26;) fori=1,2, {1} € (0,2a] and {a,}, { B}, {yn}, {6n} C [0,1], such that
(1) Pn+Yn+6n = Land (y, + 6p)k <y, forall n > 0;

(ii) limy, oy = 0and X7 ay = 0o,

(iv) limy, oo (Yns1/ (1 = Bus1) =¥/ (1 = Bn)) = 0;

)
)
(iii) 0 < liminf, B, < limsup, , B, <1and liminf,_, 6, > 0;
)
(v) 0 <liminf, oA, <limsup, | A, < 2a and limy, ., o|Aps1 — Ay| = 0.

Then the sequence {x,} generated by (1.14) converges strongly to X = Prix(s)nzrvi(c,4)QX, and
(x,7) is a solution of the GSVI (1.10), where i = Pc(X — u»BoX).

On the other hand, let A : C — H be a monotone, and let L-Lipschitz-continuous
mapping, ® : C — H be an a-inverse strongly monotone mapping. Let M be a
maximal monotone mapping with D(M) = C, and let S : C — C be a nonexpansive
mapping such that Fix(S) NnQNVI(C, A) # 0. Motivated Nadezhkina and Takahashi’s hybrid-
extragradient algorithm (1.9), Ceng et al. [36, Theorem 3.1] introduced another modified
hybrid-extragradient algorithm

Yn = Pc(xn = 1nAxy),
tn = Po(xn — Ay Ayn),
tn = I, (tn — pn®@(tn)),
zn=0-a,—ay)x, + anty + @, Sty, (1.15)
Co={z€C:llzn—z| < llxn—2zl},
Qu={z€eC:{(x,—zx0—x,) >0},

Xni1 = Pc,ng,x0, VYn2>0,
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where Jar,, = (I + ynM)fl, xo € C chosen arbitrarily, {1,} € (0,1/L), {pu.} C (0,2a], and
{an}, {a,} C (0,1] such that a, + &, < 1. It was proven in [36] that under very mild conditions
three sequences {x,}, {y,}, and {z,} generated by (1.15) converge strongly to the same point
Prix(s)nanvi(c,a)Xo-

Inspired by the research going on this area, we propose and analyze the following
hybrid extragradient iterative algorithm for finding a common element of the solution set =
of the GSVI (1.10), the solution set & of the variational inclusion (1.7), and the fixed point set
Fix(S) of a strictly pseudo-contractive mapping S: C — C.

Algorithm 1.2. Assume that Fix(S) N QN Z#0. Let y; € (0,26;) fori = 1,2, {u,} C (0,2a],
and {o,}, (B}, {yn}, {6s} C [0,1] such that B, +y, + 6, = 1, for all n > 0. For given xy € C
arbitrarily, let {x,}, {y.}, and {z,} be the sequences generated by the hybrid extragradient
iterative scheme

Yn = Pc[Pc(x — p2Boxy) — p1BiPe(xn — poBoxy)],
tw = Pc[Pc(Yn — H2Boyn) — p1B1Pe(Yn — p2Boyn) ],
by = Outn + (1= 0) Imgs, (tn = pn @ (tn)),
Zu = BuXn + Yntn + 6,Sty, (1.16)
Co={z€C:|lzn—z| < llxn—z|},
Qn={zeC:(x,—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Yn 20,

where Jpr,, = (I + M), for all n > 0.

Under very appropriate assumptions, it is proven that all the sequences {x,}, {y,}, and
{zn} converge strongly to the same point x = Prix(s)nonzXo. Furthermore, (x,y) is a solution
of the GSVI (1.10), where i = Pc(X — 2 Box).

Let T : C — C be a k-strictly pseudocontractive mapping, let I' : C — C be a k-
strictly pseudocontractive mapping, and let S : C — C be a nonexpansive mapping. Putting
Bi=I1-T,B,=0,®=1-I, M =0,and 0, = 0, for all n > 0 in Algorithm 1.2, we consider and
analyze the following hybrid extragradient iterative algorithm for finding a common fixed
point of three mappings S, I', and T.

Algorithm 1.3. Assume that Fix(S) NFix(I') N\Fix(T) #0. Let u1 € (0,1-k), {p,} C (0,1-x], and
{Bn}, {yn}, {64} € [0,1] such that B, + y, + 6, = 1, for all n > 0. For given xq € C arbitrarily, let
{xn}, {yn}, and {z,} be the sequences generated by the hybrid extragradient iterative scheme

Yn=Xn— M1 (xn - Txn)r
tn = Yn — 11 (Yn — Tyn),

?n =t, — I/ln(tn -TIt,),
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Zp =ﬁnxn +Yn?n +6n5?n1
Co=1{z€C:|lzp—z| < llxn -z},
Qn={zeC:(xy—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, VY1 > 0.
(1.17)

Under quite mild conditions, it is shown that all the sequences {x,}, {y.}, and {z,}
converge strongly to the same point Prix(s)nFix(r)nFix(T) X0-

Observe that Ceng et al. [36, Theorem 3.1] considered the problem of finding an
element of Fix(S) N Q N VI(C,A) where S : C — C is nonexpansive, Nadezhkina and
Takahashi [15, Theorem 3.1] studied the problem of finding an element of Fix(S) N VI(C, A)
where S : C — Cisnonexpansive, and Ceng et al. [35, Theorem 3.1] investigated the problem
of finding an element of Fix(S) N =N VI(C, A) where S : C — C is strictly pseudocontractive.
It is clear that every one of these three problems is very different from our problem of finding
an element of Fix(S) NQ N = where S : C — C is strictly pseudocontractive. Hence there is
no doubt that the strong convergence results for solving our problem are very interesting and
quite valuable. Because our hybrid extragradient iterative algorithms involve two inverse
strongly monotone mappings B; and B,, a strictly pseudo-contractive self-mapping S, and
several parameter sequences, they are more flexible and more subtle than the corresponding
ones in [36, Theorem 3.1] and [15, Theorem 3.1], respectively. Furthermore, the relaxed
extragradient iterative scheme in Yao et al. [34, Theorem 3.2] is extended to develop our
hybrid extragradient iterative algorithms. In our results, the hybrid extragradient iterative
algorithms drop the requirements that 0 < liminf,_,f, < limsup,  p, < 1 and
limy, - o (Yn+1/ (1=Pns1) =¥/ (1=Pn)) = 0in [34, Theorem 3.2] and [35, Theorem 3.1]. Therefore,
our results represent the modification, supplementation, extension, and improvement of [36,
Theorem 3.1], [15, Theorem 3.1], [34, Theorem 3.2], and [35, Theorem 3.1] to a great extent.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by (-,:) and || - |,
respectively. Let C be a nonempty closed convex subset of H. We write — to indicate that the
sequence {x,} converges strongly to x and — to indicate that the sequence {x,} converges
weakly to x. Moreover, we use wy, (x,) to denote the weak w-limit set of the sequence {x,},
that is,

