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A posteriori error estimates for the generalized overlapping domain decomposition method
(GODDM) (i.e., with Robin boundary conditions on the interfaces), for second order boundary
value problems, are derived. We show that the error estimate in the continuous case depends on
the differences of the traces of the subdomain solutions on the interfaces. After discretization of the
domain by finite elements we use the techniques of the residual a posteriori error analysis to get an
a posteriori error estimate for the discrete solutions on subdomains. The results of some numerical
experiments are presented to support the theory.

1. Introduction

We consider the generalized overlapping domain decomposition method that is, with Robin
transmission conditions on the interfaces [1, 2] for second order boundary value problems
on a bounded domain Ω with Dirichlet boundary conditions. The a priori estimate of
the error is given in several papers, see for instance Lions [3] in which a variational
formulation of the classical Schwarz method is derived. In Chan et al. [4] a geometry related
convergence results are obtained. Douglas and Huang [1] studied the accelerated version
of the GODDM, Engquist and Zhao [2] studied the convergence for simple (rectangular or
circular) geometries; however, these authors did not give a criterion to stop the iterative
process. All these results can also be found in the recent books on domain decomposition
methods of Quarteroni and Valli [5], Toselli andWidlund [6]. Recently Maday andMagoulès
[7, 8] presented an improved version of the Schwarzmethod for highly heterogeneousmedia.
This method uses new optimized interface conditions specially designed to take into account
the heterogeneity between the subdomains on the interfaces. A recent overview of the current
state of the art on domain decomposition methods can be found in two special issues of the
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computer methods in applied mechanics and engineering journal, edited by Farhat and Le
Tallec [9], Magoulès and Rixen [10] and in Nataf [11].

In general, the a priori estimate is not suitable for assessing the quality of the
approximate solution on subdomains since it depends mainly on the exact solution itself
which is unknown. The alternative approach is to use the approximate solution itself in order
to find such an estimate. This approach, known as a posteriori estimate, became very popular
in the nineties of the last century with finite element methods, see the monographs [12, 13]
and the references therein. In their paper Otto and Lube [14] gave an a posteriori estimate
for a nonoverlapping domain decomposition algorithm that said that “the better the local
solutions fit together at the interface the better the errors of the subdomain solutions will
be.” This error estimate enables us to know with certainty when one must stop the iterative
process as soon as the required global precision is reached. A posteriori error analysis was
also used by Bernardi et al. [15] to determine an optimal value of the penalty parameter for
penalty domain decomposition methods to construct fast solvers.

In various situations it is better to use overlapping decompositions for faster
convergence rate, for example, the case of decomposition into simple subdomains where
uniform discretizations are possible. So the aim of this paper is to show that a similar result
to that in [14], in the case of the GODDM, holds. It is obtained via the introduction of
two auxiliary problems defined each over two nonoverlapping subdomains. These auxiliary
problems are needed for the analysis and not for the computation.

The paper is organized as follows. In Section 1, we introduce some necessary notations,
then we give a variational formulation of our model problem. We establish, in Section 2, a
stopping criterion for the iterative process in the continuous case. In Section 3, an a posteriori
error estimate is proposed for the convergence of the discretized solution using the finite
element method on subdomains. We conclude this section by an adaptation of the techniques
of the residual a posteriori error analysis to give an a posteriori estimate in the discrete case.

1.1. Problem Formulation and Domain Decomposition Method

Let Ω be a bounded domain in R
2 with a piecewise C1,1 boundary ∂Ω. We denote (·, ·)Ω and

‖ · ‖0,Ω the usual inner product and norm of L2(Ω). LetH1(Ω) be the usual Sobolev space with
norm ‖ · ‖1,Ω and seminorm | · |1,Ω;H1

0(Ω) is the subspace of functions ofH1(Ω) vanishing on
∂Ω.

Let Ω1 and Ω2 be two subdomains of Ω (to be defined later), when Γi ⊂ ∂Ωi we need
the space Wi = H1/2

00 (Γi) = {v|Γi : v ∈ H1(Ωi), v = 0 on ∂Ωi \ Γi} which is a subspace of
H1/2(Γi); i = 1, 2 equipped with the norm

∥
∥ϕ
∥
∥
Wi

= inf
v∈H1(Ωi), v=ϕ on Γi

|v|1,Ωi
. (1.1)

On the subdomain Ωi we use the space Vi = H1
0(Ω) ∩ H1(Ωi) which has as a trace space

Wi = Vi|Γi = H1/2
00 (Γi), i = 1, 2. By 〈·, ·〉Γi we denote the inner product of L2(Γi).

