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The aim of this article is to obtain more general forms than the papers of (Jun et al. (2010); Jun
et al. (in press)). The notions of N-subalgebras of types (∈, qk), (∈,∈ ∨qk), and (q,∈ ∨qk) are
introduced, and the concepts of qk-support and ∈ ∨qk-support are also introduced. Several related
properties are investigated. Characterizations of N-subalgebra of type (∈,∈ ∨qk) are discussed,
and conditions for an N-subalgebra of type (∈,∈ ∨qk) to be an N-subalgebra of type (∈,∈) are
considered.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function
μA : X → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0 for
elements excluded from the setA. So far most of the generalizations of the crisp set have been
conducted on the unit interval [0, 1], and they are consistent with the asymmetry observation.
In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive
information that fits the crisp point {1} into the interval [0, 1]. Because no negative meaning
of information is suggested, we now feel a need to deal with negative information. To do so,
we also feel a need to supply mathematical tool. To attain such object, Jun et al. [1] introduced
a new function which is called negative-valued function and constructed N-structures.
They applied N-structures to BCK/BCI-algebras and discussed N-subalgebras and N-
ideals in BCK/BCI-algebras. Jun et al. [2] considered closed ideals in BCH-algebras based
on N-structures. To obtain more general form of an N-subalgebra in BCK/BCI-algebras,
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Jun et al. [3] defined the notions ofN-subalgebras of types (∈,∈), (∈, q), (∈,∈ ∨q), (q,∈), (q, q),
and (q,∈ ∨q) and investigated related properties. They also gave conditions for an N-
structure to be an N-subalgebra of type (q,∈ ∨q). Jun et al. provided a characterization of an
N-subalgebra of type (∈,∈ ∨q) (see [3, 4]).

In this paper, we try to have more general form of the papers [3, 4]. We introduce the
notions of N-subalgebras of types (∈, qk), (∈,∈ ∨qk), and (q,∈ ∨qk). We also introduce the
concepts of qk-support and ∈ ∨qk-support and investigate several properties. We discuss
characterizations of N-subalgebra of type (∈,∈ ∨qk). We consider conditions for an N-
subalgebra of type (∈,∈ ∨qk) to be anN-subalgebra of type (∈,∈). The important achievement
of the study of N-subalgebras of types (∈, qk), (∈,∈ ∨qk), and (q,∈ ∨qk) is that the notions of
N-subalgebras of types (∈, q), (∈,∈ ∨q), and (q,∈ ∨q) are a special case of N-subalgebras
of types (∈, qk), (∈,∈ ∨qk), and (q,∈ ∨qk), and thus so many results in the papers [3, 4] are
corollaries of our results obtained in this paper.

2. Preliminaries

Let K(τ) be the class of all algebras with type τ = (2, 0). By a BCI-algebra, we mean a system
X := (X, ∗, 0) ∈ K(τ) in which the following axioms hold:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X is a
BCK-algebra. We can define a partial ordering ≤ by

(∀x, y ∈ X
) (

x ≤ y ⇐⇒ x ∗ y = 0
)
. (2.1)

In a BCK/BCI-algebra X, the following hold:

(a1) (∀x ∈ X)(x ∗ 0 = x),

(a2) (∀x, y, z ∈ X)((x ∗ y) ∗ z = (x ∗ z) ∗ y),
for all x, y, z ∈ X.

A nonempty subset S of a BCK/BCI-algebras X is called a subalgebra of X if x ∗ y ∈ S
for all x, y ∈ S. For our convenience, the empty set ∅ is regarded as a subalgebra of X.

We refer the reader to the books [5, 6] for further information regarding BCK/BCI-
algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise,

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

(2.2)
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Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that
an element ofF(X, [−1, 0]) is a negative-valued function fromX to [−1, 0] (briefly,N-function
on X). By anN-structure, we mean an ordered pair (X, f) of X and anN-function f on X. In
what follows, let X denote a BCK/BCI-algebras and f an N-function on X unless otherwise
specified.