Wy (xp) = {x : X, — x for some subsequence {x,,} of {x,} } (2.1)

For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such
that

llx = Pex| < [[x -y, ¥YyeC (22)
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Pc is called the metric projection of H onto C. We know that Pc is a firmly nonexpansive
mapping of H onto C; that is, there holds the following relation

(Pex - Pey,x —y) > ||Pex - Pey||®, Vx,y € H. (2.3)

Consequently, Pc is nonexpansive and monotone. It is also known that Pc is characterized by
the following properties: Pcx € C and

(x = Pcx,Pcx—y) >0, (2.4)

llx = y|* > llx - Pex|* + ||y - Pex]||?, (2.5)

forall x € H,y € C; see [11, 37] for more details. Let A : C — H be a monotone mapping. In
the context of the variational inequality, this implies that

x € VI(C, A) & x = Pc(x - LAx), YA>0. (2.6)

It is also known that the norm of every Hilbert space H satisfies the weak lower
semicontinuity [4]. That is, for any sequence {x,} with x,, — x, the inequality

lim inff|c,[| 2 ||x]| (2.7)

holds.

Recall that a set-valued mapping M : D(M) ¢ H — 2! is called maximal monotone
if M is monotone and (I + AM)D(M) = H for each A > 0, where I is the identity mapping of
H. We denote by G(M) the graph of M. It is known that a monotone mapping M is maximal
if and only if, for (x, f) € H x H,(f — g,x —y) > 0 for every (y, g) € G(M) implies f € Mx.
Here the following example illustrates the concept of maximal monotone mappings in the
setting of Hilbert spaces.

Let A: C — H be a monotone, L-Lipschitz-continuous mapping, and let Ncv be the
normal cone to C at v € C, that is,

Av+ N if
ch:{ v+ Nco, ifveC, 2.8)

0, ifvéC.

Then, T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [38].
Assume that M : D(M) ¢ H — 2H is a maximal monotone mapping. Then, for A > 0,
associated with M, the resolvent operator 1) can be defined as

Jvax =T +AM)'x, VYxeH. (2.9)

In terms of Huang [12] (see also [13]), there holds the following property for the resolvent
operator Jpy : H — H.
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Lemma 2.1. Ju, is single valued and firmly nonexpansive, that is,
(Jmax = Jmay, x = y) > || Jmax — ]M,A]/”Z, Vx,y € H. (2.10)

Consequently, Ja,\ is nonexpansive and monotone.

Lemma 2.2 (see [39]). There holds the relation:
e+ ay -+ vz = el + gl + vl = Al = yI = vy - =] - - 217, @)

forallx,y,ze Hand A, y, v € [0, 1] with A + p+v =1.
Lemma 2.3 (see [36]). Let M be a maximal monotone mapping with D(M) = C. Then for any
given A > 0, x* € C is a solution of problem (1.7) if and only if x* € C satisfies

x* = Jaa(x* = AD(x")). (2.12)

Lemma 2.4 (see [13]). Let M be a maximal monotone mapping with D(M) = C, and let V : C —
H be a strong monotone, continuous, and single-valued mapping. Then for each z € H, the equation
z € Vx + AMx has a unique solution x, for A > 0.

Lemma 2.5 (see [36]). Let M be a maximal monotone mapping with D(M) = C,and let A: C —
H be a monotone, continuous, and single-valued mapping. Then (I + A(M + A))C = H for each
A > 0. In this case, M + A is maximal monotone.

It is clear that, in a real Hilbert space H, S : C — C is k-strictly pseudo-contractive if
and only if there holds the following inequality:

1-k
(Sx=Sy,x-y) <|lx-y|" - 5= d-Sx~T-S)y|I", ¥xyeC. (213)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I — S is
(1 - k)/2-inverse strongly monotone; for further detail, we refer to [10] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the class
of nonexpansive mappings.

Lemma 2.6 (see [10, Proposition 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let S : C — C be a mapping.

(i) If S is a k-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

1+k
I5x-Syll < Tl -y

, Vx,yeC. (2.14)

(ii) If S is a k-strict pseudo-contractive mapping, then the mapping I — S is semiclosed at 0;
that is, if {x,} is a sequence in C such that x, — X weakly and (I — S)x, — 0 strongly,
then (I - S)x = 0.
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(iii) If S is k-quasistrict pseudo-contraction, then the fixed point set Fix(S) of S is closed and
convex, so that the projection Prix(s) is well defined.

Lemma 2.7 (see [34]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S :C — C bea k-strictly pseudo-contractive mapping. Let y and 6 be two nonnegative real numbers
such that (y + 6)k <y. Then

ly(x-y) +6(Sx=Sy)|| < (y+6)[lx-yll, Vx,yeC. (2.15)

The following lemma is well known to us.

Lemma 2.8 (see [11]). Every Hilbert space H has the Kadec-Klee property; that is, for given x € H
and {x,} C H, we have

X, — X

= x, — X. 2.16
||xn||—>||x||} " (2.16)

3. Main Results

In this section, we first prove the strong convergence of the sequences generated by
our hybrid extragradient iterative algorithm for finding a common solution of a general
system of variational inequalities, a variational inclusion, and a fixed problem of a strictly
pseudocontractive self-mapping.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let B; : C — H
be pi-inverse strongly monotone for i = 1,2, let ® : C — H be an a-inverse strongly monotone
mapping, let M be a maximal monotone mapping with D(M) = C, and let S : C — C be a k-
strictly pseudocontractive mapping such that Fix(S) N Q N Z#0. For given xo € C arbitrarily, let
{xn}, {yn}, and {z,} be the sequences generated by
Yn = Pc[Pc(xy — p2Boxy) — p1BiPe(xn — poBaxy)],
tu = Pc[Pc(Yn = p2Bayn) = 1 B1Pc(Yn — p2Bayn)],
by = Outn + (1= 0) I, (tn = (),
Zn = ﬂnxn + Yn/t\n + 6715?11/ (31)
Co={z€C:lzn—2zl < llxn -z},
Qu={z€C:(xp—z,x0—x,) >0},
Xn+1 = PCnﬂanOI Vn > 0/
where p; € (0,26;) fori = 1,2, {u,} C [€,2a] for some € € (0,2a], and {4}, {Pn}, {yn}, {64} C
[0, 1] such that {c,} C [0,c] for some ¢ € [0,1), {6,} C [d,1] for some d € (0,1], B+ Yn +6n =1
and (Y, + 6n)k < ¥y, for all n > 0. Then the sequences {x,}, {y,}, and {z,} converge strongly to the

same point X = Prix(s)nanzXo if and only if ISt — tull — 0. Furthermore, (x, y) is a solution of the
GSVI (1.10), where y = Pc(x — pa Byx).
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Proof. 1t is obvious that C,, is closed and Q,, is closed and convex for every n =0,1,2,.... As
C, = {ZEC:||zn—xn||2+2<zn—xn,xn—z)50}, (3.2)

we also know that C,, is convex for every n =0,1,2,.... As
Qun=1{zeC:{x,—z,x—x,) >0}, (3.3)

we have (x, - z,x — x,) >0, for all z € Q,, and hence x,, = Py, x by (2.4).