Let us consider the following model problem:

−Δu = f ∈ L2(Ω),

u = 0 on ∂Ω,
(1.2)
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The variational formulation of this problem is given by

Find u ∈ V solution of a(u, v) =
(

f, v
)

Ω, ∀v ∈ V, (1.3)

where a(u, v) =
∫

Ω ∇u∇v dx and(f, v)Ω =
∫

Ω fv dx for all v ∈ V = H1
0(Ω). We split the

domain Ω into two overlapping subdomains Ω1 and Ω2 such that

Ω1 ∩Ω2 = Ω12, ∂Ωi ∩Ωj = Γi, i /= j
(

i, j = 1, 2
)

. (1.4)

The generalized overlapping domain decomposition method is written as follows: set
u0
i in Ωi and construct the sequence un+1

i , i = 1, 2 in parallel for n = 0, 1, 2, . . .

−Δun+1
1 = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

∂un+1
1

∂η1
+ α1u

n+1
1 =

∂un
2

∂η1
+ α1u

n
2 on Γ1,

(1.5)

−Δun+1
2 = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂un+1
2

∂η2
+ α2u

n+1
2 =

∂un
1

∂η2
+ α2u

n
1 on Γ2,

(1.6)

where ηi is the exterior normal to Ωi and αi is a real parameter, i = 1, 2.
The convergence of the GODDM (1.5) and (1.6) is proved in [2, 5]. Our main interest

is to obtain an a posteriori error estimate we need for stopping the iterative process as soon
as the required global precision is reached.

The weak formulations of problems (1.5), (1.6) are given, respectively, by

un+1
1 ∈ V1 : a1

(

un+1
1 , v1

)

+
〈

α1u
n+1
1 , v1

〉

Γ1
=
(

f, v1
)

+
〈
∂un

2

∂η1
+ α1u

n
2 , v1

〉

Γ1

, ∀v1 ∈ V1, (1.7)

un+1
2 ∈ V2 : a2

(

un+1
2 , v1

)

+
〈

α2u
n+1
2 , v1

〉

Γ2
=
(

f, v2
)

+
〈
∂un

1

∂η2
+ α2u

n
1 , v1

〉

Γ2

, ∀v2 ∈ V2, (1.8)

where Vi is defined above. It can also be written as

Vi =
{

v ∈ H1(Ωi) : v|∂Ωi∩∂Ω = 0
}

, ai(u, v) = (∇u,∇v)Ωi
. (1.9)

2. A Posteriori Error Estimate in the Continuous Case

Since it is numerically easier to compare the subdomain solutions on the interfaces Γ1 and Γ2
rather than on the overlapΩ12, thus we need to introduce two auxiliary problems defined on
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Figure 1: Two examples of domain decompositions (Schur and Schwarz).

nonoverlapping subdomains ofΩ. This idea allows us to obtain the a posteriori error estimate
by following the steps of Otto and Lube [14]. We get these auxiliary problems by coupling
each one of the problems (1.5) and (1.6) with another problem in a nonoverlapping way
over Ω. These auxiliary problems are needed for the analysis and not for the computation,
to get the estimate. We see that we can go from the GODDM to a couple of nonoverlapping
domain decomposition methods with Robin boundary conditions on the interfaces Γ1 and Γ2.
To define these auxiliary problems we need to split the domain Ω into two sets of disjoint
subdomains: (Ω1,Ω3) and (Ω2,Ω4), see Figure 1, such that

Ω = Ω1 ∪Ω3, with Ω1 ∩Ω3 = ∅, Ω = Ω2 ∪Ω4 with Ω2 ∩Ω4 = ∅. (2.1)

Let (un+1
1 , un+1

2 ) be the solutions of problems (1.5), (1.6). We define the couple
(un+1

1 , un+1
3 ) over (Ω1,Ω3) to be the solution of the following nonoverlapping problems:

−Δun+1
1 = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

∂un+1
1

∂η1
+ α1u

n+1
1 =

∂un
2

∂η1
+ α1u

n
2 on Γ1,

(2.2)

−Δun+1
3 = f in Ω3,

un+1
3 = 0 in ∂Ω3 ∩ ∂Ω,

∂un+1
3

∂η3
+ α3u

n+1
3 =

∂un
1

∂η3
+ α3u

n
1 on Γ1.

(2.3)

We can write un
2 = un

3 + εn1 on Γ1 (in the 3rd equation in (2.2)) that is, εn1 is the difference
between the overlapping and the nonoverlapping solutions un

2 and un
3 (in problems (1.5)-(1.6)
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and (2.2)-(2.3) resp.,) in Ω3. Because both overlapping and nonoverlapping problems
converge, see [2, 5] that is, un

2 and un
3 tend to u2 = u|Ω2 , ε

n
1 should tend to naught an n tends

to infinity in V2.
By multiplying the first equation in (2.2) by v1 ∈ V1 and integrating by parts we obtain

∫

Ω1

∇un+1
1 ∇v1dx +

∫

Γ1
α1u

n+1
1 v1dx =

∫

Ω1

fv1dx +
∫

Γ1
Λn

3v1dσ, (2.4)

where Λn
3 is given by

Λn
3 =

∂un
3

∂η1
+ α1u

n
3 +

∂εn1
∂η1

+ α1ε
n
1 . (2.5)

On the other hand, using the last equation in (2.3) and putting

θn
1 =

∂εn1
∂η1

+ α1ε
n
1 , (2.6)

we get

Λn+1
3 =

∂un+1
3

∂η1
+ α1u

n+1
3 + θn+1

1 = −∂u
n+1
3

∂η3
+ α1u

n+1
3 + θn+1

1

= α3u
n+1
3 − ∂un

1

∂η3
− α3u

n
1 + α1u

n+1
3 + θn+1

1

= (α1 + α3)un+1
3 −Λn

1 + ζn,

(2.7)

where ζn = θn+1
1 +θn

3 . From this result we canwrite the following algorithmwhich is equivalent
to the auxiliary nonoverlapping problem (2.2)-(2.3). We need this algorithm and two lemmas
for obtaining an a posteriori error estimate for this problem.

