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We prove a number of quadruple fixed point theorems under ¢-contractive conditions for a
mapping F : X* — X in ordered metric spaces. Also, we introduce an example to illustrate the
effectiveness of our results.

1. Introduction and Preliminaries

The notion of coupled fixed point was initiated by Gnana Bhaskar and Lakshmikantham
[1] in 2006. In this paper, they proved some fixed point theorems under a set of conditions
and utilized their theorems to prove the existence of solutions to some ordinary differential
equations. Recently, Berinde and Borcut [2] introduced the notion of tripled fixed point and
extended the results of Gnana Bhaskar and Lakshmikantham [1] to the case of contractive
operator F : X x X x X — X, where X is a complete ordered metric space. For some related
works in coupled and tripled fixed point, we refer readers to [3-32].
For simplicity we will denote the cross product of k € N copies of the space X by X*.

Definition 1.1 (see [2]). Let X be a nonempty set and F : X® — X a given mapping. An
element (x,y,z) € X3 is called a tripled fixed point of F if

F(x,y,z) =x, F(y,xy) =y, F(z,y,x) = z. (1.1)
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Let (X, d) be a metric space. The mapping d : X*> — X, given by
d((x,y,2), (u,0,w)) =d(x,y) +d(y,v) +d(z,w), (1.2)

defines a metric on X2, which will be denoted for convenience by d.

Definition 1.2 (see [2]). Let (X, <) be a partially ordered set and F : X> — X a mapping. One
says that F has the mixed monotone property if F(x,y, z) is monotone nondecreasing in x
and z and is monotone nonincreasing in y; that is, for any x, y,z € X,

x1,x € X, x1 <xp, implies F(x1,y,z) < F(x2,y,2),
yi,y2€X, y1 <y, implies F(x,y2,2) < F(x,y1,2), (1.3)
21,20 € X, z1 <z, implies F(x,y,z1) < F(x,y,2).
Let us recall the main results of [2] to understand our motivation toward our results
in this paper.

Theorem 1.3 (see [2]). Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let
F : X3 — X be a continuous mapping such that F has the mixed monotone property. Assume that
there exist j, k,1 € [0,1) with j + k +1 < 1 such that

d(F(x,y,z),F(u,0,w)) < jd(x,u) + kd(y,v) +1d(z, w) (1.4)
forall x,y,z,u,v,w € X with x > u, y < v, and z > w. If there exist xo, Yo, zo € X such that

xo < F(x0, Y0, 20), Yo > F(yo,x0,Y0), and zg < F(zo, Yo, Xo0), then F has a tripled fixed point.

Theorem 1.4 (see [2]). Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let
F : X3 — X be a mapping having the mixed monotone property. Assume that there exist j, k,1 €
[0,1) with j + k +1 < 1 such that

d(F(x,y,z),F(u,0,w)) < jd(x,u) + kd(y,v) +1d(z, w) (1.5)

forallx,y,z,u,v,w € Xwithx >u, y <v,and z > w. Assume that X has the following properties:

(i) if a nondecreasing sequence x, — x, then x, < x foralln € N,

(ii) if a nonincreasing sequence y, — y, then y, > y for alln € N.

If there exist xo, yo, zo € X such that xo < F(xo, Yo, 20), Yo = F(yo, X0, Yo), and zy < F(zo, Yo, x0),
then F has a tripled fixed point.

Very recently, Karapinar introduced the notion of quadruple fixed point and obtained
some fixed point theorems on the topic [33]. Extending this work, quadruple fixed point is
developed and related fixed point theorems are proved in [34-39].
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Definition 1.5 (see[34]). Let X be a nonempty set and F : X* — X a given mapping. An
element (x,y,z,w) € X x X3 is called a quadruple fixed point of F if

F(x,y,z,w) =x, F(y,z,w,x) =y, F(z,w,x,y) = z, F(w,x,y,z) =w. (1.6)

Let (X, d) be a metric space. The mapping d : X* — X, given by

d((x,y,z,w),(w,v,h 1) =d(x,y) +d(y,v) +d(z,h) +d(w,]), (1.7)

defines a metric on X*, which will be denoted for convenience by d.
Remark 1.6. In [33, 34, 38], the notion of quadruple fixed point is called quartet fixed point.