First of all, assume that the sequences {x,}, {y,}, and {z,} converge strongly to the
same point X = Prix(s)nan=Xo- Then it is clear that ||x, — y,|| — 0and ||x, — z,|| — 0. Observe
that from the nonexpansiveness of the mappings Pc(I — p1B1) and Pc(I — ppBs) (due to p; €
(0,26;) fori =1,2), we have

lyn = tull = | Pc [Pc(xn — p2Baxn) — p1BiPe(xn — p2Boxy) |

~Pc[Pc(Yn — p2Bayn) — p1B1Pc(yn — p2Bayn) | ||

= ||Pc(I = p1Br) Pe(I = poB2) xy = Pc (I = p1B1) Pe (I = p2Bo) | (3:4)
< ||Pe(I = p2Ba) xn = Pe(I = p2Ba) |
< ”xn _yn”'

Hence, we conclude that ||y, — t,]]| — 0 and ¢, — x. Since x € Fix(5) N Q N =, we obtain
that Sx = x and x = [y, (X — #,®(x)). Thus, from the nonexpansiveness of the mapping
Imp, (I = pn®), we have

fn | ||0ntn + (1 - On)]M,#n (tn - .uﬂq)(tn)) - t"”

= (1= o) |[Jmp, (tn = pu D () = ta|
< Tty (bn = pn®(ta)) = T + 1% = tall (35)
= | Tvpun (T = @)t = Tt g, (I = pn @)X || + ||t = X]|

S ltn =X + NIt = x| = 2{[tn — X[|.

So, we deduce that |[t, — t,|| — 0and t, — X. Note that

|bﬂ—a

g”sﬁ-ﬂyqp—a

=|ﬁ&—5ﬂh¢ﬁ—&
<(15%1)

This implies that ISty —tall = O0asn — oo.

(3.6)

s

a—y"
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For the remainder of the proof, we divide it into several steps.
Step 1. We claim that Fix(S) nQNZ c C, N Q, foreveryn =0,1,2,....

Indeed, take a fixed p € Fix(S) N Q N Z arbitrarily. Then Sp = p, Jam, (p — #n®(p)) = p,
for alln >0, and

p = Pc[Pc(p - u2Bap) — 1B1Pe(p - u2Bap)]. (3.7)
For simplicity, we write g = Pc(p — p2Bop), X, = Pc(xy — p2Boxy,), and i, = Pc(yy — p2Bayn),

Yn = Pc[Pe(xn — poBoxy) — 1 Bi P (xn — poBaxy)| = Po (X — p1BiXn), 9

tn = Pc[Pc(Yn — p2Bayn) — p1B1Pc (Y — p2Boyn)| = Pe(Yn — 1 Bin),

for each n > 0. Since B; : C — H is f-inverse strongly monotone, and 0 < ji; < 2f; fori = 1,2,
we know that forall n >0,
lyn = plI”
= ||Pc [Pc (xn = paBaxy) = 1 BiPe (xy - paBoxy)| - p||*
= || Pc[Pc(xn = p2Baxn) = p1 BiPe (= p2Boxn) |
~Pc[Pe(p - aBop) — p BiPe(p - p2Bop) ] ||
< || [Pc(xn = p2Baxn) = p1B1Pe (xn = poBoxy) |
~[Pc(p — paBop) — BiPe(p - jaBop) | ||°
= || [Pc (% = 2B2x) = Pe(p = p2Bap)] = pia [BiPe (% = paBaxn) = BiPe(p = p2Bop) |||
< ||Pe(xn = paBoxn) = Pe(p — paBap) ||’
— p1(21 - 1) || By Pe (xtn — paBaxn) = B1Pe(p - paBop) ||
< | Gen = 2Boxn) = (p = p2Bap) |I* = 1 (21 = ) || Bi % = Bug”
= | (xa = P) = 2 (Baxw = Bop) ||* = 1 (2B1 = ) | B %o - Bug’
< [lxn = pII* = p2(282 = ) [|Baxn = Bop||” = s (21 = ) | Bi % = Bug||” < s - P||2(-3 .

Repeating the same argument, we can obtain that for all n > 0,

[t = PII” < lyn = pI|* = 12(2B2 = p12) || B2y — Bap||”

— 11(2p1 - 1) || BuFin - Bagq||* < |lyw - I

(3.10)
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Furthermore, by Lemma 2.1 we derive from (3.9) and (3.10)

=P = llou(ta = p) + (1= 00) Urt (b~ in®(t) = p) I
< Oullta = pII* + (1= 00) | Tty (b = pa®0ta)) — |
= Gulltn = PI” + (1= 00 | Twin (tn = n®(E0)) = Tt g, (P = @ (p)) ||
< Oulltn = plI* + (1= o) || (bn = @ (1)) = (p = 1@ (p)) ||
< oullt = pI* + (1= 0 [[ltw = pII* + pn (i = 20) |0 (E) = () |]
<|lt. - plI® (3.11)
< lyn = plI* - #2(2B2 - p2) | Bayn = Bap||” = 2 (2B = 1) | Bu - Bug||?
< |l = plI* = 2(2B2 = p2) || Box = Bap|” = pr (261 = 1) | Bi % = Bug||®
~ #2(2B> = p2) | Boyn = Bop|” = i (261 = ) || B1 i — Brq|®
= lxa = pII* - #2(2p2 = p2) (|| Box = Bop ||* + || Boyn - Bap|*)

~ i1 (2P~ 1) (|| Bia = Bug||* + | B — Bu||*)-
Since (y, + 6n)k < ¥y, for all n > 0, utilizing Lemmas 2.2 and 2.7, we get from (3.11)

Iz - pII

(e =p) +1a(ia=p) +6(SE-p) |

2

Bu(xn=p) + (1 + 50# [u (B2 =) + 64 (SEa =)

2

< Bullxn = plI* + (v + )

L fu(i-r) ()]

. 2
b=

< Pallxn = pII* + (o + 64)
< Bulln = I+ (G + 82) {00 = pII* = 12282 = o2) (| Baxn = Bop||* + | Boyym = Bop)

1 (2P — 1) <||Blfn ~Buq||* + ||B1n - BMHZ) }
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= [l = pII* = (o + 62) {222 = p2) ([ Bo = Bop||* + || By — Bop|*)
+p1 (21 — ) <||Blﬁ~fn - Bug||” + | BiFin - qu”z) }