Algorithm 2.1. The sequences (un+1
1 , un+1

3 )n∈N
solutions of problems (2.2), (2.3) satisfy the

following domain decomposition algorithm denoted ALG.G.D.D.M.

(1) Let Λ0
i ∈ W∗

1 be an initial value, i = 1, 3 (W∗
1 is the dual of W1).

(2) Given Λn
j ∈ W∗

1 solve for i = 1, 3, i /= j: Find un+1
i ∈ Vi solutions of

ai

(

un+1
i , vi

)

+
〈

αiu
n+1
i , vi

〉

Γ1
= F(vi) +

〈

Λn
j , vi

〉

Γ1
, ∀vi ∈ Vi. (2.8)

(3) Compute new data Λn+1
i ∈ W∗

1 , i = 1, 3 from

〈

Λn+1
i , ϕ

〉

Γ1
=
〈(

αi + αj

)

un+1
i , ϕ

〉

Γ1
−
〈

Λn
j , ϕ
〉

Γ1
+
〈

ζn, ϕ
〉

Γ1
, ∀ϕ ∈ W1, j /= i. (2.9)

(4) Set n = n + 1, go to Step 2.
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Lemma 2.2. Let ui = u|Ωi , e
n+1
i = un+1

i −ui, η
n
i = Λn

i −Λi and ξn1 = ζn − ζ. Then for i = 1, 3, i /= j, the
following relations hold

ai

(

en+1i , vi

)

+
〈

αie
n+1
i , vi

〉

Γ1
=
〈

ηn
j , vi

〉

Γ1
, ∀vi ∈ Vi, (2.10)

〈

ηn+1
i , ϕ

〉

Γ1
=
〈(

αi + αj

)

en+1i , ϕ
〉

Γ1
−
〈

ηn
j , ϕ
〉

Γ1
+
〈

ξn1 , ϕ
〉

Γ1
, ∀ϕ ∈ W1. (2.11)

The proof follows directly from steps 2 and 3 of ALG.G.D.D.M.

Lemma 2.3. By letting C be a generic constant which has different values at different places one get
for i = 1, 3, i /= j

〈

ηn−1
j − αie

n
i ,w
〉

Γ1
≤ C
∥
∥eni
∥
∥
1,Ωi

‖w‖W1
,

〈

αiw + ξn1 , e
n+1
i

〉

Γ1
≤ C
∥
∥
∥en+1i

∥
∥
∥
1,Ωi

‖w‖W1
.

(2.12)

Proof. Using (2.10) and the fact that the trace mapping Tri : Vi → Wi and its inverse are
continuous, we obtain

〈

ηn−1
j − αie

n
i ,w
〉

Γ1
= ai

(

eni ,Tr
−1
i w
)

=
(

∇eni ,∇Tr−1i w
)

≤ ∣∣eni
∣
∣
1,Ωi

∣
∣
∣Tr−1i w

∣
∣
∣
1,Ωi

≤ CTr−1i

∥
∥eni
∥
∥
1,Ωi

‖w‖W1
.

(2.13)

On the otherhand we have

〈

αiw + ξn1e
n+1
i

〉

Γ1
=
∫

Γ1

(

αiw + ξn1
)

en+1i ds

≤
[

|αi|‖w‖0,Γ1 +
∣
∣ξn1
∣
∣
0,Γ1

]∥
∥
∥en+1i

∥
∥
∥
0,Γ1

≤ max
(

|αi|,
∣
∣ξn1
∣
∣
0,Γ1

)

‖w‖0,Γ1
∥
∥
∥en+1i

∥
∥
∥
0,Γ1

≤ C
∥
∥
∥en+1i

∥
∥
∥
1,Ωi

‖w‖W1
.

(2.14)

This ends the proof.

Based on the previous two lemmas, we can obtain the following a posteriori error
estimate for the nonoverlapping domain decomposition problem (2.2)-(2.3).
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Proposition 2.4. For the sequences (un+1
1 , un+1

3 )
n∈N

solutions of problems (2.2), (2.3) one has the
following a posteriori error estimation

∥
∥
∥en+11

∥
∥
∥
1,Ω1

+
∥
∥en3
∥
∥
1,Ω3

≤ C
∥
∥
∥un+1

1 − un
3

∥
∥
∥
H1/2

00 (Γ1)
. (2.15)

Proof. From (2.10) and (2.11)we have

a1

(

en+11 , v1

)

+ a3
(

en3 , v3
)

=
〈

ηn
3 − α1e

n+1
1 , v1

〉

Γ1
+
〈

ηn−1
1 − α3e

n
3 , v3

〉

Γ1

=
〈

α1

(

en3 − en+11

)

+ ξn1 , v1

〉

Γ1
+
〈

ηn−1
1 − α3e

n
3 , v3 − v1

〉

Γ1
.

