
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 945915, 14 pages
doi:10.1155/2012/945915

Research Article
Common Fixed-Point Theorems in Complete
Generalized Metric Spaces

Chi-Ming Chen

Department of Applied Mathematics, National Hsinchu University of Education,
No. 521 Nanda Road, Hsinchu City 300, Taiwan

Correspondence should be addressed to Chi-Ming Chen, ming@mail.nhcue.edu.tw

Received 10 January 2012; Revised 29 March 2012; Accepted 31 March 2012

Academic Editor: Yuantong Gu

Copyright q 2012 Chi-Ming Chen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We introduce the notions of theW function and S function, and then we prove two common fixed
point theorems in complete generalized metric spaces under contractive conditions with these
two functions. Our results generalize or improve many recent common fixed point results in the
literature.

1. Introduction and Preliminaries

In 2000, Branciari [1] introduced the following notion of a generalized metric space where
the triangle inequality of a metric space had been replaced by an inequality involving three
terms instead of two. Later, many authors worked on this interesting space (e.g., [2–7]).

Let (X, d) be a generalized metric space. For γ > 0 and x ∈ X, we define that

Bγ(x) :=
{
y ∈ X | d(x, y) < γ}. (1.1)

Branciari [1] also claimed that {Bγ(x) : γ > 0, x ∈ X} is a basis for a topology on X, d is
continuous in each of the coordinates, and a generalized metric space is a Hausdorff space.
We recall some definitions of a generalized metric space as follows.

Definition 1.1 (See [1]). Let X be a nonempty set and d : X ×X → [0,∞) be a mapping such
that for all x, y ∈ X and for all distinct point u, v ∈ X each of them different from x and y,
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one has the following:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).
Then (X, d) is called a generalized metric space (or shortly g.m.s).

We present an example to show that not every generalized metric on a setX is a metric
on X.

Example 1.2. LetX = {t, 2t, 3t, 4t, 5t}with t > 0 be a constant, andwe define d : X×X → [0,∞)
by

(1) d(x, x) = 0, for all x ∈ X,

(2) d(x, y) = d(y, x), for all x, y ∈ X,

(3) d(t, 2t) = 3γ ,

(4) d(t, 3t) = d(2t, 3t) = γ ,

(5) d(t, 4t) = d(2t, 4t) = d(3t, 4t) = 2γ ,

(6) d(t, 5t) = d(2t, 5t) = d(3t, 5t) = d(4t, 5t) = (3/2)γ ,

where γ > 0 is a constant. Then let (X, d) be a generalized metric space, but it is not a metric
space, because

d(t, 2t) = 3γ > d(t, 3t) + d(3t, 2t) = 2γ. (1.2)

Definition 1.3 (See [1]). Let (X, d) be a g.m.s, {xn} be a sequence in X and x ∈ X. We say that
{xn} is g.m.s convergent to x if and only if d(xn, x) → 0 as n → ∞.We denote by xn → x as
n → ∞.

Definition 1.4 (See [1]). Let (X, d) be a g.m.s, {xn} be a sequence in X and x ∈ X. We say that
{xn} is g.m.s Cauchy sequence if and only if, for each ε > 0, there exists n0 ∈ N such that
d(xm, xn) < ε for all n > m > n0.

Definition 1.5 (See [1]). Let (X, d) be a g.m.s. Then X is called complete g.m.s if every g.m.s
Cauchy sequence is g.m.s convergent in X.

In this paper, we also recall the concept of compatible mappings and prove two
common fixed point theorems which incorporated the compatible map concept followed.
In 1986, Jungck [8] introduced the below concept of compatible mappings.

Definition 1.6 (See [8]). Let (X, d) be a g.m.s, and let S,F:X → X be two single-valued
functions. We say that S and F are compatible if

lim
n→∞

d(SFxn, FSxn) = 0, (1.3)

whenever {xn} is a sequence in X such that limn→∞d(Fxn, Sxn) = 0.
In particular, d(SFx, FSx) = 0 if d(Fx, Sx) = 0 by taking xn = x for all n ∈ N.
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Later, many authors studied this subject (compatible mappings), and many results on
fixed points and common fixed points are proved (see, e.g., [9–14]).

