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We investigate solving semidefinite programs (SDPs) with an interior point method called SDP-
CUT, which utilizes weighted analytic centers and cutting plane constraints. SDP-CUT iteratively
refines the feasible region to achieve the optimal solution. The algorithm uses Newton’s method
to compute the weighted analytic center. We investigate different stepsize determining techniques.
We found that using Newton’s method with exact line search is generally the best implementation
of the algorithm. We have also compared our algorithm to the SDPT3 method and found that
SDP-CUT initially gets into the neighborhood of the optimal solution in less iterations on all our
test problems. SDP-CUT also took less iterations to reach optimality on many of the problems.
However, SDPT3 required less iterations on most of the test problems and less time on all the
problems. Some theoretical properties of the convergence of SDP-CUT are also discussed.

1. Introduction

We consider the semidefinite programming problem (SDP) as in [1]:

minimize cTx, (1.1)

subject to A(j)(x) � 0 for j = 1, . . . , q, (1.2)

where A(j)(x) := A
(j)
0 +

∑n
i=1 xiA

(j)
i . Also, x ∈ R

n, c ∈ R
n, and each A

(j)
i is an mj × mj

symmetric matrix. The constraint A(j)(x) � 0 is known as a linear matrix inequality or LMI.
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For a given matrix A, A � 0 denotes that A is positive semidefinite. The notation � 0 is used
when a matrix is positive definite. Semidefinite Programs (SDPs) are convex optimization
problems [2], and they generalize many other convex optimization problems including linear
programming. SDPs have applications in engineering and combinatorial optimization and
other fields (see [2, 3]).

The dual of problem (1.1) is the optimization problem [1]:

maximize −
q∑

j=1

A
(j)
0 • Zj (1.3)

subject to
q∑

j=1

A
(j)
i • Zj = ci for i = 1, . . . , n (1.4)

Zj � 0 for j = 1, . . . , q. (1.5)

In the above, A • B denotes the matrix dot product. If A = [aij] and B = [bij] are
matrices of size m, then A • B =

∑m
i=1

∑m
j=1 aijbij = Tr[ABT ], where Tr denotes the trace. We

let R = {x | A(j)(x) � 0 for all j = 1, . . . , q} the feasible region and int(R) = {x | A(j)(x) � 0
for all j = 1, . . . , q} the interior of the feasible region. The set int(R) is precisely the set of all
strictly feasible points. Let p∗ be the optimal solution to the primal problem (1.1), and let d∗ be
the optimal solution to the dual problem (1.3). The duality gap p∗ − d∗ is zero if either SDP
(1.1)-(1.2) or its dual (1.3)–(1.5) is strictly feasible [2].

Several interior point methods have been developed for solving SDPs (see [2, 4, 5]).
When developing our interior point method in this paper, we assume a strictly feasible
interior point x0 is known. There exist methods for finding feasible or near feasible points
(see [6–8]). The algorithm we develop uses cutting planes and weighted analytic centers,
and it iteratively refines the feasible region until the weighted analytic center approaches
the optimal solution. We call our algorithm SDP-CUT. The cutting plane technique was
pioneered by Gomory [9], Kelley [10], and also Cheney and Goldstein [11] for solving integer
programming problems. An algorithm similar to our SDP-CUT for linear programs (LPs)was
proposed by Renegar in his 1988 paper [12].

SDP-CUT is implemented using Newton’s method and different line search tech-
niques. We found that Newton’s method with exact line search is the best implementation
of our algorithm. The effects of a weight vector w ∈ R+ on the algorithm are also studied. A
larger weight yields a faster and more accurate solution in theory, but in practice, too large a
weight may cause numerical errors. We also experienced numerical errors in computing the
Hessian matrices in SDP-CUT, when solving very large problems.

Since finding an interior point for an SDP problem is equivalent to solving another SDP
problem, we decided to consider test problems with a known interior point and used that
point as a starting point for SDP-CUT. We find SDPT3 to be an ideal method for comparison
with SDP-CUT because it is known to be efficient and it allows the user to input a starting
point. We found SDP-CUT was closer to the actual solution than SDPT3 for the initial
iterations on all our test problems. SDP-CUT seems to slow down during later iterations
to reach optimality. On the other hand, SDPT3 took less time on all the problems and less
iterations on most of them. All codes were written in MATLAB version 7.9.0.
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2. Weighted Analytic Center

This section discusses weighted analytic center as given in [13] and how to compute it. Other
notions of weighted center for semidefinite programming are described in [14].

Given a weight vectorω ∈ R
n
+, the weighted barrier function for our system of LMIs (1.2)

is defined as follows:

φω(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−
q∑

j=1

ωj log det
[
A(j)(x)

]
if A(j)(x) � 0 ∀j = 1, . . . , q,

+∞ otherwise.