(2.16)

Taking v1 = en+11 and v2 = en2 , then using Lemma 2.3 we get

1
2

(∥
∥
∥en+11

∥
∥
∥
1,Ω1

+
∥
∥en3
∥
∥
1,Ω3

)2

≤
∥
∥
∥en+11

∥
∥
∥

2

1,Ω1
+
∥
∥en3
∥
∥
2
1,Ω3

= a1

(

en+11 , en+11

)

+ a3
(

en3 , e
n
3

)

≤
〈

α1

(

en3 − en+11

)

+ ξn1 , e
n+1
1

〉

Γ1
+
〈

ηn−1
1 − α3e

n
3 , e

n
3 − en+11

〉

Γ1

≤ C1

∥
∥
∥en+11

∥
∥
∥
1,Ω1

∥
∥
∥en3 − en+11

∥
∥
∥
H1/2

00 (Γ1)
+ C2
∥
∥en3
∥
∥
1,Ω3

∥
∥
∥en3 − en+11

∥
∥
∥
H1/2

00 (Γ1)

≤ C

{∥
∥
∥en+11

∥
∥
∥
1,Ω1

+
∥
∥en3
∥
∥
1,Ω3

}∥
∥
∥un+1

1 − un
3

∥
∥
∥
H1/2

00 (Γ1)
,

(2.17)

which is the required result.

In the similar way, we define another nonoverlapping auxiliary problem over (Ω2,Ω4).
The sequences (un+1

2 , un+1
4 )n∈N

are solutions of

−Δun+1
2 = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂un+1
2

∂η2
+ α2u

n+1
2 =

∂un
1

∂η2
+ α2u

n
1 on Γ2,

(2.18)

−Δun+1
4 = f in Ω4,

un+1
4 = 0 on ∂Ω4 ∩ ∂Ω,

∂un+1
4

∂η4
+ α4u

n+1
4 =

∂un
2

∂η4
+ α4u

n
2 on Γ2,

(2.19)

where we can write un
1 = un

4 +ε
n
2 on Γ2 (in the 3rd equation in (2.18)) that is, εn2 is the difference

between the overlapping and the nonoverlapping solutions un
1 and un

4 (in problems (1.5)-(1.6)
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and (2.18)-(2.19) resp.) in Ω4. As both sequences un
1 and un

4 converge towards u1, εn2 should
tend to naught as n tends to infinity. Using Lemmas 2.2 and 2.3 over (Ω2,Ω4)we obtain the a
posteriori error estimate for this auxiliary problem.

Proposition 2.5. For the sequences (un+1
2 , un+1

4 )
n∈N

solutions of problems (2.18), (2.19) one has the
following a posteriori error estimate

∥
∥
∥un+1

2 − u2

∥
∥
∥
1,Ω2

+
∥
∥un

4 − u4
∥
∥
1,Ω4

≤ C
∥
∥
∥un+1

2 − un
4

∥
∥
∥
H1/2

00 (Γ2)
. (2.20)

Remark 2.6. We remark from Propositions 2.4 and 2.5 that we can go from sequences of
solutions to problems (1.5) and (1.6) to sequences of solutions to problems generated by
nonoverlapping domain decomposition problems of Robin type transmission conditions
across the interfaces Γ1 and Γ2. This result enable us to compare the subdomain iterations
of the GODDM on the interfaces Γ1 and Γ2 rather than on the overlap region Ω12.

In the following theorem we are going to use this fact to obtain an a posteriori error
estimate for the continuous generalized overlapping domain decomposition method (1.5)-
(1.6).

Theorem 2.7. Let ui = u| Ωi where u is the solution of problem (1.2). For the sequences
(un+1

1 , un+1
2 )n∈N

solutions of problems (1.5) and (1.6), one has the following a posteriori error estimate

∥
∥
∥un+1

1 − u1

∥
∥
∥
1,Ω1

+
∥
∥un

2 − u2
∥
∥
1,Ω2

≤ C

{∥
∥un+1

1 − un
2

∥
∥
H1/2

00 (Γ1)
+
∥
∥un

2 − un−1
1

∥
∥
H1/2

00 (Γ2)

+
∥
∥εn1
∥
∥
H1/2

00 (Γ1)
+
∥
∥εn−12

∥
∥
H1/2

00 (Γ2)

}

. (2.21)

Proof. We use two auxiliary problems defined each over two nonoverlapping subdomains
of Ω. These two problems are defined over (Ω1,Ω3) and (Ω2,Ω4), respectively. From the
previous two propositions we have

