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With the use of the Laplace integral transformation and state space formalism, the classical
axial symmetric quasistatic problem of viscoelastic solids is discussed. By employing the method
of separation of variables, the governing equations under Hamiltonian system are established,
and hence, general solutions including the zero eigensolutions and nonzero eigensolutions
are obtained analytically. Due to the completeness property of the general solutions, their
linear combinations can describe various boundary conditions. Simply by applying the adjoint
relationships of the symplectic orthogonality, the eigensolution expansion method for boundary
condition problems is given. In the numerical examples, stress distributions of a circular cylinder
under the end and lateral boundary conditions are obtained. The results exhibit that stress
concentrations appear due to the displacement constraints, and that the effects are seriously
confined near the constraints, decreasing rapidly with the distance from the boundary.

1. Introduction

In the modern engineering designs, the knowledge in material behavior is necessary to obtain
predictive numerical simulations. This is particularly true for viscoelastic materials [1-3].
However, analytical solutions for viscoelasticity are difficult to be found due to the time-
dependent property of its stress-strain relations, and hence numerical approaches are often
used. Among the computational techniques, one of the most popular approaches is the finite
element method, which is an appreciable and widespread tool for researches of solids and
structures. The main feature of finite elements is the modularity in their usage and the easy
framework for integration. Dureisseix and Bavestrello focused on solving coupled problems,
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like those arising from multiphysics models, where different meshes are used for different
physics [4]. Bottoni et al. developed a finite element model for the time-dependent analysis
of pultruded thin-walled beams subject to long-term loadings [5]. The other important tool
is the boundary element method. Zhang et al. discussed crack problems in linear viscoelastic
materials by generalizing the Heaviside function to represent the displacement discontinuity
across the crack surface [6]. Based on differential constitutive relations, Mesquita and Coda
provided the important algebraic equations and presented a method for the treatment of
two dimensional coupling problems between the finite element method and the boundary
element method by discussing Kelvin and Boltzmann models [7]. Compared with the finite
element method, this method can reduce the dimension of the problem and provide an
attractive idea for the viscoelastic research.

Due to the use of single variable (displacement or stress), the above mentioned
methods inevitably produce high order partial differential equations. Zhong developed the
Hamiltonian system method for deriving exact analytical solutions to some basic problems
in elastic mechanics [8, 9]. This method is developed on the basis of the mathematical theory
on Hamiltonian geometry, by which the method of separation of variables can be applied
by introducing dual variables. Xu et al. and Zhang and Xu discussed Saint-Venant problems
and Saint-Venant principle of elasticity and viscoelasticity, the decay property of non-zero
eigensolutions, and local effect near the boundary [10, 11]. Zhang and Deng presented the
Lie group integration method for the constrained generalized Hamiltonian system [12]. Yao
and Li derived the plane magnetoelectroelastic solids problem by means of the generalized
variable principle [13]. Since the difficulty for solving high order differential equations in the
traditional methods, such as the semi-inverse method, is overcome, the Hamiltonian system
method gained much attention in recent years, and has been applied successfully in applied
mechanics [14].

The Hamiltonian system method is further introduced in this paper to analyse
quasistatic axisymmetric viscoelastic problems. Since viscoelastic constitutive equations can
be transformed into a set of corresponding elastic ones using the Laplace integral transform,
the potential energy of viscoelastic body belongs to energy conservative system in the
Laplace domain, and the Hamiltonian system method can be applied. Based on the adjoint
symplectic relationships of the general solutions in the time domain, the eigensolution
expansion method is introduced to satisfy the boundary conditions. Using this method,
various boundary conditions, such as displacement conditions, stress conditions, and mixed
conditions of displacement and stress, can be conveniently described by the combination of
the eigensolutions. Accordingly, the assumption of stress or displacement, usually used in
the semi-inverse method, is not needed. In numerical example, stress distributions of the
boundary condition problems of a circular cylinder are discussed. The results show that
stress concentrations occur in the region near the boundary when the cylinder is subjected
to displacement constraint. It is verified that the local effect plays an important role in the
analysis of stresses. However, in the region far from the boundary, the effect vanished and
usually can be neglected.