Definition 2.1 (see [1]). By a subalgebra ofX based onN-function f (briefly,N-subalgebra of
X), we mean anN-structure (X, f) in which f satisfies the following assertion:

(∀x, y ∈ X
) (

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)})

. (2.3)

For any N-structure (X, f) and t ∈ [−1, 0), the set

C
(
f ; t
)
:=
{
x ∈ X | f(x) ≤ t

}
(2.4)

is called a closed t-support of (X, f), and the set

O
(
f ; t
)
:=
{
x ∈ X | f(x) < t

}
(2.5)

is called an open t-support of (X, f).
Using the similar method to the transfer principle in fuzzy theory (see [7, 8]), Jun et al.

[2] considered transfer principle inN-structures as follows.

Theorem 2.2 (see [2];N-transfer principle). AnN-structure (X, f) satisfies the propertyP if and
only if for all α ∈ [−1, 0],

C
(
f ;α
)
/= ∅ =⇒ C

(
f ;α
)
satisfies the property P. (2.6)

Lemma 2.3 (see [1]). An N-structure (X, f) is an N-subalgebra of X if and only if every open
t-support of (X, f) is a subalgebra of X for all t ∈ [−1, 0).

3. General Form of N-Subalgebras with Type (∈,∈ ∨q)
In what follows, let t and k denote arbitrary elements of [−1, 0) and (−1, 0], respectively,
unless otherwise specified.

Let (X, f) be an N-structure in which f is given by

f
(
y
)
=

{
0 if y /=x,

t if y = x.
(3.1)

In this case, f is denoted by xt, and we call (X, xt) a point N-structure. For any N-structure
(X, g), we say that a point N-structure (X, xt) is an N∈-subset (resp., Nq-subset) of (X, g) if
g(x) ≤ t (resp., g(x) + t + 1 < 0). If a point N-structure (X, xt) is an N∈-subset of (X, g) or an
Nq-subset of (X, g), we say (X, xt) is anN∈∨q-subset of (X, g). We say that a pointN-structure
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(X, xt) is anNqk -subset of (X, g) if g(x) + t − k + 1 < 0. Clearly, everyNqk -subset with k = 0 is
anNq-subset. Note that if k, r ∈ (−1, 0] with k < r, then every Nqk -subset is an Nqr -subset.

Definition 3.1. AnN-structure (X, f) is called an N-subalgebra of type

(i) (∈,∈) (resp., (∈, q) and (∈,∈ ∨q)) if whenever two point N-structures (X, xt1) and
(X, yt2) are N∈-subsets of (X, f) then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an
N∈-subset (resp., Nq-subset and N∈∨q-subset) of (X, f).

(ii) (q,∈) (resp., (q, q) and (q,∈ ∨q)) if whenever two point N-structures (X, xt1) and
(X, yt2) are Nq-subsets of (X, f) then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an
N∈-subset (resp., Nq-subset and N∈∨q-subset) of (X, f).

Definition 3.2. An N-structure (X, f) is called an N-subalgebra of type (∈,∈ ∨qk) (resp., (q,∈
∨qk)) if whenever two point N-structures (X, xt1) and (X, yt2) are N∈-subsets (resp., Nq-
subsets) of (X, f) then the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈∨qk -subset of (X, f).

Example 3.3. Consider a BCI-algebra X = {0, a, b, c}with the following Cayley table:

∗ 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

(3.2)

Let (X, f) be an N-structure in which f is defined by

f =
(

0 a b c
−0.6 −0.7 −0.3 −0.3

)
. (3.3)

It is routine to verify that (X, f) is an N-subalgebra of type (∈,∈ ∨q−0.2).
Note that if k, r ∈ (−1, 0] with k < r, then every N-subalgebra of type (∈,∈ ∨qk) is an

N-subalgebra of type (∈,∈ ∨qr), but the converse is not true as seen in the following example.

Example 3.4. The N-subalgebra (X, f) of type (∈,∈ ∨q−0.2) in Example 3.3 is not of type (∈,∈
∨q−0.4) since (X, a−0.65) and (X, a−0.68) are N∈-subsets of (X, f), but

(
X, (a ∗ a)∨{−0.65,−0.68}

)
(3.4)

is not an N∈∨q−0.4 -subset of (X, f).

Theorem 3.5. EveryN-subalgebra of type (∈,∈) is of type (∈,∈ ∨qk).

Proof. Straightforward.