∥
∥
∥un+1

1 − u1

∥
∥
∥
1,Ω1

+
∥
∥un

2 − u2
∥
∥
2,Ω2

≤
∥
∥
∥un+1

1 − u1

∥
∥
∥
1,Ω1

+
∥
∥un

3 − u3
∥
∥
1,Ω3

+
∣
∣
∣
∣un

2 − u2
∣
∣
∣
∣
1,Ω2

+
∣
∣
∣

∣
∣
∣un−1

4 − u4

∣
∣
∣

∣
∣
∣
1,Ω4

≤ C
∥
∥
∥un+1

1 − un
3

∥
∥
∥
H1/2

00 (Γ1)
+ C
∥
∥
∥un

2 − un−1
4

∥
∥
∥
H1/2

00 (Γ2)
.

(2.22)

From the definitions of εn1 and εn2 , we have

∥
∥
∥un+1

1 − u1

∥
∥
∥
1,Ω1

+
∥
∥un

2 − u2
∥
∥
1,Ω2

≤ C
∥
∥
∥un

2 − un−1
1 − εn−12

∥
∥
∥
H1/2

00 (Γ2)
+ C
∥
∥
∥un+1

1 − un
2 − εn1

∥
∥
∥
H1/2

00 (Γ1)

≤ C

{∥
∥
∥un+1

1 − un
2

∥
∥
∥
H1/2

00 (Γ1)
+
∥
∥
∥un

2 − un−1
1

∥
∥
∥
H1/2

00 (Γ2)

+
∥
∥εn1
∥
∥
H1/2

00 (Γ1)
+
∥
∥
∥εn−12

∥
∥
∥
H1/2

00 (Γ2)

}

,

(2.23)

which is the required result.
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3. A Posteriori Error Estimate in the Discrete Case

In this section, we consider the discretization of the variational problems (1.7) and (1.8). Let
τh be a triangulation of Ω compatible with the decomposition and Vh ⊂ V is the subspace of
continuous functions (polynomials of degree k, k ≥ 1) which vanish over ∂Ω. We have

Vi,h = Vh|Ωi
, Wi,h = Vh|Γi . (3.1)

Wi,h is a subspace of H1/2
00 (Γi) which consists of continuous piecewise polynomial functions

on Γi which vanish at the end points of Γi (i = 1, 2).
Let uh ∈ Vh be the solution of the discrete problem associated with (1.3), ui,h = uh|Ωi

.
We construct the sequences (un+1

i,h
)i=1,2, u

n+1
i,h

∈ Vi,h solutions of the discrete versions of (1.5)
and (1.6) at the (n + 1)th iteration, that is,

−Δun+1
1,h = f on Ω1,

un+1
1,h = 0 on ∂Ω1 ∩ ∂Ω,

∂un+1
1,h

∂η1
+ α1u

n+1
1,h =

∂un
2,h

∂η1
+ α1u

n
2,h on Γ1,

(3.2)

−Δun+1
2,h = f on Ω2,

un+1
2,h = 0 on ∂Ω2 ∩ ∂Ω,

∂un+1
2,h

∂η2
+ α2u

n+1
2,h =

∂un
1,h

∂η2
+ α2u

n
1,h on Γ2.

(3.3)

In a similar manner to that of Section 2, we introduce two discrete auxiliary problems, one
over (Ω1, Ω3), the other over (Ω2, Ω4). We let

−Δun+1
1,h = f in Ω1,

un+1
1,h = 0 on ∂Ω1 ∩ ∂Ω,

∂un+1
1,h

∂η1
+ α1u

n+1
1,h =

∂un
2,h

∂η1
+ α1u

n
2,h on Γ1,

(3.4)

−Δun+1
3,h = f in Ω3,

un+1
3,h = 0 on ∂Ω3 ∩ ∂Ω,

∂un+1
3,h

∂η3
+ α3u

n+1
1,h =

∂un
1,h

∂η3
+ α3u

n
1,h on Γ1.

(3.5)

We can write un
2,h = un

3,h + εn1,h on Γ1, (in the 3rd equation in (3.4)), that is, εn1,h is the difference
between the discrete overlapping and the nonoverlapping solutions un

2,h and un
3,h (in problems
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(3.2)-(3.3) and (3.4)-(3.5), resp.) inΩ3. Because both un
2,h and un

3,h converges to u2, εn1,h should
tend to naught as n tends to infinity.