Definition 1.7 (see[34]). Let (X, <) be a partially ordered set and F : X* — X a mapping. One
says that F has the mixed monotone property if F(x, y, z, w) is monotone nondecreasing in x
and z and is monotone nonincreasing in y and w; that is, for any x,y, z,w € X,

x1,x, € X, x1<x, implies F(x1,y,z,w) < F(x2,y,z,w),

yi,y2 € X, y1 <y, implies F(x,1,z,w) < F(x,y1,z,w),
(1.8)

21,20 € X, z1 <z, implies F(x,y,z1,w) < F(x,y, 2z, w),

wy, wy € X, wy < w,, implies F(x,y,z,w,) < F(x,y,z,w1).

By following Matkowski [40], we let @ be the set of all nondecreasing functions ¢ :
[0, +00) — [0, +00) such that lim,,_, +,¢" (t) = 0 for all £ > 0. Then, it is an easy matter to show
that

(1) (1) < tforall t >0,
(2) $(0) = 0.

In this paper, we prove some quadruple fixed point theorems for a mapping F : X* —
X satisfying a contractive condition based on some ¢ € ®.

2. Main Results
Our first result is the following.

Theorem 2.1. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —
X be a continuous mapping such that F has the mixed monotone property. Assume that there exists
¢ € © such that

d(F(x,y,z,w),F(u,v,h,1)) < $(max{d(x,u),d(y,v),d(z, h),dw,I)}) (2.1)

for all x,y,z,w,u,v,hl € X with x > u, y < v,z > h, and w < I If there exist

X0, Yo, 20, wo € X such that xo < F(xo, Yo, Zo,wo), Yo > F(Yyo, 2o, wo, X0), 2o < F(zo, wo, X0, Yo)
and wqy > F(wy, x0, Yo, z0), then F has a quadruple fixed point.
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Proof. Suppose xy, yo, zo,wo € X are such that xo < F(xo, Yo, 20, wo), Yo = F(yo, zo, wo, X0),
2o < F(zo, w0, X0, o), and wy > F(wy, X0, Yo, Z0). Define

x1 = F(xo, Yo, zo, w), y1 = F(yo, 20, wo, x0), 22)
z1 = F(zo, w0, x0, o), wy = F(wo, x0, Yo, 20)-
Then, xo < x1, Yo 2 y1, 20 < z1, and wy > wi. Again, define x, = F(x1,y1,21,w1),

y2 = F(y1,z1,w1,x1), 22 = F(z1,w1,x1, 1), and w, = F(w1, x1,Y1,21). Since F has the mixed
monotone property, we have xo < x1 < x2, 2 < y1 < Yo, 20 £ 21 £ 2, and w, < wy < wy.
Continuing this process, we can construct four sequences (x,,), (¥»), (zx), and (w,) in X such
that

Xn = F(xn—l/ Yn-1,2n-1, wn—l) < Xpy1 = F(xn/ Yns Zn, wn)/

Yni1 = F(yn/ Zn, Wn, xn) < Yn = F(ynflr Zn-1, Wn-1, xnfl)/

(2.3)
Zp = F(zn—lr Wn-1,Xn-1, yn—l) < Zp1 = F(Zn/ Whn, Xn, yn)/
Wn+1 = F<wnr Xns Yn, Zn) Swy = F(wn—ll Xn-1,Yn-1, Zn—l)-
If, for some integer n, we have (Xp+1,Yn+1,Zn+1, Wne1) =  (Xn,Yn, Zn, Wwy), then

F(xp, Yn,Zn, Wy) = Xp, F(ynr Zn, W, Xp) = Yn, F(zy, wy, Xp, yn) = z,, and F(wy, x,, Yn, Zp) =
wy; that is, (x,, Yn, zn,wy) is a quadruple fixed point of F. Thus, we will assume
that (Xu41, Yne1, Znet, Wns1) # (Xn, Yn, Zn, wy) for all n € N; that is, we assume that
Xn+1 # Xn,Yns1 # Yn, OF Zps1 # Zy OF Wy # Wy. For any n € N, we have

d(xn1, %) = d(F(Xn, Yn, Zn, Wn), F(Xn-1, Yn-1, Zn-1, Wn-1))