Taking k = 0 in Theorem 3.5 induces the following corollary.
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Corollary 3.6. EveryN-subalgebra of type (∈,∈) is of type (∈,∈ ∨q).

The converse of Theorem 3.5 is not true as seen in the following example.

Example 3.7. Consider the N-subalgebra (X, f) of type (∈,∈ ∨q−0.2) which is given in
Example 3.3. Then (X, f) is not anN-subalgebra of type (∈,∈) since (X, a−0.65) and (X, a−0.68)
are N∈-subsets of (X, f), but (X, (a ∗ a)∨{−0.65,−0.68}) is not an N∈-subset of (X, f).

Definition 3.8. An N-structure (X, f) is called an N-subalgebra of type (∈, qk) if whenever
two pointN-structure (X, xt1) and (X, yt2) areN∈-subsets of (X, f) then the pointN-structure
(X, (x ∗ y)∨{t1,t2}) is an Nqk -subset of (X, f).

Theorem 3.9. EveryN-subalgebra of type (∈, qk) is of type (∈,∈ ∨qk).

Proof. Straightforward.

Taking k = 0 in Theorem 3.9 induces the following corollary.

Corollary 3.10. EveryN-subalgebra of type (∈, q) is of type (∈,∈ ∨q).

The converse of Theorem 3.9 is not true as seen in the following example.

Example 3.11. Consider the N-subalgebra (X, f) of type (∈,∈ ∨q−0.2) which is given in
Example 3.3. Then (X, a−0.65) and (X, b−0.25) areN-subsets of (X, f), but

(
X, (a ∗ b)∨{−0.65,−0.25}

)
= (X, c−0.2) (3.5)

is not an Nqk -subset of (X, f) for k = −0.2 since f(c) − 0.25 − 0.2 + 1 > 0.

We consider a characterization of an N-subalgebra of type (∈,∈ ∨qk).

Theorem 3.12. AnN-structure (X, f) is anN-subalgebra of type (∈,∈ ∨qk) if and only if it satisfies

(∀x, y ∈ X
)
(
f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

})
. (3.6)

Proof. Let (X, f) be an N-structure of type (∈,∈ ∨qk). Assume that (3.6) is not valid. Then
there exists a, b ∈ X such that

f(a ∗ b) >
∨{

f(a), f(b),
k − 1
2

}
. (3.7)

If
∨{f(a), f(b)} > (k − 1)/2, then f(a ∗ b) > ∨{f(a), f(b)}. Hence

f(a ∗ b) > t ≥
∨{

f(a), f(b)
}

(3.8)
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for some t ∈ [−1, 0). It follows that point N-structures (X, at) and (X, bt) are N∈-subsets of
(X, f), but the point N-structure (X, (a ∗ b)t) is not an N∈-subset of (X, f). Moreover,

f(a ∗ b) + t − k + 1 > 2t − k + 1 = 0, (3.9)

and so (X, (a ∗ b)t) is not an Nqk -subset of (X, f). Consequently, (X, (a ∗ b)t) is not an
N∈∨qk -subset of (X, f). This is a contradiction. If

∨{f(a), f(b)} ≤ (k − 1)/2, then f(a) ≤
(k − 1)/2, f(b) ≤ (k − 1)/2 and f(a ∗ b) > (k − 1)/2. Thus (X, a(k−1)/2) and (X, b(k−1)/2) are
N∈-subsets of (X, f), but (X, (a ∗ b)(k−1)/2) is not anN∈-subset of (X, f). Also,

f(a ∗ b) + k − 1
2

− k + 1 >
k − 1
2

+
k − 1
2

− k + 1 = 0, (3.10)

that is, (X, (a ∗ b)(k−1)/2) is not an Nqk -subset of (X, f). Hence (X, (a ∗ b)(k−1)/2) is not an
N∈∨qk -subset of (X, f), a contradiction. Therefore (3.6) is valid.