2. Main Results

In this paper, we first introduce the below concept of theW function.

Definition 2.1. We call ϕ : R
+ → R

+ a W function if the function ϕ satisfies the following
conditions:

(ϕ1) ϕ(t) < t for all t > 0 and ϕ(0) = 0,

(ϕ2) limtn→ t infϕ(tn ) < t for all t > 0.

Lemma 2.2. Let ϕ : R
+ → R

+ be a W function. Then limn→∞ϕn(t) = 0 for all t > 0, where ϕn(t)
denotes the nth iteration of ϕ.

Proof. Let t > 0 be fixed. If ϕn0(t) = 0 for some n0 ∈ N, then

ϕn0+1(t) = ϕ
(
ϕn0(t)

)
= ϕ(0) = 0. (2.1)

It follows that ϕn0+k(t) = 0 for all k ∈ N, and so we get that limn→∞ϕn(t) = 0.
If ϕn(t) > 0 for all n ∈ N, then we put αn = ϕn(t). Thus,

αn+1 = ϕn+1(t) = ϕ
(
ϕn(t)

)
= ϕ(αn). (2.2)

Since ϕ is aW function, we have that αn+1 = ϕ(αn) < αn. Therefore, the sequence {αn} is strictly
decreasing and bounded from below, and so there exists an γ ≥ 0 such that limn→∞αn = γ+.
We claim that γ = 0. If not, suppose that γ > 0, then we have that

γ = lim
n→∞

αn+1 = lim
n→∞

infϕ(αn) = lim
αn → γ+

infϕ(αn) < α, (2.3)

a contradiction. So we obtain that γ = 0, that is, limn→∞ϕn(t) = 0.

We now state the main common fixed-point theorem for the W function in a complete
g.m.s, as follows.

Theorem 2.3. Let (X, d) be a Hausdorff and complete g.m.s, and let ϕ : R
+ → R

+ be a W function.
Let S, T, F,G : X → X be four single-valued functions such that for all x, y ∈ X,

d
(
Sx, Ty

) ≤ ϕ(max
{
d
(
Fx,Gy

)
, d(Fx, Sx), d

(
Gy, Ty

)})
. (2.4)

Assume that T(X) ⊂ F(X) and S(X) ⊂ G(X), and the pairs {S, F} and {T,G} are compatible. If F
or G is continuous, then S, T, F, and G have a unique common fixed point in X.

Proof. Given that x0 ∈ X. Define the sequence {xn} recursively as follows:

Gx2n+1 = Sx2n = z2n, Fx2n+2 = Tx2n+1 = z2n+1. (2.5)
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Step 1. We will prove that

lim
n→∞

d(zn, zn+1) = 0. (2.6)

Using (2.4), we have that for each n ∈ N

d(z2n, z2n+1) = d(Sx2n, Tx2n+1)

≤ ϕ(max{d(Fx2n, Gx2n+1), d(Fx2n, Sx2n), d(Gx2n+1, Tx2n+1)})
≤ ϕ(max{d(z2n−1, z2n), d(z2n−1, z2n), d(z2n, z2n+1)}),

(2.7)

and so we can conclude that

d(z2n, z2n+1) ≤ ϕ(d(z2n−1, z2n)). (2.8)

Similarly, we also conclude that

d(z2n+1, z2n+2) ≤ ϕ(d(z2n, z2n+1)). (2.9)

Generally, we have that for each n ∈ N

d(zn, zn+1) ≤ ϕ(d(zn−1, zn)). (2.10)

By induction, we get that

d(zn, zn+1) ≤ ϕ(d(zn−1, zn)) ≤ ϕ2(d(zn−2, zn−1)) ≤ · · · ≤ ϕn(d(z0, z1)). (2.11)

By Lemma 2.2, we obtained that limn→∞d(zn, zn+1) = 0.
We claim that {zn} is g.m.s Cauchy. We claim that the following result holds.