2. The Governing Equations in the Hamiltonian System

An isotropic viscoelastic circular cylinder, whose radius and length are R and [, respectively,
is considered. As Figure 1 shows, the origin of the cylindrical polar coordinates (r,0, z) is
located at the center of the bottom end, with the z-axis pointing the top end along the axial
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Figure 1: The coordinate system of the circular cylinder.
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Figure 2: The Burgers viscoelastic model.

direction. For axisymmetric problems, the non-zero components are stresses oy, 0g, 0z, and 7y~
and displacements 1 and w along r and z coordinates, respectively. The constitutive relations
of viscoelastic media can be expressed in an integral form:

den(W, T)

d
dr o

t
Om(W,t) = 3f K(t-1)
0

t de;;(w,T) @1)
sij(w,t) = 2foc(t - T)”d—T’dT,

where w is a position vector; K(t) and G(t) are the relaxations of bulk modulus and shear
modulus; o, and &, are the volumetric stress and strain, respectively, and the deviatoric
components of the stress and strain tensors s;; = 0ij — 0,6;;/3, eij = & — €m6ij/3. The
viscoelastic constitutive equations can be transformed into a set of corresponding elastic
governing equations using the Laplace transform. As a result, the transformed constitutive
equation (2.1) in the Laplace domain is written as

om(w,s) = 3Ke(w,s),
_ (2.2)
sij(w, s) = 2G(s)e;j(w, s).

Take the Burgers model, for example, which consists of a Kelvin model and a Maxwell model
connected in series. As Figure 2 shows, the parameters G; and G, denote the spring constants,
and 7; and 7, denote the viscosity coefficients of the dashpots. In general, the Poisson’s ratio
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v is a function of time, but the time dependence is much weaker than other modului. Here
we assume that the Poisson’s ratio is a constant, independent of time. Thus, the relaxation of
shear modulus and the Young’s modulus can be written as

— as + as?
G(s) = ———,
( ) 2(1 +by1s + szZ) (23)

E(s) = 2(1 +v)G(s),

where a1 = m1, ay = mnp/Gy, bt = mi/Gi + 11/Go + 72/G1, and by = min/(GiGy), s is
the Laplace transform parameter, and a bar over a modulus denotes its inverse Laplace
transform. In order to derive the final governing equations of the Hamiltonian system, the
Lagrange function of strain energy density in the Laplace domain is introduced as

- Gvr fou u -\ =[sou\* @ 2 1/0w .\’
L—m<a+;+w> +GT[<§> +r—2+w +§<¥+H) , (24)

in which an overdot on a variable denotes its partial derivative with respect to coordinate z.
Write the displacement variables in vector form

Q=[uw]. (2.5)

Then the dual vector can be obtained as

s_[oL oLl _ [P _ |7 -
owow |  |P| |ro: | ‘
The Hamiltonian function can be introduced as
— [ —/— —
H(Q, P) -PO- L(Q,P). (2.7)
Applying the variational method
R 4l o
6f f [H <Q, P) -7 Q] drdz =0, (2.8)
0Jo

we get the governing equations under the Hamiltonian system

¥ = Hy, (2.9)
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— — — T . . .
where ¢ = [u,w, r7,;,70-] , and the Hamiltonian operator matrix

[ 0w — 0 |
Gr
= v a 0 0 ﬂ
H- -V 2Gr(1-v) , (2.10)
2G v
1 —va3 0 0 1 —va4
| 0 0 -m 0 §

in which the partial differential operators a; = r0/0r, ay =r0/0r+1, a3 = 1 02/0r2—rd/Or +
1, and a4 = r0/0r — 1. The other two non-zero stress components can be obtained accordingly
as

= . (2.11)
1-v» — ou o
vro, +2Gvr— + 2Gu
or

_ — ou = _
[ra] V1Yo, + 2Gr§ +2Gvu
3. General Solutions

To derive the general solutions of the governing equations (2.9), we suppose the lateral
boundary of the cylinder is stress free. The condition for this case is

T.=0,=0 (r=R). (3.1)

Using the method of separation of variables, the solution is written as @ (r, z) = w(z)X(r).
Considering (2.9), we get w(z) = e#* and the eigenequation

HX(r) = pX(r), (3.2)

where y is an eigenvalue, and X is its corresponding eigenvector: X = [g] = [ﬁl,ﬁz,;_al,ﬁz]T.
The displacement components for the eigenequation (3.2) can be expressed as

[61] [aa-me - Lo re .

92 —p(So +78r)
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in which the functions ¢, and ¢, satisfy

rd—2 + 4 + K2
dr dr
[&o &]=0. (3.4)
e a1
rdr dr e r
The solutions are
& = P1)o, & =P, (3.5)

where Jy and J; are Bessel functions: Jo = Jo(ur), J1 = Ji(ur), and p; and f, are integral
constants. Substituting (3.3) into (3.2), we get

g, = hipJipr + i [4(1 = v) 1 — urJo] B2,
q, = hipJopr + hapr J1p2,
P, = hopr J12,

P> = hapiPrJoy + hapr (pr i +2vJo 492 Jo ) o,

(3.6)

in which hy = 1/(4E —4Ev),hy = 1/(2+2v), and h3 = 1/[4(1 - v?)(1 - 2v)]. Using the lateral
boundary condition (3.1), we get