Conversely, suppose that (3.6) is valid. Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that two
point N-structures (X, xt1) and (X, yt2) are N∈-subsets of (X, f). Then

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
≤
∨{

t1, t2,
k − 1
2

}
. (3.11)

Assume that t1 ≥ (k−1)/2 or t2 ≥ (k−1)/2. Then f(x ∗y) ≤ ∨{t1, t2}, and so (X, (x ∗y)∨{t1,t2})
is anN∈-subset of (X, f). Now suppose that t1 < (k − 1)/2 and t2 < (k − 1)/2. Then f(x ∗y) ≤
(k − 1)/2, and thus

f
(
x ∗ y) +

∨
{t1, t2} − k + 1 <

k − 1
2

+
k − 1
2

− k + 1 = 0, (3.12)

that is, (X, (x ∗ y)∨{t1,t2}) is an Nqk -subset of (X, f). Therefore (X, (x ∗ y)∨{t1,t2}) is an N∈∨qk -
subset of (X, f) and consequently (X, f) is an N-subalgebra of type (∈,∈ ∨qk).

Corollary 3.13 (see [3]). AnN-structure (X, f) is anN-subalgebra of type (∈,∈ ∨q) if and only if
it satisfies

(∀x, y ∈ X
) (

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,−0.5}

)
. (3.13)

Proof. It follows from taking k = 0 in Theorem 3.12.

We provide conditions for an N-structure to be anN-subalgebra of type (q,∈ ∨qk).

Theorem 3.14. Let S be a subalgebra of X and let (X, f) be an N-structure such that

(a) (∀x ∈ X)(x ∈ S ⇒ f(x) ≤ (k − 1)/2),

(b) (∀x ∈ X)(x /∈ S ⇒ f(x) = 0).

Then (X, f) is an N-subalgebra of type (q,∈ ∨qk).
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Proof. Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that two pointN-structures (X, xt1) and (X, yt2)
are Nq-subsets of (X, f). Then f(x) + t1 + 1 < 0 and f(y) + t2 + 1 < 0. Thus x ∗ y ∈ S because
if it is impossible, then x /∈ S or y /∈ S. Thus f(x) = 0 or f(y) = 0, and so t1 < −1 or
t2 < −1. This is a contradiction. Hence f(x ∗ y) ≤ (k − 1)/2. If

∨{t1, t2} < (k − 1)/2, then
f(x ∗ y) +∨{t1, t2} − k + 1 < ((k − 1)/2) + ((k − 1)/2) − k + 1 = 0 and so the pointN-structure
(X, (x ∗y)∨{t1,t2}) is anNqk -subset of (X, f). If

∨{t1, t2} ≥ (k − 1)/2, then f(x ∗y) ≤ (k − 1)/2 ≤∨{t1, t2} and so the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈-subset of (X, f). Therefore
the point N-structure (X, (x ∗ y)∨{t1,t2}) is an N∈∨qk -subset of (X, f). This shows that (X, f) is
anN-subalgebra of type (q,∈ ∨qk).

Taking k = 0 in Theorem 3.14, we have the following corollary.

Corollary 3.15 (see [3]). Let S be a subalgebra of X and let (X, f) be anN-structure such that

(a) (∀x ∈ X)(x ∈ S ⇒ f(x) ≤ −0.5),
(b) (∀x ∈ X)(x /∈ S ⇒ f(x) = 0).

Then (X, f) is an N-subalgebra of type (q,∈ ∨q).

Theorem 3.16. Let (X, f) be an N-subalgebra of type (qk,∈ ∨qk). If f is not constant on the open
0-support of (X, f), then f(x) ≤ (k − 1)/2 for some x ∈ X. In particular, f(0) ≤ (k − 1)/2.

Proof. Assume that f(x) > (k−1)/2 for all x ∈ X. Since f is not constant on the open 0-support
of (X, f), there exists x ∈ O(f ; 0) such that tx = f(x)/= f(0) = t0. Then either t0 < tx or t0 > tx.
For the case t0 < tx, choose r < (k − 1)/2 such that t0 + r − k + 1 < 0 < tx + r − k + 1. Then the
pointN-structure (X, 0r) is anNqk -subset of (X, f). Since (X, x−1) is anNqk -subset of (X, f). It
follows from (a1) that the point N-structure (X, (x ∗ 0)∨{r,−1}) = (X, xr) is an N∈∨qk -subset of
(X, f). But, f(x) > (k−1)/2 > r implies that the pointN-structure (X, xr) is not anN∈-subset
of (X, f). Also, f(x) + r − k + 1 = tx + r − k + 1 > 0 implies that the pointN-structure (X, xr) is
not anNqk -subset of (X, f). This is a contradiction. Assume that t0 > tx and take r < (k − 1)/2
such that tx + r − k + 1 < 0 < t0 + r − k + 1. Then (X, xr) is an Nqk -subset of (X, f). Since

f(x ∗ x) = f(0) = t0 > −r + k − 1 > −k − 1
2

+ k − 1 =
k − 1
2

> r, (3.14)