(2.1)

Note that as x approaches the boundary of the feasible region, φω(x) approaches ∞.
We assume the set {diag(A(1)

1 , . . . , A
(q)
1 ),diag(A(2)

2 , . . . , A
(q)
2 ),diag(A(1)

n , . . . , A
(q)
n )} is linearly

independent. The function φω is analytic and strictly convex over R (see [13, 15]). The weighted
analytic center is defined to be xac(ω) = argmin {φω(x) | x ∈ R

n}. We call xac(1) the analytic
center, where 1 = [1, 1, . . . , 1]. In the case of linear constraints and some other more general
LMIs, each weight pushes the analytic center away from the boundary of the corresponding
constraint. The gradient ∇φω(x) and the Hessian ∇2φω(x) are given by the following: for
i = 1, . . . , n and k = 1, . . . , n

(∇φω(x)
)
i = −

q∑

j=1

ωj

(
A(j)(x)

)−1 •A(j)
i ,

(
∇2φω(x)

)

ik
=

q∑

j=1

ωj

[(
A(j)(x)

)−1
A

(j)
i

]T
•
[(

A(j)(x)
)−1

A
(j)
k

]

.

(2.2)

We will use the following specific example, SDP (2.3), to describe our method:

SDP: minimize z = x1 + 2x2

subject to

A(1)(x) =
[
2 0
0 1

]

+ x1

[−1 0
0 0

]

+ x2

[
0 1
1 0

]

=
[
2 − x1 x2

x2 1

]

� 0, (1)

A(2)(x) =
[
0 0
0 0

]

+ x1

[
1 0
0 1

]

+ x2

[−1 0
0 0

]

=
[
x1 − x2 0

0 x1

]

� 0. (2)

(2.3)

Weighted analytic centers for the LMI system (1.2) can be computed with the WAC-
NEWTON algorithm described below. (Algorithm 1).

An efficient way to calculate the search vector sl in WAC-NEWTON is by finding
the Cholesky factorization of ∇2φω(yl) and using it to solve the linear system ∇2φω(yl)sl =
−∇φω(yl). This is how sl is calculated in the SDP-CUT algorithm to be discussed in the next
section and throughout this paper. Figure 1 shows the contours of φω(x), the effect of the
weight vector ω = [3, 1] on the barrier function, and the weighted analytic center. The figure
uses the feasible region defined by SDP (2.3) and the associated barrier function. The weight
of 3 on constraint (1) pushes the analytic center away from the boundary of constraint (1).
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INPUT: point y0 ∈ int(R), weight vector ω ∈ R
q, tolerance WTOL > 0, and maximum

number of iterations MAX
Set l = 0
while l < MAX do

1. Compute the direction vector sl = −(∇2φω(yl))
−1(∇φω(yl))

2. Compute the Newton decrement d =
√
sT
l
(∇2φω(yl))sl

3. Compute stepsize αl

4. yl+1 = yl + αlsl
if d < WTOL then

break while
5. l ← l + 1

OUTPUT: xac(ω) = yl

Algorithm 1: WAC-NEWTON.
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Figure 1: φω(x) contours and xac(ω) with various weights ω.

3. The SDP-CUT Algorithm

This section describes the development of SDP-CUT. We also discuss WAC-NEWTON∗,
which implements Newton’s method for finding the weighted analytic center for the new
system defined in SDP-CUT. The section finishes with algorithms for computing the Newton
stepsize (CONSTANT, ELS, and BACKTRACKING).

Refer again to the example SDP (2.3). Here, we illustrate one iteration of SDP-CUT.
Figure 2 shows the setup. We have the feasible region, an initial point x∗0 = [1.2633,−0.2292]T ,
and a cutting constraint of the form cTx∗

k
− cTx + ε ≥ 0 that accompanies the point. Figure 3

shows the movement of the point x∗0 to x∗1 = xac(1), the (weighted) analytic center of our
new feasible region made up of the the cutting constraint and the original LMI constraints.
Figure 3 also has the contour lines of the barrier function. Theweight on the cutting constraint
can be changed from 1 to other larger values.

Given a system of LMI’s (1.2) and an objective function as in the primal SDP problem
(1.1), we can numerically solve the problem by iteratively reducing the feasible set. Denote
the current feasible region determined by our system of LMIs by Rk, and suppose we know
a strictly feasible point x∗k in Rk. Initially, we set R0 = R. We can find a new feasible region
Rk+1 ⊂ Rk, where for all x ∈ Rk+1, cTx ≤ cTx∗k. We do this by adding a new constraint cut
cTx∗

k
− cTx + ε ≥ 0. The ε is added to cTx∗

k
to ensure that x∗

k
is “strictly feasible” in the new
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Figure 2: The first cutting constraint and an initial point x∗0.
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Figure 3: The weighted analytic center of new feasible region.

system. Given weight w ∈ R+, we define a new barrier function to account for this new
constraint:

φ∗w(x) = −w log
[
cTx∗k − cTx + ε

]
−

q∑

j=1

log det
[
A(j)(x)

]
. (3.1)

The gradient ∇φ∗w(x) and the Hessian ∇2φ∗w(x) for this new barrier function are given by the
following: for i = 1, . . . , n and k = 1, . . . , n:

(∇φ∗w(x)
)
i =

wci
(
cTx∗

k
− cTx + ε

) −
q∑

j=1

(
A(j)(x)

)−1 •A(j)
i , (3.2)

(
∇2φ∗w(x)

)

ik
=

wcick
(
cTx∗

k
− cTx + ε

)2 +
q∑

j=1

[(
A(j)(x)

)−1
A

(j)
i

]T
•
[(

A(j)(x)
)−1

A
(j)
k

]

. (3.3)