Step 2. Claim that, for every ε > 0, there exists n0 ∈ N such that ifm,n ≥ n0, then d(zm, zn) < ε.
Suppose that the above statesment is false. Then there exists ε > 0 such that, for any

k ∈ N, there aremk, nk ∈ N withmk > nk ≥ k satisfying that

(a) mk is even and nk is odd,

(b) d(znk , zmk) ≥ ε,
(c) mk is the smallest even number such that the condition (b) holds.

Taking into account (b) and (c), we have that

ε ≤ d(znk , zmk)

≤ d(znk , zmk−2) + d(zmk−2, zmk−1) + d(zmk−1, zmk)

≤ ε + d(zmk−2, zmk−1) + d(zmk−1, zmk).

(2.12)



Journal of Applied Mathematics 5

Letting k → ∞, we get the following:

lim
k→∞

d(znk , zmk) = ε, (2.13)

ε ≤ d(znk−1, zmk−1)

≤ d(znk−1, zmk−3) + d(zmk−3, zmk−2) + d(zmk−2, zmk−1)

≤ ε + d(zmk−3, zmk−2) + d(zmk−2, zmk−1).

(2.14)

Letting k → ∞, we get the following:

lim
k→∞

d(znk−1, zmk−1) = ε. (2.15)

Using (2.4), (2.13), and (2.15), we have

d(znk , zmk) = d(Sxnk , Txmk)

≤ ϕ(max{d(Fxnk , Gxmk), d(Fxnk , Sxnk), d(Gxnk , Txnk)})
= ϕ(max{d(znk−1, zmk−1), d(znk−1, znk), d(zmk−1, zmk)})
= ϕ(max{d(znk−1, zmk−1), cnk−1, cmk−1}),

(2.16)

taking limk→∞ inf, we get that ε < ε, a contradiction. So {zn} is g.m.s Cauchy. Since X is
complete, there exists z ∈ X such that limn→∞zn = z. So we have

d(Fx2n, z) −→ 0, d(Gx2n+1, z) −→ 0, d(Sx2n, z) −→ 0, d(Tx2n+1, z) −→ 0,
(2.17)

as n → ∞.

Step 3. We will show that z is a common fixed point of S, T , F, and G.
Assume that F is continuous. Then we have

d
(
F2x2n, Fz

)
−→ 0, d(FSx2n, Fz) −→ 0, (2.18)

as n → ∞. By the rectangular property, we have

d(SFx2n, Fz) ≤ d(SFx2n, FSx2n) + d
(
FSx2n, F

2x2n
)
+ d

(
F2x2n, Fz

)
. (2.19)

Since S and F are compatible and d(Sx2n, Fx2n) → 0 as n → ∞, we conclude that

d(SFx2n, FSx2n) −→ 0, (2.20)
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as n → ∞. Taking into account (2.18), (2.19), and (2.20), we have that

d(SFx2n, Fz) −→ 0, (2.21)

as n → ∞. Since

d(SFx2n, Tx2n+1) ≤ ϕ
(
max

{
d
(
F2x2n, Gx2n+1

)
, d

(
F2x2n, SFx2n

)
, d(Gx2n+1, Tx2n+1)

})
,

(2.22)

for each n ∈ N. Taking limn→∞ and taking into account (2.17), (2.18), (2.19), (2.20), and (2.21),
we get that

d(Fz, z) ≤ ϕ(max{d(Fz, z), d(Fz, Fz), d(z, z)}) = ϕ(max{d(Fz, z), 0, 0}) < d(Fz, z),
(2.23)

and this is a contradiction unless d(Fz, z) = 0, that is, Fz = z.
On the same way, we have that, for each n ∈ N,

d(Sz, Tx2n+1) ≤ ϕ(max{d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1)}). (2.24)

letting n → ∞, we obtained the following:

d(Sz, z) ≤ ϕ(max{d(z, z), d(z, Sz), d(z, z)}) = ϕ(max{0, d(z, Sz), 0}) < d(Sz, z), (2.25)

and this is a contradiction unless d(Sz, z) = 0, that is, Sz = z.
Since S(X) ⊂ G(X), put z′ ∈ X such that Gz′ = z = Sz. Then TGz′ = Tz and using

(2.4),

d
(
z, Tz′

)
= d

(
Sz, Tz′

)