(X, (x ∗ x)∨{r,r}) is not an N∈-subset of (X, f). Since

f(x ∗ x) +
∨

{r, r} − k + 1 = f(0) + r − k + 1 = t0 + r − k + 1 > 0, (3.15)

(X, (x ∗ x)∨{r,r}) is not an Nqk -subset of (X, f). Hence (X, (x ∗ x)∨{r,r}) is not an N∈∨qk -subset
of (X, f), which is a contradiction. Therefore f(x) ≤ (k − 1)/2 for some x ∈ X. We now prove
that f(0) ≤ (k−1)/2. Assume that f(0) = t0 > (k−1)/2. Note that there exists x ∈ X such that
f(x) = tx ≤ (k − 1)/2 and so tx < t0. Choose t1 < t0 such that tx + t1 − k + 1 < 0 < t0 + t1 − k + 1.
Then f(x)+t1−k+1 = tx+t1−k+1 < 0, and thus the pointN-structure (X, xt1) is anNqk -subset
of (X, f). Now we have

f(x ∗ x) +
∨

{t1, t1} − k + 1 = f(0) + t1 − k + 1 = t0 + t1 − k + 1 > 0 (3.16)
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and f(x ∗ x) = f(0) = t0 > t1 =
∨{t1, t1}. Hence (X, (x ∗ x)∨{t1,t1}) is not an N∈∨qk -subset of

(X, f). This is a contradiction, and therefore f(0) ≤ (k − 1)/2.

Corollary 3.17 (see [3]). Let (X, f) be anN-subalgebra of type (q,∈ ∨q). If f is not constant on the
open 0-support of (X, f), then f(x) ≤ −0.5 for some x ∈ X. In particular, f(0) ≤ −0.5.

Theorem 3.18. AnN-structure (X, f) is anN-subalgebra of type (∈,∈ ∨qk) if and only if for every
t ∈ [(k − 1)/2, 0] the nonempty closed t-support of (X, f) is a subalgebra of X.

Proof. Assume that (X, f) is an N-subalgebra of type (∈,∈ ∨qk) and let t ∈ [(k − 1)/2, 0]
be such that C(f ; t)/= ∅. Let x, y ∈ C(f ; t). Then f(x) ≤ t and f(y) ≤ t. It follows from
Theorem 3.12 that

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
≤
∨{

t,
k − 1
2

}
= t (3.17)

so that x ∗ y ∈ C(f ; t). Therefore C(f ; t) is a subalgebra of X.
Conversely, let (X, f) be an N-structure such that the nonempty closed t-support of

(X, f) is a subalgebra of X for all t ∈ [(k − 1)/2, 0]. If there exist a, b ∈ X such that f(a ∗ b) >∨{f(a), f(b), (k − 1)/2}, then we can take s ∈ [−1, 0] such that

f(a ∗ b) > s ≥
∨{

f(a), f(b),
k − 1
2

}
. (3.18)

Thus a, b ∈ C(f ; s) and s ≥ (k − 1)/2. Since C(f, s) is a subalgebra of X, it follows that a ∗ b ∈
C(f ; s) so that f(a ∗ b) ≤ s. This is a contradiction, and therefore f(x ∗y) ≤ ∨{f(x), f(y), (k −
1)/2} for all x, y ∈ X. Using Theorem 3.12, we conclude that (X, f) is an N-subalgebra of
type (∈,∈ ∨qk).

Taking k = 0 in Theorem 3.18, we have the following corollary.

Corollary 3.19 (see [4]). An N-structure (X, f) is an N-subalgebra of type (∈,∈ ∨q) if and only if
for every t ∈ [−0.5, 0] the nonempty closed t-support of (X, f) is a subalgebra of X.