Remark 3.1. Note that in the definition of φ∗w(x) in (3.1), weight [1, 1, . . . , 1] is used on the
original LMI constraints. The weightw is used only on the new cutting constraint in order to
push our point toward the optimal solution. (see Algorithm 2).
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INPUT: x∗0 ∈ int(R), weight w ∈ R+, ε > 0, STOL > 0, and MAX
Set k = 0
While k < MAX do

1. Compute cutting plain constraint cTx − cTx∗
k
+ ε ≥ 0

2. Let x∗
k+1 be the weighted analytic center of new system with barrier function φ∗w(x)

(3.1) to be computed by WAC-NEWTON∗ starting from the point x∗
k

Compute ∂k+1 = cTx∗
k
− cTx∗

k+1

if ∂k < STOL then
break while

3. k ← k + 1
OUTPUT: x∗cut = x∗

k
, p∗cut = cTx∗

k

Algorithm 2: SDP-CUT.

If successful, SDP-CUT terminates with an optimal solution x∗cut and optimal objective
function value p∗cut. Rather than moving the plane in Step 1 of SDP-CUT, the point x∗

k
could

also be moved in the direction of − c to obtain a different starting point x∗
k
− γc for some small

γ > 0, instead of x∗k. However, this can be problematic as we approach the optimal solution
and the feasible region gets small. The point x∗

k
− γc may pass over the entire remaining

feasible region and thus fail to be feasible. If instead, we move the plane as originally
suggested in SDP-CUT, x∗k will always be strictly feasible. Note that since the objective is
to maximize cTx and x∗

k
is an interior point, then − c is a feasible direction from x∗

k
.

We denote byWAC-NEWTON∗, theWAC-NEWTON algorithm applied to φ∗w(x) (3.1)
for determining x∗k+1 in the SDP-CUT algorithm. WAC-NEWTON∗ will return the weighted
analytic center of the current feasible region, which will be our next iterate for SDP-CUT. In
WAC-NEWTON∗, the stepsize αl can be computed in a variety of different ways as discussed
in the next section.

3.1. Line Searches: Computing the Newton Stepsize in
WAC-NEWTON∗ Algorithm

We describe different options for computing the Newton stepsizes in the WAC-NEWTON∗

algorithm. The algorithm first computes the direction vector sl. The Newton stepsize αl

determines how far we should move in the direction of sl from the point yl.
The pure Newton’s method uses a constant stepsize αl = 1.Wewill refer to this method

of choosing the stepsize as “CONSTANT.” The CONSTANT algorithm has the advantage of
not using computational time in decidingwhat stepsize to use. The disadvantage of Newton’s
method with CONSTANT is that it usually results in the need to perform more iterations of
WAC-NEWTON∗, and it is possible to move out the feasible region. To get αl with exact line
search, we solve the one-dimensional optimization problem:

minimize
{
g(α) | α > 0

}
, (3.4)
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where g(α) = φ∗w(yl + αsl). Solving (3.4) is relatively easy and may cut the number of WAC-
NEWTON∗ iterations in SDP-CUT, which are computationally harder in comparison

g(α) = φ∗w
(
yl + αsl

)

= −w log
[
cTx∗k − cT

(
yl + αsl

)
+ ε

]
−

q∑

j=1

log det
[
A(j)(yl + αsl

)]
.

(3.5)

Let al = w log[cTx∗k − cT(yl + αsl) + ε]. Then

g(α) = − al −
q∑

j=1

log det
[
A(j)(yl + αsl

)]

= − al −
q∑

j=1

log det

[

A(j)(yl

)
+

n∑

i=1

(αsl)iA
(j)
i

]

.

(3.6)

Let M(j)
0 = A(j)(yl) and M

(j)
s =

∑n
i=1(sl)iA

(j)
i . Then

g(α) = −al −
q∑

j=1

log det
[
M

(j)
0 + αM

(j)
s

]
. (3.7)

Also,

g(α) = − al −
q∑

j=1

log det
[
M

(j)
0 + αM

(j)
s

]

= − al −
q∑

j=1

log det
[(

M
(j)
0

)1/2
(

I + α
(
M

(j)
0

)−1/2
M

(j)
s

(
M

(j)
0

)−1/2)(
M

(j)
0

)1/2
]

= − al −
q∑

j=1

log
[

det
[(

M
(j)
0

)1/2
]

det
[(

I + α
(
M

(j)
0

)−1/2
M

(j)
s

(
M

(j)
0

)−1/2)]

×det
[(

M
(j)
0

)1/2
]]

= − al −
q∑

j=1

log

[

det
[(

M
(j)
0

)1/2
]2

det
[(

I + α
(
M

(j)
0

)−1/2
M

(j)
s

(
M

(j)
0

)−1/2)]]

= − al −
q∑

j=1

log
[

det
[(

M
(j)
0

)]
det

[(

I + α
(
M

(j)
0

)−1/2
M

(j)
s

(
M

(j)
0

)−1/2)]]

= − al −
q∑

j=1

log det
[(

M
(j)
0

)]
−

q∑

j=1

log det
[(

I + α
(
M

(j)
0

)−1/2
M

(j)
s

(
M

(j)
0

)−1/2)]

.