[Bilp=0 (i,j=12), (3.7)

in which g = [g;], and the components are 11 = (2v — 1)J1(uR)/R + pJo(uR), po1 = 0,

pr2 = 4(2v=1)(1 =) i (4R) / (uR) = v[Jo(uR) = pRJ1 (uR)] +4(1 ~v)* Jo(R), and P = J1 (uR).
To ensure the existence of non-zero eigensolutions, the integral constants f; and f, cannot be
zeros, simultaneously. Thus, the equation about the eigenvalues can be constructed as

|Bii] = 0. (3.8)

For the case of y = 0, by solving (3.2) directly, we can get the fundamental zero
eigensolution:

i0 = [51 = O/ﬁz = 1/791 = O/ﬁz = O]T (39)

Besides solution (3.9), there is a corresponding solution of Jordan form. The Jordan form
solution should satisfy

HX_, = X,. (3.10)



Journal of Applied Mathematics 7

The solution is
— . _ _ _ — 1T
X = [ql =-vr,q, = O,pl = O,pz = Er] . (311)

It should be mentioned that (3.10) and (3.11) are not solutions of the governing equations
(2.9). However, we can get the general solutions from these zero eigensolutions. The
corresponding solutions are

¥, = Xo=1[0,1,0,0]",
o . (3.12)
¢, =Xo+2zXp= [—vr, z,0, Er] /

which are solutions of the rigid translation and the simple extension along z direction,
respectively. Noticing that both the zero and non-zero eigensolutions mentioned above are
expressed in concise analytical forms, we can discuss the problem in the time domain directly
simply by using the inverse Laplace transform.

4. Boundary Conditions

It is well known that boundary conditions can be displacement conditions or stress
conditions, and they also can be the mixed conditions of displacements and stresses. In the
Hamiltonian system, the boundary conditions just correspond to the fundamental variables
(displacements and stresses). Therefore, it is very convenient to discuss boundary condition
problems.

4.1. Lateral Boundary Conditions

The above discussion of general solutions is in condition that the lateral boundary conditions
(r = R) are homogeneous. For nonhomogeneous case, these eigensolutions can not be
used directly. However, simply by employing the variable substitution method, we can
transform the nonhomogeneous lateral boundary conditions into the homogeneous ones. As
an example, we discuss the stress lateral boundary conditions:

o, =00, Trz=T0 (r=R). (4.1)
Equation (4.1) can be described as
E ou Eviu v P,

1—v2§+l—v2r 1-vr (4.2)
P, =R7, (r=R).
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To homogenize boundary conditions (4.2), we introduce new variables

F = [ﬁ*rW*rplfpz]T =¢-0 (4.3)

where

(4.4)

S|
I

It can be verified that g™ satisfy homogeneous condition

—_—%

P,
_ _— = :R
1-2or 1-w7r 1-vr 0 (r=R), (4.5)

E ou Ev u v

P,=0 (r=R).
However, the governing equation (2.9) is changed into nonhomogeneous one
¢ =Hy +¢g", (4.6)
where
g =Hp-p. (47)
The components are g} = 2(1+v)rTo/(ER) - (1 -v)Gor/E, g3 = —209060/E, g5 = (v - 1)5or /E,
and g} = (v - 1)5y/E. Thus, the problem of nonhomogeneous lateral boundary conditions
is transformed into finding a particular solution of (4.6). To derive a particular solution, we

define the symplectic integral product based on the property of the Hamiltonian operator
matrix H:

R
<Xi1xj> = I XiT]X]'dT’, (4.8)
0

where X; and X; are arbitrary eigensolutions of the time domain, and ] is a unit rotational
matrix [11]. For the convenience of discussion, we redescribe the eigensolutions as

Xon = Xlyucp o
Xom = X | =i
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in which 1/1,, = (X|y=4,,, Xly=—p,, ) Thus, the eigensolutions satisfy the adjoint symplectic
relationships

(X, Xj) = =(X0, X)) =1 (j=0,12,...), (4.10)
(Xi,X;) =0 (i,j=0,%L%2,...;i# ~ ). |

Since the eigensolutions constructed a complete solution space, the nonhomogeneous term
of (4.6) can be developed as

*

g =D [bj(2)X;(r) +b_j(2)X_;(r)], (4.11)

M

~
Il
o

where b;(z) = (¢, X_;) and b_j(z) = —(¢;, X). Suppose that ¢, is a particular solution

8

gp = 2, [cj(2)X;(r) + e (2)X5(r)]. (4.12)

i
=)

Therefore,

¢i(z) = pjci(z) + bj(z), £13)
¢-j(z) = —pjc_j(z) +b_j(2).

