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This paper is about a problem concerning nonlinear Yamabe-type operators of negative admissible
metrics. We first give a result on σk Yamabe problem of negative admissible metrics by virtue of the
degree theory in nonlinear functional analysis and the maximum principle and then establish an
existence and uniqueness theorem for the solutions to the problem.

1. Introduction

Let (M,g) be a compact closed, connected Riemannian manifold of dimension n ≥ 3. In 2003,
Gursky-Viaclovsky [1] introduced a modified Schouten tensor as follows:

At
g =

1
n − 2

(
Ricg −

tRg

2(n − 1)
g

)
, t ≤ 1, (1.1)

where Ricg and Rg are the Ricci tensor and the scalar curvature of g, respectively.
Define

σk(λ) =
∑

1≤i1≤···≤ik≤n
λi1 · · ·λik for λ = (λ1, . . . , λn) ∈ R

n,

Ω+
k =

{
λ = (λ1, . . . , λn) ∈ R

n; σj(λ) > 0, 1 ≤ j ≤ k
}
.

(1.2)

The σk Yamabe problem is to find a metric g̃ conformal to g, such that

σk

(
λg̃

(
Ag̃

))
= 1, λg̃

(
Ag̃

) ∈ Ω+
k on M, (1.3)
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where λg̃(Ag̃) denotes the eigenvalue of Ag̃ with respect to the metric g̃. This problem has
attracted great interest since the work of Viaclovsky in [2] (cf., e.g., [2–7] and references
therein).

Assume Ω−
k = −Ω+

k . Then the σk Yamabe problem in negative cone

σk

(−λg̃(Ag̃

))
= 1, λg̃

(
Ag̃

) ∈ Ω−
k on M, (1.4)

is still elliptic (see [1]).

Definition 1.1. A metric g̃ conformal to g is called negative admissible if

λg̃
(
At

g̃

)
∈ Ω−

k on M. (1.5)

Under the conformal relation g̃ = e2zg, the transformation law for the modified
Schouten tensor above is as follows:

Aτ
g̃ = Aτ

g − ∇2z − 1 − τ

n − 2
(Δz)g − 2 − τ

2
|∇z|2g + dz ⊗ dz. (1.6)

We consider the following nonlinear equation:

P(Z) := β
(
λg(Z)

)
= ϕ(x, z), λg(Z) ∈ Ω on M, (1.7)

where

Z = ∇2z +
1 − t

n − 2
(Δz)g +

2 − t

2
|∇z|2g − dz ⊗ dz −At

g, (1.8)

β ∈ C∞(Ω+)∩C0(Ω+) is a symmetric function and is homogeneous of degree one normalized,
and ϕ is a positive C∞ function satisfying the monotone condition:

there exists two constants γ < 0 < γ with

ϕ
(
x, γ

)
< β

(
−λg

(
At

g

))
< ϕ

(
x, γ

)
, ∀x ∈ M.

(1.9)

For this equation, we have the following.

Theorem 1.2. Let (M,g) be a compact, closed, connected Riemannian manifold of dimension n ≥ 3
and

At
g ∈ Ω−, for t < 1. (1.10)

Suppose that Ω+,Ω− ⊂ Rn are open convex symmetric cones with vertex at the origin, satisfying

Ωn ⊂ Ω ⊂ Ω1, Ω− = −Ω+, (1.11)
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where

Ω1 :=

{
λ = (λ1, . . . , λn);

n∑
i=1

λi > 0

}
,

Ωn := {λ = (λ1, . . . , λn); λi > 0 for 1 ≤ i ≤ n }.
(1.12)

Let β satisfy

(i) β > 0 in Ω+, βi := ∂β/∂λi > 0 on Ω+, and β(e) = 1 on Ω+, where

e = (1, . . . , 1). (1.13)

(ii) β is concave on Ω+, and

β(λ) ≤ 	σ1(λ), ∀λ ∈ Ω+, (1.14)

where 	 is a positive constant.