(3.8)



8 Journal of Applied Mathematics

Let λ(j)i be an eigenvalue of (M(j)
0 )
−1/2

M
(j)
s (M(j)

0 )
−1/2

. Then

g(α) = −al −
q∑

j=1

log det
[(

M
(j)
0

)]
−

q∑

j=1

mj∑

i=1

log
[
1 + αλ

(j)
i

]
. (3.9)

The function g(α) is convex function over R, and the exact stepsize αl can be found using
the Newton’s method. Equations (3.7) and (3.9) give two different ways of computing g(α),
when finding the exact stepsize. If one decides to use (3.7), the first and second derivatives
of g(α) are required and given by

g ′(α) =
wcTsl

cTx∗
k
− cT(yl + αsl

)
+ ε
−

q∑

j=1

(
M

(j)
0 + αM

(j)
s

)−1 •M(j)
s ,

g ′′(α) = − w
(
cTsl

)2

(
cTx∗k − cT

(
yl + αsl

)
+ ε

)2

(3.10)

+
q∑

j=1

[(
M

(j)
0 + αM

(j)
s

)−1
M

(j)
s

]T
•
[(

M
(j)
0 + αM

(j)
s

)−1
M

(j)
s

]

. (3.11)

If (3.9) is used, the derivatives are simply given by

g ′(α) =
wcTsl

cTx∗k − cT
(
yl + αsl

)
+ ε
−

q∑

j=1

mj∑

i=1

�(j)
i

1 + α�(j)
i

, (3.12)

g ′′(α) =
w
(
cTsl

)2

(
cTx∗

k
− cT(yl + αsl

)
+ ε

)2 −
q∑

j=1

mj∑

i=1

(
�(j)

i

)2

(
1 + α�(j)

i

)2
. (3.13)

We will use ELS-MAT to denote the exact line search computations done using (3.7), and
ELS-EIG if computations are done from (3.9).

In addition to constant stepsize = 1 and exact line search, another way that was
considered in computing theNewton stepsize was backtracking. This method involves starting
with a stepsize >= 1 and then, decreasing the stepsize until a stopping condition is met (see
[5, 16]). This technique guarantees a sufficient decrease in g(α), often starting from α = 1, in
practice. (see Algorithm 3).

It is known that Newton’s method converges quadratically close to the solution. In
our case, WAC-NEWTON∗ converges rapidly for starting points that are not close to the
boundary of the feasible region Rk. Sometimes, we encounter difficulty when the starting
point is too close to the boundary. Note that each time we make a new cut, our starting
point is near the boundary. It is also the case, when SDP-CUT iterates approaches optimality.
When close to the boundary, our direction vector s often is very small, and thus a stepsize
of α = 1 may not make much progress. So, in these cases, the CONSTANT stepsize may
spend many iterations, while making little progress, and each iteration wasting gradient and
Hessian computations. Using the ELS algorithm, we find the proper stepsize and move out
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INPUT: 0< β < 1 and 0< γ < 0.5
Set α= 1
while g(α)> g(0) +αγ(∇ϕw(yl))

Tsl do
α←− βα

OUTPUT: α

Algorithm 3: Backtracking.
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Figure 4: Need for different stepsizes.

of this problem area in just one iteration. Consider the plots in Figure 4, which show the
situation described above. Here, again, we are using SDP Example 2.3 and the point shown
in Figure 2.

As we can see from Figure 4 on the left, the best choice of stepsize is much greater than
1. In Figure 4 on the right, we can see that we have now moved into an area where a stepsize
of 1 is reasonable. BACKTRACKINGwill not help with this problem. BACKTRACKING only
helps when the optimal stepsize is less than 1. If we try to adapt BACKTRACKING to help
in the circumstance described above, we must initialize the BACKTRACKING stepsize to a
large number, which creates two problems. First, when the optimal stepsize is close to 1, or
smaller, we will waste time backtracking. Secondly, if we use a large initial stepsize, this may
cause BACKTRACKING to send our point outside the feasible region, causing our algorithm
to diverge. As it will be further shown in the next section, it does appear that ELS has a
positive effect on SDP-CUT, while BACKTRACKING does not. Figure 5 has plots comparing
how far CONSTANT and ELS move our point towards the optimal solution at each iteration.
The plots highlight the “wasted iteration” problemwith CONSTANT, which occurs when the
optimal stepsize ismuch great than 1.

4. Experiment I: SDP-CUT Implementations

We have implemented SDP-CUT in four ways, varying in how the Newton stepsize is
computed: CONSTANT, ELS-MAT, ELS-EIG, and BACKTRACKING. We will compare the
performance of these four implementations against various test problems. For each problem,
the SDP-CUT parameters were set at ε = 10−6, STOL = 10−12, WTOL = 10−10, w = 7 and
MAX = 100.
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Figure 5: The “wasted iteration” problem.

4.1. Performance as q Varies

Here, we left the number of variables constant at n = 2 and varied the number of constraints
q from 2 to 10. The matrices have their sizes fixed at mj = 5 for all j. For each value of q, 10
SDP problems were randomly generated, and SDP-CUTwas used to solve each problem. The
number of SDP-CUT iterations (which we also call WAC-NEWTON∗ iterations) and run time
for SDP-CUT were recorded for each problem. Figures 6 and 7 give plots of the averages with
q on the horizontal axis. The vertical axis in Figure 6 contains the total SDP-CUT iterations.
In Figure 7, the vertical axis gives the total run time of SDP-CUT in seconds.