7

< lxa = pl®
(3.12)

foreveryn =0,1,2,..., and hence p € C,. So, Fix(5) N QN = c C, foreveryn =0,1,2,....
Next, let us show by mathematical induction that {x,} is well defined and Fix(S) N Q N 2 C
C.NQ,foreveryn=0,1,2,.... For n = 0, we have Qg = C. Hence we obtain Fix(S)NQNZE C
Co N Qy. Suppose that x, is given and Fix(S) N QN = c C, N Q,, for some integer n > 0. Since
Fix(S) N QN Z is nonempty, C,, N Q, is a nonempty closed convex subset of C. So, there exists
a unique element x,; € C, N Q, such that x,.1 = Pc,n,Xo. It is also obvious that there holds
(Xp+1— 2z, X0 —xp11) > 0 for z € Fix(S) NQNE, and hence Fix(S) NQNZE C Q,41. Therefore, we
derive Fix(S) NQNZEN Cpy1 N Qpyia-

Step 2. We claim that

nli_l}go”xnﬂ =Xl = nli_l}go”xn = zul| =0. (3.13)

Indeed, let Iy = Prix(s)n@nzx0. From x,,1 = Pc,n0, %0, and Iy € Fix(S)NQNEc C, N Q,,
we have

|xn1 = X0l < [[Xns+1 — Xo0]| (3.14)

for every n = 0,1,2,.... Therefore, {x,} is bounded. From (3.9)-(3.12), we also obtain that

{Xn}, {yn), {Yn}, {ta}, {ta}, and {z,} all are bounded. Since x,+1 € C, N Q, C Qy and x,, =
Pg,x0, we have

[l = X0l < [|xne1 = ol (3.15)

for every n =0,1,2,.... Therefore, there exists lim,, _, »-||x,, — xol|. Since x,, = Pg,xo and x,.1 €
Qp, utilizing (2.5), we have

%1 = Xull* < llotns1 = x0l1% = llo6n = x0l? (3.16)
foreveryn =0,1,2,.... This implies that

nlijr;o||xn+1 — x|l =0. (3.17)
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Since x,41 € C,,, we have ||z, — x11]| < || — X111, and hence

lxn = zall < llxn = xXpa1ll + 1Xne1 = Zall < 2/ xn41 — Xall

foreveryn =0,1,2,.... From ||x,:1 — x,|| — 0 it follows that

lim ||x, — z,|| = 0.
n— oo

Step 3. We claim that

ta—ta|l = 0.

Jr e ~all = Jm e~ = fm

Indeed, for p € Fix(5) N QN E, we obtain from (3.12)

120 = pII” < floa = pII°

= (u+ 60) {222~ p2) (|| Baxu — Bap||” + || Bay ~ Bop”)

+11 (21 — 1) <||Blﬁ7n - Bug||” + | BiFin - BM||2> }

Therefore, we have

(4 + 62) {1222 = p2) (|| B2 = Bp||* + || Bay — Bop )
441 (2P1 - ) ([|B1% — Bugll” + [|B1 7 - Bag*) |
2 2
< |lxn=plI” = [z - pll

= (en =pll = llzn =PI (Nl =PIl + 120 = Pl
< ln = zall (= pll + 120 = p1I)-

15

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Since {6,} C [d, 1] for some d € (0,1], ||x, — z,|| — 0, and the sequences {x,} and {z,} are
bounded, we deduce that

Jlim |[Box, = Bop|| = lim ||Boy, = Bop|| = lim || Bi%, — Bag|
) (3.23)
= lim ||B1 7, - Biq]| = 0.

On the other hand, by firm nonexpansiveness of Pc, we have

10 - qll = 1P Gon — pBa) — Pep - aBop)
< ((xn — p2Boxy) = (p — p2Bop), X — q)
1 ~
= §[||xn —p = t2(Boxn = Bop) |” + || % - 4|
|| Gen = p) = 2 (Box = Bap) = (5 = 9) |]
1 ~ ~
< 20— pIP + 150 =gl = 3~ 5) - Bt~ Bop) - -] (50
1 2 = 2 ~ 2
A R E U A Sy
+242(%, = %o = (P = 4), BoxXn = Bap) — 3| Box = Bop ||’
1 2 )~ 2 ~ 2
< L=l + 1% =l o~ %~ (o)1

242 n = % = (p = ) || Boxu — Bap ||
that is,

1%, = qll” < e = pII* = |20 = %0 = (P = @) |I* + 242|120 = %0 = (p = @) ||| B = Bop |
(3.25)

Repeating the same argument, we can also obtain

150 = all* < N1y =PI = Nvn = Tn = (P = @) > + 22|l Y = 5 = (p = 9) ||| By = Bap |-
(3.26)
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Moreover, using the argument technique similar to the above one, we derive

v~ pII* = || Pc (0 — p1BiZn) - Pe(q - i Big) ||
< (%0~ pB1Xn) ~ (- 1B19), yn — p)

_ %[”%n —q - (Bi%y = B1g)||" + lya - plI°
(| & - @) - 1 (Bi%n ~ Big) = (yu - 1) ||
. %[”-i:n — g+ lyn =2 = | (Bn = ¥u) - 1 (Bi%n — B1g) + (p - q) ||2] (3.27)
= 2[5 = all + =Pl = 150 -+ o= )P
+2u1(Xn — yn + (p— q), B1Xy — Biq) — p3||B1X, - qu“z]
< 5 (1% =l =PI = 1% =+ (P )
2% =y + (p - )| [Buu - Bugl]
that is,

Iy =pl? < 1% = all* = 1% = v+ (0= @) | + 21 | Zn = yu + (p — 9)|||| Brn — Bag|.
(3.28)

Repeating the same argument, we can also obtain
ltw =PI < 1170 = all* = 1 = tu + = DI+ 2401[|G = ta + 0 = D1 B1Fa ~ Brgll. (3:29)
Utilizing (3.11), (3.25)—(3.29), we have

Iz = pII°

Br(Xn = p) +Yn (fn - P) + 5"<5?" ‘P> ”2

. 2
b

< Bl = p||* + (1 + 1)
= Ballxn =PI + (3 + 6a) |t - PII°
< Bullxn —p|°
~ 2 ~ 2
+ (O + 6) (115 = al* = 17— ta + (0 - 9)

21| = ta + (p — @) ||| BiFin — Bud|
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< ullxn -’
+ (4 60) 190 =PI =y =5 = (0= D) I
+ 212\ yn = G — (p = @) ||| B2yn — Bop |
NG = ta+ (0= @)+ 2015 = + (0 = ) | B1 5 - Brall]
< Ballxn - pl°
+ (Ot 8 1% - all = %0 = v+ (p- )’
+2u %0 = yu + (p — @) ||| BiXn - Baq|
Ny = = (P = DII* + 212l yn = 5 = (p = D) || B2y — Bop |
~1Fn = ta+ (= DI+ 2401 [ 5= ta + (0 = D) || BrF7 — Brl]}
< ullxn -’
+ O+ 8) {oen = pII* = I = % = (p - @) |I°
+ 22|20 = X = (p = @) || | B2xn — Bop |
%= yn+ (=D + 21 [1%0 = yu + (0 - ) ||| B1 %0 - Bug|
1Y = Gn = (0= DII* + 202l yn = G = (p ~ @) ||| Boya — Bop|
~NFn =t + (= DI+ 2401 [5 — ta + (0~ D) || Br5i — Bral]|}
< Nl = plI* + 212l = % = (p = @) ||| Boxn — Bap|