Moreover, assume that ϕ(x, z) is a positive C∞ satisfying condition (1.9). Then there exists a solution
to (1.7).

Theorem 1.3. Let (M,g) be a compact, closed, connected Riemannian manifold of dimension n ≥ 3
and

At
g ∈ Ω−, for t < 1. (1.15)

Let (β,Ω+) be those as in Theorem 1.2. Then there exist a function φ and a positive number λ, such
that φ is a solution to the eigenvalue problem

P(U) := β
(
λg(U)

)
= Λ, (1.16)

where

U = −At
g̃ = ∇2φ +

1 − t

n − 2
(
Δφ

)
g +

2 − t

2
∣∣∇φ

∣∣2g − dφ ⊗ dφ −At
g (1.17)

for conformal metric g̃ = e2φ and λg(U) denotes the eigenvalue of U with respect to metric g.

Remark 1.4. (1) (φ,Λ) is unique in Theorem 1.3 under the sense that, if there is another solu-
tion (φ′,Λ′) satisfying (1.16), then

Λ = Λ′, φ = φ′ + c (1.18)

for some constant c.
(2) Λ is called the eigenvalue related to fully nonlinear Yamabe-type operators of

negative admissible metrics, and φ is called an eigenfunction with respect to Λ.
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2. Proof of Theorem 1.2

To prove Theorem 1.2, firstly, let us give the following proposition.

Proposition 2.1. Suppose all the conditions in Theorem 1.2 are satisfied. Then every C2 solution z to
(1.7) with

γ ≤ z ≤ γ (2.1)

satisfies

γ < z < γ. (2.2)

Proof. Assume z is a solution to (1.7)with γ ≤ z. Denote

z̃ = z − γ,

zs = sz + (1 − s)γ,

Zs = ∇2zs +
1 − t

n − 2
(Δzs)g +

2 − t

2
|∇zs|2g − dzs ⊗ dzs −At

g.

(2.3)

It is easy to verify that Zs ∈ Ω+.
Write

Q[z] = P(Z) − ϕ(x, z). (2.4)

Then

Q[z] −Q
[
γ
]
= 0 − P

(
−At

g

)
+ ϕ

(
x, γ

)
. (2.5)

On the other hand,

Q[z] −Q
[
γ
]
=
∫1

0

d

ds
Q[zs]ds

=
∫1

0
Tij(Zs)dsDij z̃ + biDiz̃ + cz̃

= L(z̃)

(2.6)

for some bound bi and constant c, where

Tij = Pij +
1 − t

n − 2

∑
l

Pllγij ≥ 0,

Pij =
∂P

∂Zij
≥ 0

(2.7)

by condition (ii).



Journal of Applied Mathematics 5

Therefore, we know that L is an elliptic operator, and

L(z̃) < 0 with z̃ ≥ 0. (2.8)

By the maximum principle, we get z̃ > 0. That is,

z > γ. (2.9)

Similarly, we can derive

z < γ, (2.10)

for solution z with z ≤ γ .

Thus, we have the following Gradient and Hessian estimates for solutions to (1.7).

Lemma 2.2. Let z be a C3 solution to (1.7) for some t < 1 satisfying γ < z < γ . Then

‖∇z‖L∞ < C1, (2.11)

where C1 depends only upon γ, γ , g, t, ϕ.
Moreover,

∥∥∥∇2z
∥∥∥
L∞

< C2, (2.12)

where C2 depends only upon γ, γ , g, t, ϕ, C1.

Proof of Theorem 1.2. We now prove Theorem 1.2 using a priori estimates in Lemma 2.2, the
maximum principle in Proposition 2.1, and the degree theory in nonlinear functional analysis
(cf., e.g., [8]).