Figure 6 shows there is not a correlation between the number of LMI constraints
and the number of SDP-CUT iterations (WAC-NEWTON∗ iterations) needed to find the
optimal solution. Figure 6 also shows that ELS-EIG and ELS-MAT both effectively reduce
the number of SDP-CUT iterations needed, while BACKTRACKING has about the same
number of iterations as CONSTANT. Figure 7 shows that in the case of n = 2, ELS-MAT
and ELS-EIG run the fastest, while BACKTRACKING runs far slower than anything else.
Time increases as q increases due to the gradient and Hessian computations. As we can
see in formulas (3.2) and (3.3), for each constraint, we must perform matrix inverses, dot
products, and multiplications. This makes each iteration computationally harder, but does
not affect the iterations needed as is seen in Figure 6. BACKTRACKING’s time increases
the most with q due to the eigenvalue computation needed for the stopping condition.
BACKTRACKING performs these extra computations, but SDP-CUT does not benefit from
them, and consequently BACKTRACKING has the highest run time.

4.2. Performance as n Varies

Here, we left the number of constraints constant at q = 3 and varied the number of variables
n from 2 to 10. The matrices sizes were set at mj = 5 for all j. For each value of n, 10
SDP problems were randomly generated, and SDP-CUT was used to solve each problem.
The number of SDP-CUT iterations (WAC-NEWTON∗ iterations) and run time for SDP-
CUT were recorded for each problem. Figures 8, 9, and 10 are plots of the averages with n
on the horizontal axis. The vertical axis contains the SDP-CUT iterations (WAC-NEWTON∗

iterations) needed in Figure 8. The vertical gives the run time of SDP-CUT in seconds in
Figure 9. There is also a third plot, Figure 10, which shows n on the horizontal axis and the
average time required to perform an iteration of SDP-CUT on the vertical axis.
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Figure 8, again, shows that ELS-EIG and ELS-MAT are effective in reducing the
number of SDP-CUT iterations needed, while BACKTRACKING fails to reduce the number
of iterations needed. Figure 8 also shows a positive correlation between the number of SDP-
CUT iterations (WAC-NEWTON∗ iterations) and n. From Figure 9, we see that the exact line
search reduces the total time needed for our algorithm, especially as n gets larger. This is
important, because as n grows, the number of SDP-CUT iterations and the time required
per iteration both increase (see Figure 10). For small n, CONSTANT is quicker per SDP-CUT
iteration, but as n grows there is no noticeable difference in the time per iteration between
CONSTANT or either ELS implementation. This is because the computations needed for the
optimization problem (3.4) becomes so small compared to the computations need to compute
∇φ∗w(x) and ∇2φ∗w(x).

4.3. Performance as m Varies

Here, we left the number of constraints constant at q = 2 and the number of variables fixed
at n = 2. We varied the matrix sizes mj = m from 5 to 60. The number of SDP-CUT iterations
(WAC-NEWTON∗ iterations) and run time were recorded for each problem. Below are plots
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of the averages withm on the horizontal axis. The vertical axis in Figure 11 contains the total
SDP-CUT iterations (WAC-NEWTON∗ iterations) used to solve the problem. In Figure 12,
the vertical axis gives the total run time of SDP-CUT in seconds. There is also a third plot,
Figure 13, which showsm on the horizontal axis and the time required to perform an iteration
of SDP-CUT on the vertical axis.

Figure 11, again, shows that ELS reduces the required number of SDP-CUT iterations
(WAC NEWTON∗ iterations). However, as the size of the constraint matrices becomes large,
the computations needed for the exact line search grow. Figure 12 shows the ELS-MAT is the
fastest in the range of matrix sizes we tested. Unlike our other experiments, CONSTANT
beats ELS-EIG. The reason for this is that the time per iteration of ELS-EIG grows very
rapidly as is seen in Figure 13. This occurs because the computation of eigenvalues becomes
increasingly difficult as the matrix grows in size.

ELS appears to be the best implementation of SDP-CUT. ELS is very effective in
reducing the number of WAC NEWTON∗ iterations needed. ELS-MAT outperformed ELS-
EIG in general. The eigenvalues allow for fast computation of the gradient and Hessian of
g(α) once the eigenvalues are obtained (see (3.12) and (3.13)). However, the large cost of
computing the eigenvalues outweighs this benefit, especially as the matrices become large.
ELS-MAT uses a slower means of computing the gradient and Hessian of g(α), but has no



Journal of Applied Mathematics 13

Iteration time versus n

W
A

C
-N

E
W

T
O

N
∗

it
er

at
io

n 
ti

m
e

0.025

0.02

0.015

0.01

0.005

0
0 2 4 6 8 10 12

n

0.03

CONSTANT
ELS-MAT

ELS-EIG
BACKTRACKING

Figure 10: Time required to perform an iteration of SDP-CUT.