≤ ϕ(max
{
d
(
Fz,Gz′

)
, d(Fz, Sz), d

(
Gz′, Tz′

)})

= ϕ
(
max

{
d(z, z), d(z, z), d

(
z, Tz′

)})

< d
(
z, Tz′

)
,

(2.26)

and this is a contradiction unless d(z, Tz′) = 0, that is, Tz′ = z and so d(Tz′, Gz′) = d(z, z) = 0.
Since T and G are compatible and d(Tz′, Gz′) = 0, we have that

d(Tz,Gz) = d
(
TGz′, GTz′

)
= 0, (2.27)
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which implies that Tz = Gz. Using (2.4), we also have

d(z, Tz) = d(Sz, Tz)

× ϕ(max{d(Fz,Gz), d(Fz, Sz), d(Gz, Tz)})
= ϕ(max{d(z, Tz), d(z, z), d(Tz, Tz)})
< d(z, Tz),

(2.28)

and this is a contradiction unless d(z, Tz) = 0, that is, Tz = z.
From above argument, we get that

Sz = Tz = z = Fz = Gz, (2.29)

and so z is a common fixed point of S, T, F, and G.

Step 4. Finally, to prove the uniqueness of the common fixed point of S, T, F and G, let y be
another common fixed point of S, T, F, and G. Then using (2.4), we have

d
(
y, z

)
= d

(
Sy, Tz

)

× ϕ(max
{
d
(
Fy,Gz

)
, d

(
Fy, Sy

)
, d(Gz, Tz)

})

= ϕ
(
max

{
d
(
y, z

)
, d

(
y, y

)
, d(z, z)

})

< d
(
y, z

)
,

(2.30)

and this is a contradiction unless d(y, z) = 0, that is, y = z. Hence z is the unique common
fixed point of S, T, F, and G in X.

We give the following example to illustrate Theorem 2.3.

Example 2.4. LetX = {t, 2t, 3t, 4t, 5t}with t > 0 is a constant, and we define d : X×X → [0,∞)
by

(1) d(x, x) = 0, for all x ∈ X,

(2) d(x, y) = d(y, x), for all x, y ∈ X,

(3) d(t, 2t) = 3γ ,

(4) d(t, 3t) = d(2t, 3t) = γ ,

(5) d(t, 4t) = d(2t, 4t) = d(3t, 4t) = 2γ ,

(6) d(t, 5t) = d(3t, 5t) = γ and d(2t, 5t) = d(4t, 5t) = 2γ ,

where γ > 0 is a constant.
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If ϕ : R
+ → R

+, ϕ(t) = (4/5)t, then ϕ is aW function. We next define S, T, F,G : X → X
by

S(x) =

⎧
⎨

⎩

3t if x /= 4t,

5t if x = 4t,

T(x) =

⎧
⎨

⎩

3t if x /= 4t,

t if x = 4t,

G(x) = I(x) = the identity mapping,

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3t if x = 3t,

t if x = t, 2t, 5t,

2t if x = 4t.

(2.31)

Then all conditions of Theorem 2.3 are satisfied, and 3t is a unique common fixed point of
S, T, F, and G.

For the case G = F = I (the identity mapping) and S = T , we are easy to get the below
fixed-point theorem.

Theorem 2.5. Let (X, d) be a Hausdorff and complete g.m.s, and let ϕ : R
+ → R

+ be a W function.
Let T : X → X be a single-valued function such that for all x, y ∈ X,

d
(
Tx, Ty

) ≤ ϕ(max
{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)})
. (2.32)

Then T has a unique fixed point in X.

We next introduce the below concept of the S function.

Definition 2.6. We call φ : R
+3 → R

+ a S function if the function φ satisfies the following
conditions:

(φ1) φ is a strictly increasing, continuous function in each coordinate,

(φ2) for all t > 0, φ(t, t, t) < t, φ(t, 0, 0) < t, φ(0, t, 0) < t, and φ(0, 0, t) < t.

Example 2.7. Let φ : R
+3 → R

+ denote that

φ(t1, t2, t3) = k ·max{t1, t2, t3}, for k ∈ (0, 1). (2.33)

Then φ is a S function.