+ 21 [| % = yn + (p = @) ||| B1 %0 - Bug|
+2p2||Yn = Fn = (p = @) |1 B2yn = Bap || + 2011 |G = tu + (p = ) ||| BrFfn — Bral|
= (ot 60) [[len = % = (0= I+ %0 - v + (P - DI

Hlyn=Fu = =) + 170~ ta+ =) II°],

(3.30)

which hence implies that

(O + 8) [l = = (p = )P + 1% =y + (p - @) I
~ 2 ~ 2
Hyn=Fu= =D+ 1Gn—ta+ (P - D)I]

< |ln = pl* = l|zn = pII* + 2p2]| %0 = % = (p = ) || || Boxu - Bop||
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+2p1 || %0 = yu + (p = @) ||| B1&n — Baq|

+2p2||yn = = (p = @) ||| B2yn — Bop|

+ 21| Fn = tn + (p = @) ||| B1n — Bag|
< llaen = zull (|0 = | + |20 - pII)

+ 242 |2¢n = Xu = (p = @) || [|B22n — Bop |

+2p1 || %0 = yu + (p = @) ||| B1Xn — Baq|

+ 202 ||yn = G~ (P~ @) || [|B2yn — Bop|

+ 241 || — tn + (p = 9) ||| B1¥n — B
(3.31)

Since {6,} C [d,1] for some d € (0,1], ||x, — z4|| — 0, and {x,}, {yn}, {zn}, {Xu}, {¥n}, and
{t,} all are bounded, it follows from (3.23) that

Jim [[xn = %0 = (p=q) || = Jim [[%0 = yu + (p- )| = O,

. ) e (3.32)
Jim [|yn = Fn = (p=a) || = Jim [|§n = tn + (P - q) || = 0.
Consequently, it immediately follows that
lim o=l =0, lim [l taf) = 0. (3.39)
This shows that
nli_{rgo”xn —tu|l = 0. (3.34)
Also, note that
[z — xn||2 = ||y (?n - xn> + 6, <S?n - xn> |2
1 ” . 2
= H (Yn + 6n)m [Yn (tn - xn> + 6n<5tn - xn>] H
_ 2 Yn n 2 On - 2
= (Y’n + 6n) [Yn " 6n tn — Xy + Tn n 6n Stn — Xy (335)
_Lﬂz i, - Si, 2]
(Yn + 6n)
_ 2 R 2 . 2
= (Yn +6n) [Yn te — xnl| +6,||St, — x5 ] — YnOn||tn — Stul| -
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Thus we have

T 2 - 2 . 2
d “Stn—xn ] S(yn+6n)[yn ty — x|l + 6,||St, — xn ]
-~ 2
= ||Zn = Xn||* + Yn6n||Ex — Sy (3.36)
TP}
< |z = xul|” + ||tz — Stal| -
This together with ||z, — x,|| — 0and ||t, — St,|| — 0 implies that
lim ”s?n —xall=0,  lim [[f - x| = 0. (3.37)
Consequently, from (3.34) we immediately derive
lim ||t, — t.|| = 0. (3.38)

Step 4. We claim that w,, (x,) C Fix(S)NQNE.

Indeed, as {x,} is bounded, there is a subsequence {x,,} of {x,} such that {x,,}
converges weakly to some u € wy,(x,). We can obtain that u € Fix(S) N Q N Z. First, it is
clear from Lemma 2.6(ii) that u € Fix(S). Now let us show that u € =Z. We note that

20 = G(2xn) || = |20 — Pc[Pe(xn — p2Boxn) — p1 B1Pe (xn — p2Boxn) || (339)
= %0 = yull — 0 (n — o0), '

where G : C — C is defined as that in Lemma 1.1. According to Lemma 2.6(ii) we obtain
u € E. Further, let us show that u € Q. As a matter of fact, since @ is a-inverse strongly
monotone, and M is maximal monotone, by Lemma 2.5 we know that M + @ is maximal
monotone. Take a fixed (v, g) € G(M + @) arbitrarily. Then we have g € My + ®(y). So, we
have g - ®(y) € My. Since

?111' = Optn, + (1 - O'ni)]M,,u,,i (tn,- - ﬂniq)(tn,»)) (3.40)
implies
1
o (tn = Sn; = pnD(tn,)) € Msy,, (3.41)
where s, = t,,, + (fni —tn,)/ (1 —0y), we have

1
<y ~ S, § ~P(y) - o (tn, = Sm = #n,-<b(tn,-))> >0, (3.42)
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which hence yields
1
<]/ ~ Snis g> 2 <]/ - Sni’q)(y> + T(t"i = Sm; — #"iq)(t"i))>

1
= (Y = 5, P(y) — D(ty,)) + <y ey #—(tni - Sn,~)>

ni

2 a”(I)(y) - (D(S"i)HZ + <3/ = S, D(sp;) — (D(tm)> + <y ~ Snis I/li(tni - Sni)>

ni

< (1= 50, D(5) = (1)) + (v - sni,#iam “su)).

(3.43)
Observe that
1
<y = Sn;, D(sy,) — (I)(tm)> + <y ~ Snis /T(tm - Sm)>|
1
<y = 5ul100) = @61 + 1y =l | -t =2
" (3.44)
< Ly = sullisn = tall + 21y = sullitn - 50
=7 Y = Sn||ISn; — Iy s Y = Sni|[itn; = Sm;
1 1
= <; + E) ”y - Sni””tni - Sni”'
From ||S‘rli - tTli“ = (1/(1 - O'ni))”?ni - tTli” < (1/(1 - C))”?n,- - tm“ - 0/ it follows that
lim ‘ (Y = S, D(sn,) — D(tn,)) + <y ~ Su,, ‘ui(tni - sn,.)>l =0. (3.45)
1— 00 ni

Since ||x, —ta]| — 0, ||ty —tall — 0, and x,, — u, we derive s,,, = t,,, + ((ts, —tn,) /(1= 0,,)) — 1,
and hence by letting i — oo we get from (3.43)

(y-ug)20. (3.46)

This shows that 0 € ®(u) + Mu. Thus, u € Q. Therefore, u € Fix(S) QN Z.
Step 5. We claim that

Jim 1 = ol = 1im [ly ~ of| = lim 1z, ~ boll =0, (347)

where Iy = Prix(s)n@nzXo-
Indeed, Since Iy = Prix(s)nanzX0, and u € Fix(5) N QN E, from (3.14) we have

llfo = 2ol <l = xo]| < Lim inf[|x, — ol < limsupllacn, — xol| < [|lo = xo]]. (3.48)

i— o0
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So, we obtain

Hm [l = xoll = ||z = xo]]. (3.49)