200
180
160
140
120
100
80
60
40

10 20 30 40 50 60

WAC-NEWTON∗ iterations versus m

0W
A

C
-N

E
W

T
O

N
∗

it
er

at
io

ns

m

CONSTANT
ELS-MAT

ELS-EIG
BACKTRACKING

Figure 11: SDP-CUT iterations with matrix size.

eigenvalue calculation overhead (see (3.10) and (3.11)). The slowest operation needed is
matrix inversion. Matrix inversion becomes harder as the matrices get large, but it scales
much better than finding the eigenvalues. It is conceivable that very large matrix situations
could arise in which both ELS-EIG and ELS-MAT are too expensive; in this case it may be
best to use CONSTANT. We were unable to find any cases in our test problems in which
BACKTRACKING was beneficial. From now onwards, SDP-CUT will always refer to SDP-
CUT with ELS-MAT implementation.

4.4. Convergence and the Weight w, Leveling Off Effect

Increasing the weight w will decrease the number of SDP-CUT iterations needed to find the
optimal solution. A larger weight will also allow us to get closer to the optimal solution.
However, if w becomes too large, numerical errors will prevent convergence. Here, we will
discuss the role w plays in the rate of convergence, as well as how large we can make w
before SDP-CUT fails. Figure 4 graphically demonstrates the convergence of SDP-CUT on
our example (SDP (2.3)) as the weight w varies.
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From the plots in Figure 14, we can visibly see that by increasing the weight, SDP-CUT
moves toward the optimal solution faster. In attempts to see how fast SDP-CUT converges
and what effect the weight has, we performed the following experiment. We ran SDP-CUT
on the example and kept track of the iterates x∗k at each iteration. Below is a plot of ‖x∗ − x∗k‖
shown on a log scale against iterations as we varied the weight w = 1, 3, 5, 7, 9, where x∗ is
the optimal solution. We see in Figure 15 that the distance from the estimate to the actual
solution decreases exponentially, and linearly when shown on the log scale. We found that in
most cases our implementation of SDP-CUT breaks down around w = 10.

As we can see, increasing the weight means quicker convergence. However, Figure 15
only shows the first 10 iterations. As we approach the optimal solution, the rate of
convergence slows and “levels off.” This is caused by the feasible region becoming very
small and by moving the cutting constraint back by ε, and thus the SDP-CUT iterates stay
in approximately the same place. This problem is demonstrated in Figure 16. We see that
larger weights allow us to get closer to the optimal solution, but even with a larger weight
our convergence “levels off.”

One way to get closer to the optimal solution before the weighted analytic centers start
to “levels off,” is to use a smaller ε. The difficulty with decreasing ε is if ε becomes too small,
our SDP-CUT iterates come too close to the boundary, giving rise to “numerical problems,”
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especially in computing the Hessian matrices. We found that SDP-CUT worked with = 10−6,
but failed when ε = 10−7 in example SDP (2.3). The “numerical problems” are due to the fact
that near the boundary, one of the LMI constraint matrices is near-singular, and we need to
compute matrix inverses. Figure 17 shows what the “leveling off” effect looks like over the
feasible region of SDP problem (2.3). Notice that the sequence of iterates x∗k, from SDP-CUT,
reaches a limit before it reaches the boundary of the region.

5. Experiment II: SDP-CUT versus SDPT3

In this section, the algorithms SDP-CUT and the well-known SDPT3 [17] method are
compared on a variety of SDP test problems. Since SDPT3 is known to be efficient, we also
used it to find the best possible estimation of the actual optimal objective function values.
Another reason for using SDPT3 is its flexibility to allow the user to input a starting point.

For the experiment, we tested 20 SDP problems and solved each with SDP-CUT and
SDPT3. Each SDP problem was randomly generated, where the dimension n and number of
constraints q are random integers on the intervals [2, 20] and [1, 20] respectively. The size
mj of each LMI is a random integer on [1, 10]. The values of n and q are listed in the table
below. The values ofmj are not given because they are too many. For example, SDP 1 hasm =
[7, 5, 9, 8, 5, 1]. The problems were generated in a way that makes the origin, an interior point
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for all of them. For all problems, we used tolerances STOL = 10−3, WTOL = 10−6, ε = 10−7, and
a weight of w = 7 was used with SDP-CUT. For the first 10 test problems, the iteration limit
was MAX = 5. For the remaining 10 problem, the iteration limit is raised to MAX = 100. We
record the total iterations performed for each algorithm as well as the time taken. The last two
columns of the table below show the error in the calculated optimal objective function value
compared to the actual value p∗actual obtained from SDPT3 with no restriction on the number
of iterations. In the table below, the suffixescut and SDPT3 are used to distinguish between
values pertaining to SDP-CUT and SDPT3, respectively. N, T , and E are used to denote the
number of iterations, time, and absolute error, respectively. For example, Ecut = |p∗cut − p∗actual|.

We see in Table 1 that after 5 iterations, SDP-CUT gives a more accurate answer in all
the first 10 test problems. However, if allowed to run for more iterations all the algorithms
successfully found the optimal solutions, but SDPT3 took less number of iterations to reach
optimality in 6 out of the 10 problems. Also SDPT3, took less time in all the 20 test problems.
We believe the difference in times is partly because SDPT3 has over the years been optimized
to run efficiently, while SDP-CUT is at a beginning of its development. It is interesting to note
that SDP-CUT took fewer iterations in 4 out of the 10 problems.
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Table 1: Data for experiment II: SDP-CUT versus SDPT3.