Similarly, over (Ω2, Ω4) we consider the sequences (un+1
2,h , u

n+1
4,h )n∈N

solutions of the
following discrete problems:

−Δun+1
2,h = f in Ω2,

un+1
2,h = 0 on ∂Ω2 ∩ ∂Ω,

∂un+1
2,h

∂η2
+ α2u

n+1
2,h =

∂un
1,h

∂η2
+ α2u

n
1,h on Γ2,

(3.6)

−Δun+1
4,h = f in Ω4,

un+1
4,h = 0 on ∂Ω4 ∩ ∂Ω,

∂un+1
4,h

∂η4
+ α4u

n+1
4,h =

∂un
2,h

∂η4
+ α4u

n
2,h on Γ2,

(3.7)

where we can also write un
1,h = un

4,h + εn2,h on Γ2,, εn2,h tends to naught as n tends to infinity as
explained for the previous problems. We can obtain the discrete counterparts of Propositions
2.4 and 2.5 by doing almost the same analysis as in Section 2 (i.e., passing from continuous
spaces to discrete subspaces and from continuous sequences to discrete ones). Therefore

∥
∥
∥un+1

1,h − u1,h

∥
∥
∥
1,Ω1

+
∥
∥
∥un

3,h − u3,h

∥
∥
∥
1,Ω3

≤ C
∥
∥
∥un+1

1,h − un
3,h

∥
∥
∥
W1,h

,

∥
∥
∥un+1

2,h − u2,h

∥
∥
∥
1,Ω2

+
∥
∥
∥un

4,h − u4,h

∥
∥
∥
1,Ω4

≤ C
∥
∥
∥un+1

2,h − un
4,h

∥
∥
∥
W2,h

,

(3.8)

where the discrete trace subspace norm ‖ · ‖Wi,h
defined over Γi (i = 1, 2) is taken to be

‖wh‖2Wi,h
=
∫

Γi
w2

hdx +
∫∫

Γi

(

wh(x) −wh

(

y
))2

∣
∣x − y

∣
∣
2

dx dy. (3.9)

Hence, using the previous two inequalities, we have

∥
∥
∥un+1

1,h − u1,h

∥
∥
∥
1,Ω1

+
∥
∥
∥un

2,h − u2,h

∥
∥
∥
1,Ω2

� C

⎧

⎪
⎨

⎪
⎩

∥
∥
∥un

2,h − un−1
1,h

∥
∥
∥
W2,h

+
∥
∥
∥un+1

1,h − un
2,h

∥
∥
∥
W1,h

+
∥
∥
∥εn1,h

∥
∥
∥
W1,h

+
∥
∥
∥εn−12,h

∥
∥
∥
W2,h

⎫

⎪
⎬

⎪
⎭

. (3.10)

We remark that (3.10) is the discrete version of (2.21).

Remark 3.1. Let us note that (3.10) is an estimate of the error between the approximate solu-
tion ui,h and the approximate solution of the discretized overlapping domain decomposition
algorithm un+1

i,h
, i = 1, 2.
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Next we will obtain an estimate of the error between the approximate solution un+1
i,h

and the exact solution u. We introduce some necessary notations. We denote by

εh = {E a side of τh;E /∈ ∂Ω}. (3.11)

For every T ∈ τh and E ∈ εh, we define

ωT = ∪{T ′ ∈ τh; T ′ ∩ T /=φ
}

, ωE = ∪{T ′ ∈ τh; T ′ ∩ E/=φ
}

. (3.12)

For a function f which is not necessarily continuous across two neighboring elements of τh
having E as a common side, [f] denotes the jump of f across E and ηE the normal vector of
E.

We have the following theorem which gives the a posteriori error estimate for the
discrete GODDM.

Theorem 3.2. Let ui = u|Ωi
where u is the solution of problem (1.2), the sequences (un+1

1,h , u
n+1
2,h )n∈N

are solutions of problems (3.2)-(3.3). Then there exists a constant C independent of h such that

∥
∥
∥un+1

1,h − u1

∥
∥
∥
1,Ω1

+
∥
∥
∥un

2,h − u2

∥
∥
∥
1,Ω2

≤ C

⎧

⎨

⎩

2∑

i=1

(
∑

T∈τh

(

ηT
i

)2
+ h2

T

∥
∥f − fh

∥
∥
2
0,T

)1/2

+
2∑

i=1

ηΓi

⎫

⎬

⎭
,

(3.13)

where

ηΓi =
∥
∥
∥u∗

i,h − u∗−1
j,h

∥
∥
∥
Wi,h

+
∥
∥
∥ε∗i,h
∥
∥
∥
Wi,h

, i, j = 1, 2, i /= j,

ηT
i = hT

∥
∥
∥fh + Δu∗

i,h

∥
∥
∥
0,T

+
∑

E∈εh
h1/2
E

∥
∥
∥
∥
∥

[
∂u∗

i,h

∂ηE

]∥
∥
∥
∥
∥
0,E

.

(3.14)

The symbol ∗ corresponds to n + 1 when i = 1 and to n when i = 2.