Theorem 3.20. Let S be a subalgebra of X. For any t ∈ [(k − 1)/2, 0), there exists an N-subalgebra
(X, f) of type (∈,∈ ∨qk) for which S is represented by the closed t-support of (X, f).

Proof. Let (X, f) be an N-structure in which f is given by

f(x) =

{
t if x ∈ S,

0 if x /∈ S,
(3.19)

for all x ∈ X where t ∈ [(k−1)/2, 0). Assume that f(a∗b) > ∨{f(a), f(b), (k−1)/2} for some
a, b ∈ X. Since the cardinality of the image of f is 2, we have f(a∗b) = 0 and

∨{f(a), f(b), (k−
1)/2} = t. Since t ≥ (k − 1)/2, it follows that f(a) = t = f(b) so that a, b ∈ S. Since S is a
subalgebra of X, we obtain a ∗ b ∈ S and so f(a ∗ b) = t < 0. This is a contradiction. Therefore
f(x ∗ y) ≤ ∨{f(x), f(y), (k − 1)/2} for all x, y ∈ X. Using Theorem 3.12, we conclude that
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(X, f) is an N-subalgebra of type (∈,∈ ∨qk). Obviously, S is represented by the closed t-
support of (X, f).

Corollary 3.21 (see [4]). Let S be a subalgebra of X. For any t ∈ [−0.5, 0), there exists an N-
subalgebra (X, f) of type (∈,∈ ∨q) for which S is represented by the closed t-support of (X, f).

Proof. It follows from taking k = 0 in Theorem 3.20.

Note that every N-subalgebra of type (∈,∈) is an N-subalgebra of type (∈,∈ ∨qk),
but the converse is not true in general (see Example 3.7). Now, we give a condition for an
N-subalgebra of type (∈,∈ ∨qk) to be anN-subalgebra of type (∈,∈).

Theorem 3.22. Let (X, f) be an N-subalgebra of type (∈,∈ ∨qk) such that f(x) > (k − 1)/2 for all
x ∈ X. Then (X, f) is an N-subalgebra of type (∈,∈).

Proof. Let x, y ∈ X and t ∈ [−1, 0) be such that (X, xt1) and (X, yt2) are N∈-subsets of (X, f).
Then f(x) ≤ t1 and f(y) ≤ t2. It follows from Theorem 3.12 and the hypothesis that

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
=
∨{

f(x), f
(
y
)} ≤

∨
{t1, t2} (3.20)

so that (X, (x∗y)∨{t1,t2}) is anN∈-subset of (X, f). Therefore (X, f) is anN-subalgebra of type
(∈,∈).

Corollary 3.23 (see [4]). Let (X, f) be an N-structure of type (∈,∈ ∨q) such that f(x) > −0.5 for
all x ∈ X. Then (X, f) is an N-subalgebra of type (∈,∈).

Proof. It follows from taking k = 0 in Theorem 3.22.

Theorem 3.24. Let {(X, fi) | i ∈ Λ} be a family of N-subalgebras of type (∈,∈ ∨qk). Then
(X,
⋃

i∈Λ fi) is an N-subalgebra of type (∈,∈ ∨qk), where
⋃

i∈Λ fi is an N-function on X given by
(
⋃

i∈Λ fi)(x) =
∨

i∈Λfi(x) for all x ∈ X.

Proof. Let x, y ∈ X and t1, t2 ∈ [−1, 0) be such that (X, xt1) and (X, yt2) are N∈-subsets of
(X,
⋃

i∈Λ fi). Assume that (X, (x ∗y)∨{t1,t2}) is not anN∈∨qk -subset of (X,
⋃

i∈Λ fi). Then (X, (x ∗
y)∨{t1,t2}) is neither an N∈-subset nor an Nqk -subset of (X,

⋃
i∈Λ fi). Hence (

⋃
i∈Λ fi)(x ∗ y) >∨{t1, t2} and

(
⋃

i∈Λ
fi

)
(
x ∗ y) +

∨
{t1, t2} − k + 1 ≥ 0, (3.21)

which imply that

(
⋃

i∈Λ
fi

)
(
x ∗ y) > k − 1

2
. (3.22)

Let A1 := {i ∈ Λ | (X, (x ∗ y)∨{t1,t2}) is an N∈-subset of (X, fi)} and A2 := {i ∈ Λ |
(X, (x ∗y)∨{t1,t2}) is an Nqk -subset of (X, fi)}∩ {j ∈ Λ | (X, (x ∗y)∨{t1,t2}) is not an N∈-subset
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of (X, fj)}. ThenΛ = A1∪A2 andA1∩A2 = ∅. IfA2 = ∅, then (X, (x∗y)∨{t1,t2}) is anN∈-subset
of (X, fi) for all i ∈ Λ, that is, fi(x∗y) ≤

∨{t1, t2} for all i ∈ Λ. Thus (
⋃

i∈Λ fi)(x∗y) ≤
∨{t1, t2}.