SDP n q Ncut NSDPT3 Tcut TSDPT3 Ecut ESDPT3

1 20 6 5 5 2.6842 0.1134 0.0814 0.8222

2 12 17 5 5 3.2816 0.0954 0.0126 0.7291

3 18 15 5 5 5.0180 0.0905 0.1053 0.1361

4 13 2 5 5 0.5383 0.0732 0.0116 0.0721

5 2 5 5 5 0.0714 0.0600 0.0000 0.0011

6 4 7 5 5 0.2779 0.0814 0.0006 0.1159

7 3 19 5 5 0.4144 0.0766 0.0001 0.4938

8 15 5 5 5 1.5041 0.0969 0.0423 0.1689

9 5 2 5 5 0.1164 0.0603 0.0013 0.5072

10 20 12 5 5 5.2449 0.0906 0.1425 1.3682

11 4 2 10 12 0.1457 0.1324 0 0

12 4 3 8 12 0.1536 0.1322 0 0

13 16 5 20 13 4.8852 0.1791 0 0

14 18 9 25 14 12.1776 0.2330 0 0

15 20 15 22 12 19.7580 0.1971 0 0

16 15 15 19 12 10.4692 0.2117 0 0

17 10 8 14 12 2.2191 0.1759 0 0

18 13 7 16 11 3.4501 0.1647 0 0

19 2 20 8 11 0.4571 0.1552 0 0

20 5 18 9 10 1.0308 0.1747 0 0

We need to do more work to make SDP-CUT more efficient. We noticed that the
Hessian matrix ∇2φ∗w(x) in SDP-CUT is prone to errors in the case of problems that are
very large. In those cases, ∇2φ∗w(x) loses its positive definiteness and thus its Cholesky
factorization is not possible. That is the main reason why we could not run SDP-CUT on the
SDP test problems at SDPLIB [18]. For example, SDP-CUT was not successfully in solving
truss2 of SDPLIB, due to numerical problems when computing the Hessian matrices. This
problem has n = 58 variables and q = 133 constraints. However, SDP-CUT was successful in
solving truss1, but with w = 5.

6. Convergence of SDP-CUT

Let {x∗k} be the sequence of estimates for x∗ generated by SDP-CUT. Let Rk be the feasible
region after k-cuts. Thus, x∗

k
is the weighted analytic center of Rk for all k > 0. Let {∂k} be the

sequence defined by ∂k = cT (x∗
k
− x∗

k+1).
The following theorem shows that when ||c|| and ||x∗k − x∗k+1|| are both small, then ∂k

is also small. Note that when ∂k becomes very small, SDP-CUT is no longer making progress
on the objective function values. This is especially true in the case of “leveling off” effect
discussed in Section 4. This also indicates that our stopping criterion ‖x∗

k
−x∗

k+1‖ < STOL does
not always mean convergence to the optimal solution.

Theorem 6.1. If ‖x∗
k
− x∗

k+1‖ < STOL, then ∂k < ‖c‖ STOL.
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Proof. Assume ‖x∗k − x∗k+1‖ < STOL and use the Cauchy-Schwartz Inequality

∂k = cT
(
x∗k − x∗k+1

)

=⇒ ∂k ≤ ‖c‖
∥
∥x∗k − x∗k−1

∥
∥

=⇒ ∂k < ‖c‖STOL.

(6.1)

How close we can get to the optimal solution depends on the parameters w and ε. As
ε becomes smaller we are able to obtain smaller regions, which allows SDP-CUT to get closer
to the optimal solution. For a given region, a larger w causes SDP-CUT push the estimate of
the optimal solution x∗

k
further in the − c direction. For any choice of iterate x∗

k
, if we consider

its limit as → ∞, we should be able to push x∗
k
as close to the optimal solution x∗ as we like.

In practice, both the decrease ε → 0 and w → ∞ cause numerical problems. A question
we propose is: in the limit as w → ∞, how many iterations of SDP-CUT are needed for
convergence?

Since the cutting plane is a linear constraint, it is possible that only one iteration is
needed as w → ∞ (at least in some cases). Consider the following SDP (LP) example:

SDP:minimize x2

subject to 1 − x1 ≥ 0

1 + x1 ≥ 0

1 − x2 ≥ 0

1 + x2 ≥ 0.

(6.2)

The feasible region of this example is given in Figure 18. Consider the point (0, 0) in the
feasible region and the cutting constraint through this point. Also, consider the corresponding
barrier function φ∗w(x) (3.1) and its gradient ∇φ∗w(x) (3.2). At the weighted analytic center,
the gradient is zero. This gives

1
1 − x1

− 1
1 + x1

= 0,

w

ε − x2
+

1
1 − x2

− 1
1 + x2

= 0.

(6.3)

It is clear from Figure 18 that the weighted analytic center has a negative x2 value. So, the
above equations show that the weighted analytic center is

x1 = 0,

x2 =
ε −
√
ε2 + 2w +w2

2 +w
.

(6.4)
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We see that the weighted analytic center (x1, x2) converges to the optimal solution (0,−1) as
w → ∞. This example suggests the following conjecture.

Conjecture 6.2. SDP-CUT converges to x∗ as w → ∞.