Proof. The proof is based on the technique of the residual a posteriori estimation (see [13])
and Theorem 2.7. We give the main steps. By the triangle inequality we have

2∑

i=1

∥
∥
∥ui − u∗

i,h

∥
∥
∥
1,Ωi

≤
2∑

i=1

‖ui − ui,h‖1,Ωi
+

2∑

i=1

∥
∥
∥ui,h − u∗

i,h

∥
∥
∥
1,Ωi

. (3.15)

The second term on the right-hand side of (3.15) is bounded as in (3.10) by

2∑

i=1

∥
∥
∥ui,h − u∗

i,h

∥
∥
∥
1,Ωi

≤ C
2∑

i=1

(∥
∥
∥u∗

i − u∗−1
j

∥
∥
∥
Wi,h

+
∥
∥
∥ε∗i,h
∥
∥
∥
Wi,h

)

. (3.16)
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To bound the first term on the r.h.s of (3.15) we use the residual equation and apply the
technique of the residual a posteriori error estimation, see [13], to get for vh ∈ Vh and vi,h =
vh|Ωi

ai(ui − ui,h, v) = ai(ui − ui,h, v − vh)

=
∑

T⊂Ωi

∫
(

fh + Δui,h

)

(vi − vi,h) −
∑

E⊂Ωi

∫

E

[
∂ui,h

∂ηE

]

(vi − vi,h)ds

−
∑

E⊂Γi

∫

E

∂ui,h

∂ηE
(vi − vi,h)ds +

∑

T⊂Ωi

(

f − fh, vi − vi,h

)

Ωi
+
〈
∂ui

∂ηi
, u − vh

〉

Γi

,

(3.17)

where fh is any approximation of f by polynomials of degree at most k, therefore

2∑

i=1

ai(ui − ui,h, v) ≤
2∑

i=1

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∑

T⊂Ωi

∣
∣
∣
∣f + Δui,h

∣
∣
∣
∣
0,T ||vi − vi,h||0,T

+
∑

E⊂Ωi

∣
∣
∣
∣

∣
∣
∣
∣

[
∂ui,h

∂ηE

]∣
∣
∣
∣

∣
∣
∣
∣
0,E

||vi − vi,h||0,E

+
∑

E⊂Γi

∣
∣
∣
∣

∣
∣
∣
∣

∂ui,h

∂ηE

∣
∣
∣
∣

∣
∣
∣
∣
0,E

||vi − vi,h||0,E
+
∑

T⊂Ωi

∣
∣
∣
∣f − fh

∣
∣
∣
∣
0,T ||vi − vi,h||0,T

+
∣
∣
∣
∣

∣
∣
∣
∣

∂ui

∂ηi

∣
∣
∣
∣

∣
∣
∣
∣
0,Γi

||u − vh||0,Γi

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

≤
2∑

i=1

(
∑

T⊂Ωi

(

ηT
i

)2
+ h2

T

∥
∥f − fh

∥
∥
2
0,T

)1/2 2∑

i=1

|vi|1,Ωi
.

(3.18)

We use the fact that

‖ui − ui,h‖1,Ωi
≤ sup

v∈Vi

ai(ui − ui,h, v)
‖v‖1,Ωi

. (3.19)

Finally, by combining (3.15), (3.18), and (3.19) the required result follows.

3.1. Numerical Examples

As an illustration of the theoretical results obtained in this article and to be able to use the a
posteriori error estimate (3.10), we consider the following problem

−Δu = f ∈ L2(Ω),

u = 0 on ∂Ω,
(3.20)

with Ω =]0, 1[2 for the first and second examples and Ω =]0, 1[×]0, 1/2[∪]0, 1/2[×]0, 1[
for the third example (i.e., an L-shaped region). The exact solution is taken to be
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Table 1: Results on the square without a posteriori estimates as a stopping criteria for the first example.

h 1/8 1/16 1/32 1/64
Er1 1.7957693(−02) 8.1821001(−03) 4.5210766(−03) 3.1683034(−03)
Er2 1.0956427(−02) 9.6854433(−03) 8.7326244(−03) 6.9200024(−03)
Trer1 2.2513498(−02) 0.1504199(−02) 8.1897348(−03) 3.4817880(−02)
Trer2 1.7198801(−02) 2.1677755(−02) 9.3967836(−03) 6.9538120(−03)
Iterations 12 10 7 5
Quotient 0.7280898 0.7507522 0.7536285 0.9667203

u(x, y) = xy(x − 1)(y − 1)exy for the first example, u(x, y) = sin 8πx · sin 8πy for the second
example, and finally u(x, y) = xy(x − 1)(y − 1)(x − 1/2)(y − 1/2) for the third example.

We first compute the bilinear Galerkin solution uh over Ω and then apply the
generalized overlapping domain decomposition method (1.7)-(1.8) to compute the bilinear
sequences un+1

i,h (i = 1, 2) to be able to look at the behavior of the constant C within
(3.10) as the mesh size becomes small (h−1 = 8, 16, 32, 64). We take Ω1 =]0, 3/4[×]0, 1[ and
Ω2 =]1/4, 1[×]0, 1[ for the first and second examples. As for the third example we have
Ω1 =]0, 1[×]0, 1/2[ and Ω2 = ]0, 1/2[×]0, 1[. We denote by

Eri =
∥
∥
∥ui,h − un

i,h

∥
∥
∥
1,Ωi

,

Trer1 =
∥
∥
∥un+1

1,h − un
2,h

∥
∥
∥
W1,h

,

Trer2 =
∥
∥
∥un

2,h − un−1
1,h

∥
∥
∥
W2,h

,

Quotient =
(Er1 + Er2)

(Trer1 + Trer2)
.