The solutions are

cj(z) = f bi(t)eti=at,
’ (4.14)
c.j(z) = J' b_j(t)e i =at.
0

4.2. End Conditions

To explain the eigensolution expansion method for the satisfaction of end conditions, we
suppose the end conditions:

u=1, w=w, (z=0)
~ ~ (4.15)
Trz = Trz, Oz = Oz, (z=1)
Equation (4.15) can be expressed as
P.(r) =Py,
(4.16)

Q:-0(r) = Qo.
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The complete solution of the problem should be the linear combination of the eigensolutions

and a particular solution

¢ = D (ane*X; + bue X ) + g, (4.17)

n=0

where ¢, is the particular solution of the problem given in (4.12), and a, and b, are
coefficients to be determined. Using the solution (4.17), the boundary conditions (4.16) can
be rewritten as

Pi(r) Y anpn(r)et'+ > byp_n(r)e ™ +P,  (z=1),

(4.18)
QO(r)Zanqn(r) + anq—n(r) + Qp (z=0).
or
Qo ()
.- >.anPn + 2bup-n + Py
" " (4.19)

= Pi(r)

Here Q,, and P, are components of the particular solution ¢;,. Based on the adjoint symplectic
relationships (4.10), an infinite set of equations about the coefficients a, and b, can be
obtained

R R oo
f q-j - (P1 = Pp)dr = f S [aneq put bt la pa] dr (=),
0 0 n=0
(4.20)

R R oo
fO (QO - QP) : Pfdr = JO Z [a"q‘ﬂ “pit bann : P]] dr (z=0),
n=0

where j =0,1,2,.... In the numerical calculations, we usually take the first N terms in (4.20).
Thus, there are 2N undetermined coefficients and 2N algebra equations. So the combination
of the eigensolution expansion is solely determined.

5. Numerical Examples

In order to verify the proposed approach, numerical investigations are carried out in this
section. In the numerical calculations, the geometrical data and the parameter are selected as
I/R=3,G; =G, =G, and 1 = 1 = 17, and the Poisson’s ratio v is taken to be 0.25.

We, firstly, discuss the end condition problem. The computational model is supposed
to be as follows: the top (z = I) end of the cylinder is subjected to stress condition, while the
bottom end (z = 0) is clamped. The boundary conditions for this case can be expressed as
follows.
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End conditions:

Trz =0, Oz = 0y (Z = l)/
(5.1)
u=0, w=0 (z=0)
Lateral conditions:
o,=0, T.=0 (r=R). (5.2)

Based on (4.20), algebra equations about the coefficients in the eigensolution expansion are
established, and hence the distributions of stresses are obtained numerically. According to the
results, the effects of o, and 7,, are much weaker than the other stresses. Thus, only o, and
0p are considered here. As Figures 3 and 4 show, stress concentrations appear clearly near the
clamped end of the domain, especially in the region around the original point. It is obvious
that the effects decrease rapidly, and the stresses tend to be constant with the distance from
the bottom end. This character indicates that zeroeigensolutions can approximately describe
solutions near the top end. However, the solution is not accurate enough near the fixed end
where local effects appear, and nonzero-eigenvalue eigensolutions are required to describe
the stress concentrations.

Now, consider secondly a lateral condition problem. The boundaries are given as
follows.

Lateral conditions:

oy = —0y, .=0 (r=R). (5.3)

End conditions:

T, =0, 0.=0 (z=1),
(5.4)
u=0, w=0 (z=0).

Based on the technique of lateral boundary conditions discussed in Section 4.1, we obtained
the numerical result. Among the stresses, o, and oy have more important effect during the
compression for this case. Figures 5 and 6 show exhibit that stress concentrations appear near
the bottom end similarly, and the local effects decay rapidly with coordinate z. The results of
local effects can be well explained by the famous Saint-Venant principle. According to Saint-
Venant principle, local effects of stresses and displacements must appear near the region,
where the external displacement or force boundary conditions are given.

6. Conclusion

Because of the existence of the energy nonconservation, the Hamiltonian system method
can not be applied directly for viscoelasticity. However, the potential energy of viscoelastic
body has conservative form in the Laplace domain, and the problem can be transformed into
problem of conservative system in which the formulation is applicable. The Hamiltonian
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Figure 3: Distribution of the stress 0./ (0p) in the end condition example.

Figure 4: Distribution of the stress 0g/(0p) in the end condition example.

Figure 5: Distribution of the stress 0,/ (0p) in the lateral condition example.
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Figure 6: Distribution of the stress 0g/(0p) in the lateral condition example.

system is a direct method by which the order of differential governing equations can
be reduced. With the direct method, all the general solutions of the governing solutions,
including zero eigensolutions and non-zero eigensolutions, are obtained analytically. In
fact, the solution of the problem should be composed of zero eigensolutions and non-
zero eigensolutions. In the Hamiltonian system, the boundary conditions just correspond to
the fundamental variables, and therefore it is very convenient to discuss nonhomogeneous
problems and boundary condition problems.
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