6.1. Scaling the Vector c

Theorem 6.1 shows the dependence of ∂k on ||c||. Here, we will consider the effect of scaling c
on SDP-CUT. If we scale c by ν > 1 such that we are now trying to optimize νcTx, we do not
change the optimal solution x∗. We will compare how close SDP-CUT gets when optimizing
for various values of ν. Figure 19 is a plot of the results ||x∗ − x∗cut|| on the vertical axis and
the scaling factor ν is on the horizontal axis. We used example SDP (2.3) with STOL = 10−12,
MAX = 100, w = 10. We can see in Figure 19 that scaling the objective vector c by a factor
ν > 1 does have a positive effect on the accuracy of SDP-CUT.
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7. Conclusion

We have developed and studied a new interior point method, SDP-CUT, for solving SDPs.
We found that implementing SDP-CUT using Newton’s method with exact line search, in
general, gives the best performance. SDP-CUT appears to be very effective in getting into
the neighborhood of the optimal solution as seen in problems 1–10 in Table 1. However,
there is the “leveling off” effect shown in Figure 16. Future work on SDP-CUT can involve
investigating Conjecture 6.2. Implementations that can handle a larger weightw or smaller ε
will result in better performance.

Another area for improvement is the stopping criteria. Currently, the stopping criteria
is ||x∗k − x∗k−1|| < STOL, which lets us know if we are no longer making progress. However,
this does not always guarantee optimality of the solution.We have also shown that scaling the
objective vector c by some factor ν > 1 could allow SDP-CUT to give a better solution. Also,
it is important to investigate how to make all the other components of SDP-CUT work well
and efficiently. For example, we would like to find a way to compute the Hessian ∇2φ∗w(x))ik
more efficiently and without errors. The way we compute the stepsizes in Newton’s method
is an area that requires further attention. The exact line search we preferred over the others
is probably too expensive and a better way may be possible. These improvements would
allow us to test SDP-CUT on larger problems and compare it with other methods. It is also of
interest to study what kind of problems SDP-CUT would work well or fail.

Acknowledgment

The first author would like the thank the National Science Foundation (NSF) for the oppor-
tunity to start initial work on this paper through their funding of the Research Experience for
Undergraduates (REU) program at Northern Arizona University.

References

[1] S. Jibrin, Redundancy in Semidefinite Programming: Detection and Elimination of Redundant Linear Matrix
Inequalities, VDM, Saarbrucken, Germany, 2009.

[2] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1, pp. 49–95,
1996.

[3] L. Vandenberghe and S. Boyd, “Applications of semidefinite programming,” Applied Numerical Math-
ematics, vol. 29, no. 3, 1999.

[4] F. Alizadeh, “Interior point methods in semidefinite programming with applications to combinatorial
optimization,” SIAM Journal on Optimization, vol. 5, no. 1, pp. 13–51, 1995.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, USA,
2004.

[6] R. J. Caron, T. Traynor, and S. Jibrin, “Feasibility and constraint analysis of sets of linear matrix
inequalities,” INFORMS Journal on Computing, vol. 22, no. 1, pp. 144–153, 2010.

[7] J. W. Chinneck, “The constraint consensus method for finding approximately feasible points in
nonlinear programs,” INFORMS Journal on Computing, vol. 16, no. 3, pp. 255–265, 2004.

[8] W. Ibrahim and J. W. Chinneck, “Improving solver success in reaching feasibility for sets of nonlinear
constraints,” Computers & Operations Research, vol. 35, no. 5, pp. 1394–1411, 2008.

[9] R. E. Gomory, “Outline of an algorithm for integer solutions to linear programs,” Bulletin of the
American Mathematical Society, vol. 64, no. 5, pp. 275–278, 1958.

[10] J. E. Kelley, Jr., “The cutting-plane method for solving convex programs,” Journal of the Society for
Industrial and Applied Mathematics, vol. 8, no. 4, pp. 703–712, 1960.



Journal of Applied Mathematics 21

[11] E. W. Cheney and A. A. Goldstein, “Newton’s method for convex programming and Tchebycheff
approximation,” Numerische Mathematik, vol. 1, no. 1, pp. 253–268, 1959.

[12] J. Renegar, “A polynomial-time algorithm, based on Newton’s method, for linear programming,”
Mathematical Programming, vol. 40, no. 1–3, pp. 59–93, 1988.

[13] I. S. Pressman and S. Jibrin, “The weighted analytic center for linear matrix inequalities,” Journal of
Inequalities in Pure and Applied Mathematics, vol. 2, no. 3, article 29, 2002.

[14] C. B. Chua, “A new notion of weighted centers for semidefinite programming,” SIAM Journal on
Optimization, vol. 16, no. 4, pp. 1092–1109, 2006.

[15] S. Jibrin and J. W. Swift, “The boundary of weighted analytic centers for linear matrix inequalities,”
Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 1, article 14, 2004.

[16] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, USA, 2nd edition, 2006.
[17] K. C. Tutuncu and M. J. Todd, On the Implementation and Usage of SDPT3-a Matlab Software Package for

Semidefinite-Quadratic-Linear Programming Version 4, 2006.
[18] B. Borchers and L. Vandenberghe, “SDPLIB 1.2, a library of semidefinite programming test problems,”

Optimization Methods and Software, vol. 11-12, no. 1–4, pp. 683–690, 1999.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