For each 0 ≤ τ ≤ 1, let

βτ(λ) := β(τλ + (1 − τ)σ1(λ)e), (2.13)

(here e = (1, . . . , 1) as in Section 1) which is defined on

Ω+
τ = {λ ∈ R

n; τλ + (1 − τ)σ1(λ)e ∈ Ω+}. (2.14)

We consider the problem

P(τZ + (1 − τ)σ1(Z)e) = τϕ(x, z) + (1 − τ)σ1

(
−At

g

)
e2z (2.15)
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on M, where

Z = ∇2z +
1 − t

n − 2
(Δz)g +

2 − t

2
|∇z|2g − dz ⊗ dz −At

g. (2.16)

Since At
g ∈ Ω−, we have

σ1

(
−At

g

)
> 0 (2.17)

by condition (ii). Hence for τ = 0, it follows from the maximum principle that z = 0 is the
unique solution.

In view of Proposition 2.1, we see that, for each τ ∈ [0, 1], every C2 solution zτ to (2.15)
with γ ≤ zτ ≤ γ satisfies

γ < zτ < γ. (2.18)

This, together with Lemma 2.2, shows that for each τ ∈ [0, 1] and solution zτ to (2.15) with
γ ≤ zτ ≤ γ , the following estimate holds

‖zτ‖C2 < C, (2.19)

for some constant C independent of τ .
This estimate yields uniform ellipticity, and by virtue of the concavity condition (ii),

the well-known theory of Evans-Krylov, and the standard Schauder estimate (cf. [9]), we
know that there exists a constant K independent of τ such that

‖zτ‖C4,α < K, (2.20)

where zτ is a C2 solution to (2.15)with γ ≤ zτ ≤ γ .
Set

Sτ :=
{
γ < zτ < γ

}
∩ {‖zτ‖C4,α < K} ∩ {Z ∈ Ω+

τ }, (2.21)

and define Tτ : C4,α → C2,α by

Tτ(z) = P(τZ + (1 − τ)σ1(Z)e) − τϕ(x, z) − (1 − τ)σ1

(
−At

g

)
e2z. (2.22)

Then, by (2.19), we see that there is no solution to the equation

Tτ(z) = 0 on ∂Sτ . (2.23)
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So the degree of Tτ is well defined and independent of τ . As mentioned above, there is a
unique solution at τ = 0. Therefore

deg(T0, S0, 0)/= 0. (2.24)

Since the degree is homotopy invariant, we have

deg(T1, S1, 0)/= 0. (2.25)

Thus, we conclude that (1.7) has a solution in S1.
The proof of Theorem 1.2 is completed.

3. Proof of Theorem 1.3

Proof of Theorem 1.3. Take a look at the following equation:

P̃(u) = P

(
∇2u +

1 − t

n − 2
(Δu)g +

2 − t

2
|∇u|2g − du ⊗ du −At

g

)
− eu = λ. (3.1)

We will prove that, for small λ > 0, (3.1) has a unique smooth solution.
Since ∂P̃/∂u < 0, the uniqueness of the solution to (3.1) follows from the maximum

principle.
Next, we show the existence of the solution to (3.1) by using Theorem 1.2.
It follows from

At
g ∈ Ω− (3.2)

that, for λ > 0 small enough, we can find two constants γ < 0 < γ , such that

e
γ + λ < P

(
−At

g

)
< eγ + λ. (3.3)

That is, condition (1.9) for ϕ(x, z) in Theorem 1.2 is satisfied. Therefore, by the result in
Theorem 1.2, the existence of unique solution to (3.1) is established for small λ > 0.

Set

E := {λ > 0; (3.1) has a solution}. (3.4)

Since E/= ∅, we can define

Λ = sup
λ∈E

λ. (3.5)
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We claim Λ is finite. Actually,

λ < P

(
∇2u +

1 − t

n − 2
(Δu)g +

2 − t

2
|∇u|2g − du ⊗ du −At

g

)
. (3.6)

If we assume that at x0, u achieves its maximum, then ∇2u ≤ 0, and so

λ < P

(
∇2u +

1 − t

n − 2
(Δu)g −At

g

)
≤ P

(
−At

g

)
. (3.7)

This means that

Λ ≤ P
(
−At

g

)
. (3.8)

For any sequence λi ⊂ E with λi → Λ, let uλi be the corresponding solution to (3.1)
with λ = λi.