(3.21)

The generalized overlapping domain decomposition method, with α1 = α2 = 0.5, converges.
The iterations have been stopped when the relative error between two subsequent iterates is
less than ε = 10−6.

The Quotient in Tables 1, 2, 3, 4, 5, and 6 represents an estimate of the constant C in
(3.10). It happens to tend to a constant value around 1 which what we expect (i.e., we have
asymptotic exactness). We present, for each example, results with andwithout the a posteriori
estimate as a stopping criteria. We see that we obtain the same results but with less iterations
when using the a posteriori estimate as a stopping criteria for a moderately small mesh size
for the first and third examples. But for the second example, the difference in iteration count
is clear between the two approaches.

3.2. Concluding Remarks

(1) From Theorem 3.2 we see that the subdomain errors depend on the differences
of the latter on the interface, on the data f , and on the approximate solution uh.
The first two terms of (3.13) are the contribution to the a posteriori error from the
finite element discretization whereas the last term is the domain decomposition
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Table 2: Results on the square with a posteriori estimates as a stopping criteria for the first example.

h 1/8 1/16 1/32 1/64
Er1 1.3457623(−02) 4.1221001(−03) 8.5210766(−03) 3.1683034(−03)
Er2 1.0556422(−02) 5.2454431(−03) 8.4322244(−03) 6.2200024(−03)
Trer1 2.2513498(−02) 5.1504199(−03) 2.1897348(−02) 3.4817880(−03)
Trer2 2.4423401(−02) 6.1677755(−03) 1.3967836(−03) 6.9538120(−03)
Iterations 3 5 6 7
Quotient 0.5116240 0.7276534 0.7277927 0.8996421

Table 3: Results on the square without a posteriori estimates as a stopping criteria for the second example.

h 1/8 1/16 1/32 1/64
Er1 1.7957693(−02) 2.5598288(−03) 4.7627655(−03) 0.8936322(−04)
Er2 1.0956427(−02) 4.5353208(−02) 8.1970235(−03) 6.3020810(−03)
Trer1 2.2513498(−02) 5.2993342(−02) 1.1897348(−02) 3.4817880(−03)
Trer2 1.7198801(−08) 6.0068501(−09) 1.3967836(−08) 6.9538120(−08)
Iterations 10 9 7 5
Quotient 0.7280898 0.9041330 1.089299 1.560316

Table 4: Results on the square with a posteriori estimates as a stopping criteria for the second example.

h 1/8 1/16 1/32 1/64
Er1 4.7345582(−02) 8.1821001(−04) 4.8510591(−03) 1.4817880(−02)
Er2 1.3897220(−02) 9.6854433(−02) 8.1924358(−03) 6.9200024(−03)
Trer1 9.6471474(−02) 0.1504199(−02) 1.1897348(−02) 1.4817880(−02)
Trer2 9.1859622(−09) 0.0000000(+00) 0.3967836(−09) 2.9538120(−08)
Iterations 8 6 5 4
Quotient 0.6348280 0.6493334 1.096336 1.018248

Table 5: Results on the L-shaped region without a posteriori estimates as a stopping criteria.

h 1/8 1/16 1/32 1/64
Er1 3.5915386(−02) 16.3642002(−03) 9.0421132(−03) 6.3366068(−03)
Er2 2.19128497(−02) 19.3708866(−03) 12.4732488(−03) 9.8440048(−03)
Trer1 4.50217996(−02) 0.2008398(−02) 4.3794696(−02) 2.9635760(−02)
Trer2 3.4397602(−02) 4.3355510(−02) 2.7935672(−03) 5.9076240(−03)
Iterations 10 8 6 6
Quotient 0.5443332 0.6562642 0.8380865 1.008344

Table 6: Results on the L-shaped region with a posteriori estimates as a stopping criteria.

h 1/8 1/16 1/32 1/64
Er1 2.5815386(−02) 14.3642002(−03) 9.0421132(−03) 4.3366122(−03)
Er2 2.19128487(−02) 12.3708866(−03) 12.4732488(−03) 6.8440223(−03)
Trer1 4.60217446(−02) 0.4008398(−02) 4.3794696(−02) 4.8635660(−03)
Trer2 3.3397402(−02) 2.3355510(−02) 2.7935672(−03) 6.8076220(−03)
Iterations 4 5 6 7
Quotient 0.6009663 0.9170200 0.8380865 0.9579689
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error. Numerical results indicate that the finite element part of the error estimate
dominates the domain decomposition part.

(2) As far as the asymptotic exactness of the estimator based on (3.13) is concerned,
Ainsworth and Oden in [12, Theorem 3.5] gave a necessary condition for this
property to hold. This condition says that the local residuals in (3.13) should be
computed exactly.

(3) The a posteriori error analysis for a second order boundary value problem or Stokes
problem is possible. Also, similar results can be obtained in the general case of more
than two subdomains.
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