From x,, — xo — u - xp, we have x,,, —xo — u— xp (due to the Kadec-Klee property of Hilbert
spaces [37]), and hence x,, — u. Since x,, = Pg,xp, and Iy € Fix(S)NQNEc C, N Qy C Qp,
we have

o = 2, |I* = (Io = 2y, Xn, = %0) + (lo = Xy, X0 = lo) 2 (lo = Xy, X0 — o). (3.50)

Asi — oo, we obtain —||[p — xni||2 > (lo —u,x0 — lp) > 0by ly = Prix(s)nanzx0, and u € Fix(S) N
QN Z. Hence we have u = [y. This implies that x, — Iy. It is easy to see that y, — [y and
z, — lp. This completes the proof. O

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let B; : C — H
be Bi-inverse strongly monotone for i = 1,2,let ® : C — H be an a-inverse strongly monotone
mapping, let M be a maximal monotone mapping with D(M) = C, and let S : C — C be a
nonexpansive mapping such that Fix(S) NQNZ # (. For given xy € C arbitrarily, let {x,}, {y.}, and
{2} be the sequences generated by
Yn = Pc[Pc(x, — p2Boxy) — p1BiPe(xn — poBaxy)],
tn = Pc[Pc(Yn — p2Boyn) — p1B1Pe(Yn — p2Boyn) ],
?n = Oply + (1 - Gn)]M,‘un (tn - ,un(p(tn))/
Zn = PuXn + Yntn + 6,5ty (3.51)
Co={z€C:lzn -2zl < llxn -z},
Qn=1{z€C:(xp—z,x0—x,) >0},
Xn+1 = Pc,ng, %0, Yn 20,
where p; € (0,26;) fori =1,2, {p,} C [€,2a] for some € € (0,2a], and {0,}, {Pn}, {yn}, {6n} C
[0, 1] such that {o,} C [0,c] for some ¢ € [0,1), {y.}, {6,} C [d,1] for some d € (0,1], and B, +

Yn+6n = 1forall n > 0. Then the sequences {x,}, {y,}, and {z,} converge strongly to the same point
X = Prix(s)nanzxo. Furthermore, (x,%) is a solution of the GSVI (1.10), where i = Pc(X — ppBoX).

Proof. Since S is a nonexpansive mapping, S must be a k-strictly pseudocontractive mapping
with k = 0. Take a fixed p € Fix(S) N N Z arbitrarily. Note that in Step 1 for the proof of
Theorem 3.1, we have obtained that {x,} is bounded and the relation holds

bo-p|| < llx-pll, Va0 (3.52)
(due to (3.11)). Moreover, in Step 2 for the proof of Theorem 3.1, we have proven that

lim |z, — x| = 0. (3.53)
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Now, utilizing Lemma 2.2, from the nonexpansiveness of S we deduce that

. _ 2
120 =PI = {|Ba e =) + (B~ ) + 62 (St~ p) |
) ~ 2 _ 2 2
< Bullxn —p|I” + ¥ t"_Pn + 6, Stn—p” — YnOn||Stn — tn
) N 2 N 2 2
Sﬂn”xn_]g” +Yn tn_Pn +6n tn_Pn _Yn6n Stn_tn
, , (3.54)
= Bulln =PI+ G+ 62) [ = || = 160 |SE ~ s
2 2 PN ~ 2
< Bullxn = pII" + (v + 60) |20 = PII” = y2On || St —
= ||xn—p||2—yn5n St — ty ?
This together with {y,}, {6,} C [d, 1] implies that
||t~ | < ||t~ B < e - P12~ 1z - pI?
n n —_ n¥n n n — n n (3'55)
< lloew = zull (llxn = | + |20 = Pl
So, we immediately derive
lim ”s?n—?n =0. (3.56)

It is easy to see that all the conditions of Theorem 3.1 are satisfied. Therefore, in terms of
Theorem 3.1 we obtain the desired result. O

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let B; : C — H
be pi-inverse strongly monotone for i = 1,2, and let S : C — C be a k-strictly pseudocontractive
mapping such that Fix(S) N Z#0. For given xy € C arbitrarily, let {x,}, {yn}, and {z,} be the
sequences generated by
Yn = Pc[Pc(xy — p2Boxy) — p1BiPe(xn — p2Baxy)],
Zn = PuXn + YuPc [Pe(Yn — p2Bayn) — 1B1Pc (Y — p2Boya) |
+6,SPc [Pc(Yn — p2Boyn) — 1 BiPc(yn — H2Bayn) |, (357)
Crn={z€C:lzn -2zl < llxn =z},
Qn={zeC:(xp—z,x0—x,) >0},
Xn+1 = PC,mQ,,xO/ Vn 2 O/

where p; € (0,2p;) for i = 1,2, {Pn}, {yn}, {64} C [0,1] such that {6,} C [d,1] for some d € (0,1],
Prn+Yn+6n=1,and (y,+06,)k <y, forall n > 0. Then the sequences {x,}, {y,}, and {z,} converge
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strongly to the same point X = Prix(s)nzxo. Furthermore, (x,y) is a solution of the GSVI (1.10), where
y = PC (E - ‘ungE)

Proof. Putting @ = M = 0 in Theorem 3.1, we have Q = C and Fix(S) NQNZE = Fix(S) N E. Let
a be any positive number in the interval (0, o0), and take any sequence {o,,} C [0, c] for some
¢ € [0,1) and any sequence {u,} C [€,2a] for some € € (0,2a]. Then @ is a-inverse strongly
monotone, and we have

Yn = Pc[Pc(x, — poBaxy) — p1 B1Pe (x, — poBoxy)],
ty = Pc[Pc(Yn — p2Boyn) — p1B1Pe(Yn — p2Boyn) ],
bn = Ot + (1= 0u) Tty (bn = pn®@(tn)) = Outy + (1= ) (I + M) "'t = 1,
Zn = PuXn + Yutn + 6,5ty (3.58)
Co=1{z€C:|lzp—z| < lxn—zl},
Qu={z€eC:{(xy,—zx0—x,) >0},

Xn1 = Pe,ng, %0, Yn 20,
which is just equivalent to (3.57). In this case, we have
Zy = PuXxn + ynfn +6,St, = BnXn + Yntn + 6,5t,. (3.59)
Note that in Steps 2 and 3 for the proof of Theorem 3.1, we have proven that

nh_{rolo”Z" — x| =0, nli_{rc}o”tn — x| =0, (3.60)

respectively. Thus, we have

160 (St = x|l < 120 = Xnll + Yulltn — xnll — 0. (3.61)

Consequently, it follows from {6,} C [d, 1] that ||St, — x,|| — 0, and hence ||St,, — t,|| — 0.
This shows that ||St, — t,]| — 0. Utilizing Theorem 3.1, we obtain the desired result. O

Remark 3.4. Our Theorems 3.1 improves, extends, and develops [36, Theorem 3.1], [15,
Theorem 3.1], [34, Theorem 3.2], and [35, Theorem 3.1] in the following aspects.