This is a contradiction. Hence A2 /= ∅, and so for every i ∈ A2, we have fi(x ∗ y) >
∨{t1, t2}

and fi(x ∗ y) + ∨{t1, t2} − k + 1 < 0. It follows that
∨{t1, t2} < (k − 1)/2. Since (X, xt1) is an

N∈-subset of (X,
⋃

i∈Λ fi), we have

fi(x) ≤
(
⋃

i∈Λ
fi

)

(x) ≤ t1 ≤
∨

{t1, t2} <
k − 1
2

(3.23)

for all i ∈ Λ. Similarly, fi(y) < (k−1)/2 for all i ∈ Λ. Next suppose that t := fi(x∗y) > (k−1)/2.
Taking (k − 1)/2 < r < t, we know that (X, xr) and (X, yr) are N∈-subsets of (X, fi), but
(X, (x ∗ y)∨{r,r}) = (X, (x ∗ y)r) is not an N∈∨qk -subset of (X, fi). This contradicts that (X, fi)
is an N-subalgebra of type (∈,∈ ∨qk). Hence fi(x ∗ y) ≤ (k − 1)/2 for all i ∈ Λ, and so
(
⋃

i∈Λ fi)(x ∗ y) ≤ (k − 1)/2 which contradicts (3.22). Therefore (X, (x ∗ y)∨{t1,t2}) is an N∈∨qk -
subset of (X,

⋃
i∈Λ fi) and consequently (X,

⋃
i∈Λ fi) is anN-subalgebra of type (∈,∈ ∨qk).

For anyN-structure (X, f) and t ∈ [−1, 0), the q-support and the ∈ ∨q-support of (X, f)
related to t are defined to be the sets (see [4])

Nq

(
f ; t
)
:=
{
x ∈ X | (X, xt) is an Nq-subset of

(
X, f
)}

, (3.24)

N∈∨q
(
f ; t
)
:=
{
x ∈ X | (X, xt) is an N∈∨q-subset of

(
X, f
)}

, (3.25)

respectively. Note that the ∈ ∨q-support is the union of the closed support and the q-support,
that is,

N∈∨q
(
f ; t
)
= C
(
f ; t
) ∪Nq

(
f ; t
)
, t ∈ [−1, 0). (3.26)

The qk-support and the ∈ ∨qk-support of (X, f) related to t are defined to be the sets

Nqk

(
f ; t
)
:=
{
x ∈ X | (X, xt) is an Nqk -subset of

(
X, f
)}

, (3.27)

N∈∨qk
(
f ; t
)
:=
{
x ∈ X | (X, xt) is an N∈∨qk -subset of

(
X, f
)}

, (3.28)

respectively. Clearly, N∈∨qk(f ; t) = C(f ; t) ∪Nqk(f ; t) for all t ∈ [−1, 0).

Theorem 3.25. An N-structure (X, f) is an N-subalgebra of type (∈,∈ ∨qk) if and only if the
∈ ∨qk-support of (X, f) related to t is a subalgebra of X for all t ∈ [−1, 0).