We now state the main common fixed point theorem for the S function in a complete
g.m.s.
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Theorem 2.8. Let (X, d) be a Hausdorff and complete g.m.s, and let ϕ : R
+3 → R

+ be a S function.
Let S, T, F,G : X → X be four single-valued functions such that for all x, y ∈ X,

d
(
Sx, Ty

) ≤ φ(d(Fx,Gy), d(Fx, Sx), d(Gy, Ty)). (2.34)

Assume that T(X) ⊂ F(X) and S(X) ⊂ G(X), and the pairs {S, F} and {T,G} are compatible. If F
or G is continuous, then S, T, F, and G have a unique common fixed point in X.

Proof. Given x0 ∈ X. Define the sequence {xn} recusively as follows:

Gx2n+1 = Sx2n = z2n, Fx2n+2 = Tx2n+1 = z2n+1. (2.35)

Step 1. We will prove that

lim
n→∞

d(zn, zn+1) = 0, (2.36)

Using (2.34) and the definition of the S function, we have that for each n ∈ N

d(z2n, z2n+1) = d(Sx2n, Tx2n+1)

≤ φ(d(Fx2n, Gx2n+1), d(Fx2n, Sx2n), d(Gx2n+1, Tx2n+1))
≤ φ(d(z2n−1, z2n), d(z2n−1, z2n), d(z2n, z2n+1)),

(2.37)

and so we can conclude that

d(z2n, z2n+1) ≤ φ(d(z2n−1, z2n), d(z2n−1, z2n), d(z2n−1, z2n)) < d(z2n−1, z2n). (2.38)

Similarly, we also conclude that

d(z2n+1, z2n+2) ≤ φ(d(z2n, z2n+1), d(z2n, z2n+1), d(z2n, z2n+1)) < d(z2n, z2n+1). (2.39)

Generally, we have that for each n ∈ N

d(zn, zn+1) ≤ φ(d(zn−1, zn), d(zn−1, zn), d(zn−1, zn)) < d(zn−1, zn). (2.40)

Now, for each m ∈ N, if we denote cm = d(zm, zm+1), then {cm} is a strictly decreasing
sequence. Thus, it must converge to some c with c ≥ 0. We claim that c = 0. If not, suppose
that c > 0, then

c ≤ cm+1 ≤ φ(cm, cm, cm). (2.41)

Passing to the limit, as m → ∞, we have that c ≤ c < φ(c, c, c) < c, which is a contradiction.
So we get c = 0.

We claim that {zn} is g.m.s Cauchy. We claim that the following result holds.
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Step 2. Claim that, for every ε > 0, there exists n0 ∈ N such that ifm,n ≥ n0, then d(zm, zn) < ε.
Suppose that the above statesment is false. Then there exists ε > 0 such that, for any

k ∈ N, there aremk, nk ∈ N withmk > nk ≥ k satisfying that

(d) mk is even and nk is odd,

(e) d(znk , zmk) ≥ ε,
(f) mk is the smallest even number such that the condition (e) holds.

Taking into account (e) and (f), we have that

ε ≤ d(znk , zmk)

≤ d(znk , zmk−2) + d(zmk−2, zmk−1) + d(zmk−1, zmk)

≤ ε + d(zmk−2, zmk−1) + d(zmk−1, zmk).

(2.42)

Letting k → ∞, we get the following:

lim
k→∞

d(znk , zmk) = ε, (2.43)

ε ≤ d(znk−1, zmk−1)

≤ d(znk−1, zmk−3) + d(zmk−3, zmk−2) + d(zmk−2, zmk−1)

≤ ε + d(zmk−3, zmk−2) + d(zmk−2, zmk−1).