(i) Compared with the relaxed extragradient iterative algorithm in [34, Theorem 3.2]
and the hybrid extragradient iterative algorithm in [35, Theorem 3.1], our hybrid
extragradient iterative algorithms remove the requirements that 0 < liminf,, _, ., f,, <

limsup, ,  pBn <1and lim, o (Yns1/(1 = Prs1) = ¥u/ (1= Pn)) = 0.
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(ii) The problem of finding an element of Fix(S) N Q N Z in our Theorem 3.1 is more
general than the corresponding ones in [36, Theorem 3.1], [15, Theorem 3.1], and
[34, Theorem 3.2] to a great extent. Thus, beyond question our results are very
interesting and quite valuable.

(iii) The relaxed extragradient method for finding an element of Fix(S) N Z in [34,
Theorem 3.2] is extended to develop our hybrid extragradient iterative algorithms
for finding an element of Fix(S) N QN E.

(iv) The proof of our results are very different from that of [15, Theorem 3.1] because
our argument technique depends on two inverse strongly monotone mappings By
and By, the property of strict pseudocontractions (see Lemmas 2.6 and 2.7), and the
properties of the resolvent 1) to a great extent.

(v) Because our iterative algorithms involve two inverse strongly monotone mappings
By and B, a k-strictly pseudocontractive self-mapping S, and several parameter
sequences, they are more flexible and more subtle than the corresponding ones in
[36, Theorem 3.1], [15, Theorem 3.1], and [34, Theorem 3.2], respectively.

4. Applications
Utilizing Theorem 3.1, we prove some strong convergence theorems in a real Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let B; : C — H
be pi-inverse strongly monotone for i = 1,2, let ® : C — H be an a-inverse strongly monotone
mapping, and let M be a maximal monotone mapping with D(M) = C such that QNE # (. For given
xo € C arbitrarily, let {x,}, {ya}, and {z,} be the sequences generated by

Yn = Pc[Pc(xy — p2Boxy) — p1BiPe(xn — p2Baxy)],

tn = Pc[Pc(Yn — p2Boyn) — p1B1Pe(Yn — p2Boyn) ],
Zn = Puxn + (1= Bn) [Ontn + (1 = 0n) I, (En — pn®@(tn))], »
Cu={z€C: llzuzl < I 2]}, Y

Qn=1{zeC:{x;,—z,x0—x,) >0},

Xn+1 = PCnﬂanOI Vn > 0/

where p; € (0,2p;) fori = 1,2, {p,} C [e,2a] for some € € (0,2a], and {o,}, {Bn} C [0,1] such
that {o,} C [0,c] for some c € [0,1), and {p,} C [0,d] for some d € [0,1). Then the sequences
{xn}, {yn}, and {z,} converge strongly to the same point X = Ponzxo. Furthermore, (X,y) is a
solution of the GSVI (1.10), where i = Pc (X — paByX).
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Proof. In Corollary 3.2, putting S = I, we have

Yn = Pc[Pc(x, — p2Boxy) — p1BiPe(xn — p2Baxy)],
tn = Pc[Pc(Yn — p2Bayn) — p1B1Pe(Yn — p2Boyn) ],
by = Outn + (1= 0n) Ity (n — pn®@ (),
Zn = Puxn + Yn?n +6,St, = Buxy + (1 - ﬂn)fn, (4.2)
Cu={z€C:llzp—zl <llxu—zl},
Qn={z€eC:(x,—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Yn 20,

which is just equivalent to (4.1). In this case, we know that Fix(S) NQ N Z = QN Z. Therefore,
by Corollary 3.2 we obtain desired result. O

Theorem 4.2 (see [15, Theorem 4.2]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let S : C — C be a nonexpansive mapping such that Fix(S) is nonempty. For given
xo € C arbitrarily, let {x,} and {z,} be the sequences generated by

zp = (1=06,)x, + 6,5x,,

Co={z€C:|lzn—z[ <llxn—2z|},
(4.3)
Qu=1{z€C:(xn—2z,x—xn) 20},

Xni1 = Pc,ng,x0, ¥n2>0,

where {6,} C [d,1] for some d € (0,1]. Then the sequences {x,} and {z,} converge strongly to
Prix(s)X0-

Proof. Putting By = B, = ® = M = 0 in Corollary 3.2, we let 1, >, and a be any positive
numbers in the interval (0,0), and take any numbers y; € (0,26;) for i = 1,2 and any
sequence {y,} C [¢,2a] for some ¢ € (0,2a]. Then B; : C — H is p;-inverse strongly
monotone for i = 1,2, and ® : C — H is a-inverse strongly monotone. In this case, we
know that Fix(S) N QN Z = Fix(S) and

Yn = Pc[Pc(xy — p2Boxy) — p1BiPe (xn — poBaxy)| = x,,
ty = Pc[Pc(Yn — p2Bayn) — p1B1Pc (Yn — p2Boyn)| = Y,
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1L\n = Opty + (1 - O-n)]M,,un (tn - ,unq)(tn)) =ty,
Zn = PuXn + Yutn + 6,5ty = (1 = 6,) %y + 6,5x,,
Cn={z€C:llzn—2z[ < lxn -z},

Qn={z€C:(xy,—z,x0—x,) >0},
Xn+l1 = PCnﬁan()r Vn > O/
(4.4)

which is just equivalent to (4.3). Therefore, by Corollary 3.2 we obtain the desired result. [
Remark 4.3. Originally Theorem 4.2 is the result of Nakajo and Takahashi [22].

Theorem 4.4. Let H be a real Hilbert space. Let A : H — H be a A-inverse strongly monotone
mapping, let ® : H — H be an a-inverse strongly monotone mapping, let M : H — 2H be a
maximal monotone mapping, and let S : H — H be a nonexpansive mapping such that Fix(S) NN
A~0#0. For given xo € H arbitrarily, let {x,} and {z,} be the sequences generated by

tn = xp — p[Axy + A(x, — pAxy,)],

Zn = Prndn + Y M, (bn = #n@(tn)) + 62STnp, (bn = @ (tn)),
Co={zeC:llzn -zl <llxn - zl}, (4.5)
Qun={zeC:(x,—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Yn 20,
where p € (0,21), {u,} C [e,2a] for some € € (0,2a], and {Pn}, {yn}, {6n} C [0,1] such that

{yn}, {6} C [d,1] for some d € (0,1], and B, + yn + 6, = 1 for all n > 0. Then the sequences {x,}
and {z,} converge strongly to Prix(s)nana-10%X0-

Proof. Putting C = H, By = A, B, =0, y1 = p, and 0, = 0, for all n > 0 in Corollary 3.2,
we know that Pc = Py = I and the GSVI (1.10) coincides with the VI (1.3). Hence we have
A710 = VI(H, A) = E. In this case, we conclude that Fix(S) NQ N Z = Fix(S) nQ N A™'0 and
Yn = Pc[Pc(xn = paBaxn) = p1 BiPc(Xn = p2Baxn)] = X — pAxy,
tn = Pc[Pc(Yn = p2Bayn) = 1 BiPe(Yn = p2Bayn)| = Xn = pAXy — pA(xn — pAxy),
by = Outn + (1= 00) Inago, (bn = pn@(tn)) = Inage, (bn = pn®@(tn)),
20 = Bun + Yubn + 645k, (4.6)
Co={zeC:llzp—z[ < llxn —z[l},
Qn={z€eC:(xp—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, VY1 2>0.