Proof. Suppose that (X, f) is an N-subalgebra of type (∈,∈ ∨qk). Let x, y ∈ N∈∨qk(f ; t) for
t ∈ [−1, 0). Then (X, xt) and (X, yt) are N∈∨qk -subsets of (X, f). Hence f(x) ≤ t or f(x) + t −
k + 1 < 0, and f(y) ≤ t or f(y) + t − k + 1 < 0. Then we consider the following four cases:

(c1) f(x) ≤ t and f(y) ≤ t,

(c2) f(x) ≤ t and f(y) + t − k + 1 < 0,

(c3) f(x) + t − k + 1 < 0 and f(y) ≤ t,

(c4) f(x) + t − k + 1 < 0 and f(y) + t − k + 1 < 0.
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Combining (3.6) and (c1), we have f(x ∗y) ≤ ∨{t, (k−1)/2}. If t ≥ (k−1)/2, then f(x ∗y) ≤ t
and so (X, (x∗y)t) is anN∈-subset of (X, f). Hence x∗y ∈ C(f ; t) ⊆ N∈∨qk(f ; t). If t < (k−1)/2,
then f(x ∗ y) ≤ (k − 1)/2 and so f(x ∗ y) + t − k + 1 < ((k − 1)/2) + ((k − 1)/2) − k + 1 = 0,
that is, (X, (x ∗ y)t) is an Nqk -subset of (X, f). Therefore x ∗ y ∈ Nqk(f ; t) ⊆ N∈∨qk(f ; t). For
the case (c2), assume that t < (k − 1)/2. Then

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}

≤
∨{

t, f
(
y
)
,
k − 1
2

}
=
∨{

f
(
y
)
,
k − 1
2

}

=

⎧
⎪⎪⎨

⎪⎪⎩

f
(
y
)

if f
(
y
)
>

k − 1
2

,

k − 1
2

if f
(
y
) ≤ k − 1

2
,

< k − 1 − t,

(3.29)

and so f(x ∗y)+ t−k+1 < 0. Thus (X, (x ∗y)t) is anNqk -subset of (X, f). If t ≥ (k−1)/2, then

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}

≤
∨{

t, f
(
y
)
,
k − 1
2

}
=
∨{

t, f
(
y
)}

=

⎧
⎨

⎩

f
(
y
)

if f
(
y
)
> t,

t if f
(
y
) ≤ t,

(3.30)

and thus x∗y ∈ Nqk(f ; t) or x∗y ∈ C(f ; t). Consequently, x∗y ∈ N∈∨qk(f ; t). For the case (c3),
it is similar to the case (c2). Finally, for the case (c4), if t ≥ (k−1)/2, then k−1−t ≤ (k−1)/2 ≤ t.
Hence

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
≤
∨{

k − 1 − t,
k − 1
2

}
=

k − 1
2

≤ t, (3.31)

which implies that x ∗ y ∈ C(f ; t). If t < (k − 1)/2, then t < (k − 1)/2 < k − 1 − t. Therefore

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
≤
∨{

k − 1 − t,
k − 1
2

}
= k − 1 − t, (3.32)

that is, f(x ∗ y) + t − k + 1 < 0, which means that (X, (x ∗ y)t) is an Nqk -subset of (X, f).
Consequently, the ∈ ∨qk-support of (X, f) related to t is a subalgebra of X for all t ∈ [−1, 0).
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Conversely, let (X, f) be an N-structure for which the ∈ ∨qk-support of (X, f) related
to t is a subalgebra of X for all t ∈ [−1, 0). Assume that there exist a, b ∈ X such that f(a ∗b) >∨{f(a), f(b), (k − 1)/2}. Then

f(a ∗ b) > s ≥
∨{

f(a), f(b),
k − 1
2

}
(3.33)

for some s ∈ [(k − 1)/2, 0). It follows that a, b ∈ C(f ; s) ⊆ N∈∨qk(f ; s) but a ∗ b /∈ C(f ; s). Also,
f(a ∗ b) + s − k + 1 > 2s − k + 1 ≥ 0, that is, a ∗ b /∈ Nqk(f ; s). Thus a ∗ b /∈ N∈∨qk(f ; s)which is
a contradiction. Therefore

f
(
x ∗ y) ≤

∨{
f(x), f

(
y
)
,
k − 1
2

}
(3.34)

for all x, y ∈ X. Using Theorem 3.12, we conclude that (X, f) is an N-subalgebra of type
(∈,∈ ∨qk).

If we take k = 0 in Theorem 3.25, we have the following corollary.

Corollary 3.26 (see [4]). AnN-structure (X, f) is anN-subalgebra of type (∈,∈ ∨q) if and only if
the ∈ ∨q-support of (X, f) related to t is a subalgebra of X for all t ∈ [−1, 0).
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