(2.44)

Letting k → ∞, we get the following:

lim
k→∞

d(znk−1, zmk−1) = ε. (2.45)

Using (2.34), (2.43), and (2.45), we have

d(znk , zmk) = d(Sxnk , Txmk)

≤ φ(d(Fxnk , Gxmk), d(Fxnk , Sxnk), d(Gxnk , Txnk))

= φ(d(znk−1, zmk−1), d(znk−1, znk), d(zmk−1, zmk))

= φ(d(znk−1, zmk−1), cnk−1, cmk−1),

(2.46)

taking k → ∞, we get that ε ≤ φ(ε, 0, 0) < ε, a contradiction. So {zn} is g.m.s Cauchy. Since X
is complete, there exists z ∈ X such that limn→∞zn = z. So we have

d(Fx2n, z) −→ 0, d(Gx2n+1, z) −→ 0, d(Sx2n, z) −→ 0, d(Tx2n+1, z) −→ 0,
(2.47)

as n → ∞.
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Step 3. We will show that z is a common fixed point of S, T , F, and G.
Assume that F is continuous. Then, we have

d
(
F2x2n, Fz

)
−→ 0, d(FSx2n, Fz) −→ 0, (2.48)

as n → ∞. By the rectangular property, we have

d(SFx2n, Fz) ≤ d(SFx2n, FSx2n) + d
(
FSx2n, F

2x2n
)
+ d

(
F2x2n, Fz

)
. (2.49)

Since S and F are compatible and d(Sx2n, Fx2n) → 0 as n → ∞, we conclude that

d(SFx2n, FSx2n) −→ 0, (2.50)

as n → ∞. Taking into account (2.48), (2.49), and (2.50), we have that

d(SFx2n, Fz) −→ 0, (2.51)

as n → ∞. Since

d(SFx2n, Tx2n+1) ≤ φ
(
d
(
F2x2n, Gx2n+1

)
, d

(
F2x2n, SFx2n

)
, d(Gx2n+1, Tx2n+1)

)
, (2.52)

for each n ∈ N. Letting n → ∞ and taking into account (2.47), (2.48), (2.49), (2.50), and (2.51),
we get that

d(Fz, z) ≤ φ(d(Fz, z), d(Fz, Fz), d(z, z)) = φ(d(Fz, z), 0, 0) < d(Fz, z), (2.53)

and this is a contradiction unless d(Fz, z) = 0, that is, Fz = z.
On the same way, we have that, for each n ∈ N,

d(Sz, Tx2n+1) ≤ φ(d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1)). (2.54)

Taking limn→∞, we obtained that

d(Sz, z) ≤ φ(d(Fz, z), d(Fz, Sz), d(z, z)) = φ(d(0, d(z, Sz), 0)) < d(Sz, z), (2.55)

and this is a contradiction unless d(Sz, z) = 0, that is, Sz = z.



12 Journal of Applied Mathematics

Since S(X) ⊂ G(X), put z′ ∈ X such that Gz′ = z = Sz. Then TGz′ = Tz and using
(2.34),

d
(
z, Tz′

)
= d

(
Sz, Tz′

)

≤ φ(d(Fz,Gz′), d(Fz, Sz), d(Gz′, Tz′))

= φ
(
d(z, z), d(z, z), d

(
z, Tz′

))

< d
(
z, Tz′

)
,

(2.56)

and this is a contradiction unless d(z, Tz′) = 0, that is, Tz′ = z and so d(Tz′, Gz′) = d(z, z) = 0.
Since T and G are compatible and d(Tz′, Gz′) = 0, we have that

d(Tz,Gz) = d
(
TGz′, GTz′

)
= 0, (2.57)

which implies that Tz = Gz. Using (2.34), we also have

d(z, Tz) = d(Sz, Tz)

≤ φ(d(Fz,Gz), d(Fz, Sz), d(Gz, Tz))
= φ(d(z, Tz), d(z, z), d(Tz, Tz))

< d(z, Tz),

(2.58)

and this is a contradiction unless d(z, Tz) = 0, that is, Tz = z.
From above argument, we get that

Sz = Tz = z = Fz = Gz, (2.59)

and so z is a common fixed point of S, T, F, and G.

Step 4. Finally, to prove the uniqueness of the common fixed point of S, T, F and G, let y be
another common fixed point of S, T, F, and G. Then using (2.34), we have

d
(
y, z

)
= d

(
Sy, Tz

)

≤ φ(d(Fy,Gz), d(Fy, Sy), d(Gz, Tz))

= φ
(
d
(
y, z

)
, d

(
y, y

)
, d(z, z)

)

< d
(
y, z

)
,

(2.60)

and this is a contradiction unless d(y, z) = 0, that is, y = z. Hence z is the unique common
fixed point of S, T, F, and G in X.