Therefore, by Corollary 3.2 we obtain the desired result. O
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Let B: H — 2H be a maximal monotone mapping. Then, for any x € H and r > 0,
consider Jp,x = (I + rB)'x. It is known that such a | B,r is the resolvent of B.

Theorem 4.5. Let H be a real Hilbert space. Let A : H — H be a A-inverse strongly monotone
mapping, let ® : H — H be an a-inverse strongly monotone mapping, and let B,M : H — 2H
be two maximal monotone mappings such that A0 N B 10N Q#0. Let Jp,, be the resolvent of B for
each r > 0. For given xo € H arbitrarily, let {x,} and {z,} be the sequences generated by

tn = xp — p[Axy + A(x, — pAx,)],

Zn = PnXn + Y Mg, (bn = n@(En)) + 60T, Inip, (bn — pnD(tn)),
Cu={z€C:llzp—zll <llxu—zl}, (4.7)
Qn={zeC:(x,—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Yn 20,

where p € (0,21), {u,} C [e,2a] for some € € (0,2a], and {B,}, {yn}, {6n} C [0,1] such that
{yn}, {60} C [d,1] for some d € (0,1], and B, + yn + 6, = 1 for all n > 0. Then the sequences {x,}
and {z,} converge strongly to Pa-1pnp-10naX0-

Proof. Putting S = Jp, in Theorem 4.4, we know that Fix(S) = Fix(Jg,) = B710. In this case,
(4.5) is coincident with (4.7). Therefore, by Theorem 4.4 we obtain the desired result. O

It is well known that a mapping T : C — C is called pseudocontractive if
ITx-Ty|* < llx-yl* + |(I-T)x - (I-T)yl|? for all x,y € C. It is easy to see that this
definition is equivalent to the one that a mapping T : C — C is called pseudocontractive if
(Tx-Ty,x-y) <|x- y||2, for all x,y € C; see [8]. In the meantime, we also know one more
definition of a k-strictly pseudocontractive mapping, which is equivalent to the definition
given in the introduction. A mapping T : C — C is called k-strictly pseudocontractive if
there exists a constant k € [0, 1), such that

2 (4.8)

1k
(Tx =Ty, x-y) < |-yl - = -T)x - I -T)y

for all x,y € C. It is clear that in this case the mapping I — T is (1 - k)/2-inverse strongly
monotone. From [10], we know that if T is a k-strictly pseudocontractive mapping, then T is
Lipschitz continuous with constant (1+k)/(1-k), such that Fix(T) = VI(C,I-T) (see, e.g., the
proof of Theorem 4.6). It is obvious that the class of strict pseudocontractions strictly includes
the class of nonexpansive mappings and the class of pseudocontractions strictly includes the
class of strict pseudocontractions.

In the following theorem we introduce an iterative algorithm that converges strongly
to a common fixed point of three mappings: one of which is nonexpansive, and the other two
ones are strictly pseudocontractive mappings.

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a k-strictly pseudocontractive mapping, let T : C — C be a x-strictly pseudocontractive mapping,
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and let S : C — C be a nonexpansive mapping such that Fix(T) N Fix(S) N Fix(T') # 0. For given
xo € C arbitrarily, let {x,}, {y,}, and {z,} be the sequences generated by

Yn = Xn — pa(xn = Txn),
tn = Yn— 1 (Yn —Tyn),
by =ty = pn(tn = Ttn),
Zn = PuXn + Yabn + 62Stn, (4.9)
Ch={z€C:llzn—z| < |lxn—2zll},

Qn={zeC:(xp—z,x0—x,) >0},

Xn+1 = Pc,ng, X0, Yn 20,

where py € (0,1 -k), {pa} C [e,1 —«] for some € € (0,1 —x«], and {Bn}, {yn}, {64} C [0,1] such
that {y,}, {6,} C [d,1] for some d € (0,1], and B, + v, + 6, = 1 for all n > 0. Then the sequences
{xn}, {yn}, and {z,} converge strongly to Prix(T)nFix(S)nFix(T) X0-

Proof. Putting By =1-T,B, =0,®=1-I', M =0, and 0, = 0, for all n > 0 in Corollary 3.2, we
know that By is fi-inverse strongly monotone with f; = (1 -k)/2 and @ is a-inverse strongly
monotone with a = (1 — «)/2. Moreover, we have = = VI(C,B;) = VI(C,I - T). Noticing
1 € (0,1-k) and k € [0,1), we know that y; € (0,1), and hence (1 - p1)x, +p1Tx, € C. Also,
noticing {u,} C [e,1-x] C (0,1-x], we know that {y,,} C (0,1], and hence (1 —p,)t, +pnI't, €
C. This implies that

Yn = Pc[Pc(x, — p2Boxy) — p1BiPe(xn — p2Boxy) |

= Pc((1 = p1)xn + paTxn) = xn = p1 (0 — Txp),

ty = Pc[Pc(Yn — p2Bayn) — p1B1Pc (Yn — p2Boyn) |

= Pc((1=p1)Yn + 1TYn) = Yn = p1(yn = Tyn),

bty = Ontn + (1= 0n) Imgs, (tn = pn®@(tn)) = tn — pu(tn — Tty), (4.10)
Zy = PnXn + ynfn +6,St,,

Co={z€C:llzp—zl <llxn-zl},
Qn={zeC:(xp—z,x0—-x,) >0},

Xni1 = Pc,ng,x0, VYn2>0.
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Now let us show Fix(T) = VI(C, By). In fact, we have, for A > 0,

ueVI(C,B) & (Biu,y-u)y>0, VyeC
— (u-ABiu-u,u-y)>0, YyeC
— u=Pc(u-ABu)

—u=Pc(u-u+ATu)

(4.11)
— (u-Mu+A\Tu-u,u-y)>0, VyeC
— (u-Tu,u-y)<0, VyeC
—u=Tu
> u € Fix(T).
Next let us show Q = Fix(I'). In fact, noticing that M =0 and @ = I — I, we have
UeR—=0cd(u)+ Mu = 0=90u) =u-I'u = u e Fix(I). (4.12)
Consequently,
Fix(S) N QN E = Fix(S) N Fix(T') N VI(C, By) = Fix(S) N Fix(I') N Fix(T). (4.13)
Therefore, by Theorem 3.1 we obtain the desired result. O
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