First, we claim that

inf
M

uλi−→ −∞ as i −→ ∞. (3.9)

Suppose this is not true, that is,

inf
M

uλi ≥ −C0 (3.10)

for a positive constant C0. Then, by (3.1), at any maximum point x0 of uλi ,

max
M

uλi ≤ C (3.11)

for some constant C depending only on P(−At
g). Then the apriori estimates imply that uλi (by

taking a subsequence) converges to a smooth function u0 in C∞, such that u0 satisfies (3.1) for
λ = λ0. Since the linearized operator of (3.1) is invertible, by the standard implicit function
theorem, we have a solution to (3.1) for

λ = λ0 + δ with δ > 0 small enough. (3.12)

This is a contradiction. Hence (3.9) holds.
Next, we prove that

max
M

uλi−→ −∞ as i −→ ∞. (3.13)

We divided our proof into two steps.

Step 1. Let

Λ = P
(
−At

g

)
. (3.14)
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Then, following the above argument,

uλi → φ0 in C∞, (3.15)

and (Λ, u0) is a solution to (3.1). Assume u0 attains its maximum at y0. Then at y0,

∇2u0 ≤ 0, ∇u0 = 0. (3.16)

Therefore,

eu0(y0) ≤ P
(
−At

g

)
−Λ = 0. (3.17)

So

u0
(
y0
)
= −∞. (3.18)

That means that (3.13) holds.

Step 2. Let

P
(
−At

g

)
−Λ =  > 0. (3.19)

Then, if (3.13) is not true, that is,

max
M

uλi≥ −C0 (3.20)

for a positive constant C0, write

zλi := uλi −max
M

uλi . (3.21)

Then we have

max
M

zλi −→ 0, inf
M

zλi −→ −∞, (3.22)

as i → ∞.
On the other hand, zλi satisfies

P

(
∇2zλi +

1 − t

n − 2
(Δzλi)g +

2 − t

2
|∇zλi |2 − dzλi ⊗ dzλi −At

g

)
= emaxMuλi ezλi + λi. (3.23)

Since at any minimum point z0 of zλi ,

∇2zλi ≥ 0, ∇zλi = 0. (3.24)
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Consequently, at z0, we obtain

emaxMuλi ezλi ≥ P
(
−At

g

)
−Λ > 0. (3.25)

Thus, it is easy to verify that zλi is bounded from below as i → ∞. This is a contradiction. So
we see that (3.13) is true.

By a priori estimates results again, we deduce that zλi converges to a smooth function
z in C∞ and z satisfies (1.16) with λ = Λ.

Finally, let us prove the uniqueness.
Denote

Z := ∇2z +
1 − t

n − 2
(Δz)g +

2 − t

2
|∇z|2g − dz ⊗ dz −At

g, (3.26)

and for any smooth functions z0 and z1, set

v = z1 − z0,

zs = sz1 + (1 − s)z0,

Zs = ∇2zs +
1 − t

n − 2
(Δzs)g +

2 − t

2
|∇zs|2g − dzs ⊗ dzs −At

g.

(3.27)

Then we get

P(Z1) − P(Z0) =
∫1

0

d

ds
P(Zs) =

∫1

0

[
Pij +

1 − t

n − 2

∑
l

Pllγij

]
(Zs)dsvij + blvl (3.28)

for some bounded bl. Thus, if

z0 = φ, z1 = φ′ (3.29)

are two solutions to (1.16) for some λ and λ′, respectively, then aij is positive definite. There-
fore,

φ = φ′ + c (3.30)

for some constant c by the maximum principle.
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