Using Example 2.4, we get the following example to illustrate Theorem 2.8.
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Example 2.9. LetX = {t, 2t, 3t, 4t, 5t}with t > 0 be a constant, andwe define d : X×X → [0,∞)
by

(1) d(x, x) = 0, for all x ∈ X,

(2) d(x, y) = d(y, x), for all x, y ∈ X,

(3) d(t, 2t) = 3γ ,

(4) d(t, 3t) = d(2t, 3t) = γ ,

(5) d(t, 4t) = d(2t, 4t) = d(3t, 4t) = 2γ ,

(6) d(t, 5t) = d(3t, 5t) = γ and d(2t, 5t) = d(4t, 5t) = 2γ ,

where γ > 0 is a constant.
If φ : R

+3 → R
+, φ(t) = (8/9) · max{t1, t2, t3}, then φ is a S function. We next define

S, T, F,G : X → X by

S(x) =

⎧
⎨

⎩

3t if x /= 4t,

5t if x = 4t,

T(x) =

⎧
⎨

⎩

3t if x /= 4t,

t if x = 4t,

G(x) = I(x) = the identity mapping,

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3t if x = 3t,

t if x = t, 2t, 5t,

2t if x = 4t.

(2.61)

Then all conditions of Theorem 2.8 are satisfied, and 3t is a unique common fixed point of
S, T, F, and G.

For the case G = F = I (the identity mapping) and S = T , we are easy to get the below
fixed-point theorem.

Theorem 2.10. Let (X, d) be a Hausdorff and complete g.m.s, and let φ : R
+3 → R

+ be a S function.
Let T : X → X be a single-valued function such that for all x, y ∈ X,

d
(
Tx, Ty

) ≤ φ(d(x, y), d(x, Tx), d(y, Ty)). (2.62)

Then T has a unique fixed point in X.
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[4] D. Miheţ, “On Kannan fixed point principle in generalized metric spaces,” Journal of Nonlinear Science
and Its Applications, vol. 2, no. 2, pp. 92–96, 2009.

[5] B. Samet, “A fixed point theorem in a generalized metric space for mappings satisfying a contractive
condition of integral type,” International Journal of Mathematical Analysis, vol. 3, no. 25–28, pp. 1265–
1271, 2009.

[6] B. Samet, “Disscussion on: a fixed point theorem of Banach-Caccioppli type on a class of generalized
metric spaces,” Publicationes Mathematicae Debrecen, vol. 76, no. 3-4, pp. 493–494, 2010.

[7] H. Lakzian and B. Samet, “Fixed points for (ψ, ϕ)-weakly contractive mappings in generalized metric
spaces,” Applied Mathematics Letters, vol. 25, no. 5, pp. 902–906, 2012.

[8] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and
Mathematical Sciences, vol. 9, no. 4, pp. 771–779, 1986.

[9] G. Jungck, P. P. Murthy, and Y. J. Cho, “Compatible mappings of type (A) and common fixed points,”
Mathematica Japonica, vol. 38, no. 2, pp. 381–390, 1993.

[10] Y. J. Cho, “Fixed points for compatible mappings of type (A),”Mathematica Japonica, vol. 38, no. 3, pp.
497–508, 1993.

[11] Y. J. Cho, B. K. Sharma, and D. R. Sahu, “Semi-compatibility and fixed points,” Mathematica Japonica,
vol. 42, no. 1, pp. 91–98, 1995.

[12] Y. J. Cho, “Fixed points in fuzzy metric spaces,” Journal of Fuzzy Mathematics, vol. 5, no. 4, pp. 949–962,
1997.

[13] Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, “Common fixed points of compatible maps of type
(β) on fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 93, no. 1, pp. 99–111, 1998.

[14] H. K. Pathak, Y. J. Cho, and S. M. Kang, “Common fixed points of biased maps of type (A) and
applications,” International Journal of Mathematics and Mathematical Sciences, vol. 21, no. 4, pp. 681–693,
1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