< ¢p(max{d(xn, xu-1), d(Yn, Yn-1), d(Zn, Zn-1), d(Wn, wn-1) }),
A(Yn, Yn+1) = A(F(Yn-1,Zn-1, Wn-1, Xn-1), F(Yn, Zn, Wn, Xn))

< p(max{d(Yn-1, Yn), A(zn, Zn-1), A(Wn, Wn-1), d(Xn-1,%n) }),

(2.4)
d(zp41, 2zn) = d(F(Zn/ Wn, Xn, ]/n)/ F(Zn—l/ Wn-1,Xn-1, ]/n—l) )
< p(max{d(zn, zn-1), A(Wy, Wp-1), A(Xp, Xp-1), d(Yn, Yn-1) }),
d(wn, Wyy1) = d(F(wn—l/ Xn-1,Yn-1, anl)/ F(wnr Xns Yn, Zn) )
< ¢p(max{d(Yn-1,Yn), d(zn, Zn-1), d(Wy, Wy-1), d(Xp-1, Xn) })-
From (2.4), it follows that
max{d(Xp+1, %), A(Yn, Yns1), A(Zns1, Zn), A(Wn, Wyi1) } s

< ¢(max{d(xn, xn-1), d(Yn, Yn-1), A(zn, 2n-1), d(Wn, wy-1)}).
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By repeating (2.5) n times, we get that

max{d (X1, Xn), d(Yn, Yne1), d(Zni1, Zn), A(Wy, Wii1) }
S ¢ (max{d(xn/ xn—l)/ d(]/n/ ]/n—l)/ d(znl Zn—l)/ d(wnr wn—l) })

< ¢*(max{d(xn-1, Xn-2), A(Yn-1, Yn-2), A(Zn-1, Zn-2), A(Wn-1, Wn-1) }) (2.6)

< @™ (max{d(x1, x0),d(y1, v0), d(z1,20),d (w1, w) }).
Now, we will show that (x,), (yx), (z»), and (w,) are Cauchy sequences in X. Let € > 0. Since

lim ¢" (max{d(x1,x0),d(y1, 1), d(z1, z0), d(wy, wp) }) =0 2.7)

n—+oo

and € > ¢(e), there exist ny € N such that

¢" (max{d(x1,x0), d(y1,y0), d(z1, z0), d(w1,wo) }) < € = Pp(e) Vn > ny. (2.8)
This implies that
max{d(xns1, Xn), A(Yn, Yns1), A(Zns1, 2n), A(Wn, Wni1) } <€ - P(e) Yn > ny. (2.9)

For m,n € N, we will prove by induction on m that

max{d(x, Xm), d(Yn, Ym), A(zn, 2m), A(Wy, wy) } <€ VYm>n>ng. (2.10)

Since € — ¢(€) < ¢, then by using (2.9) we conclude that (2.10) holds when m = n + 1. Now
suppose that (2.10) holds for m = k. For m = k + 1, we have

d(xp, Xx1) < d(xp, Xpi1) + d(Xpi1, Xics1)

<e—¢(e) + d(F(xn, Yn, zn, wn), F (XK, Yk, 2k, Wi ))

(2.11)
<e- ¢(€) + ¢(max{d(xnr xk)/ d(]/n/ yk)/ d(Zn, Zk)/ d(wn/ wk) })
<e—-¢(e) +P(e) =e.
Similarly, we show that
A(Yn, Y1) <€,
d(zn/ Zk+1) <eg, (212)

d(wy, wii1) < €.
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Hence, we have
max{d(xn, Xke1), A(Yn, Yre1), A(Zn, Zks1), d(Wp, wis1) } < €. (2.13)

Thus, (2.10) holds for all m > n > ny. Hence, (x,), (yx), (z4), and (w,) are Cauchy sequences
in X.

Since X is a complete metric space, there exist x,y,z,w € X such that (x,), (),
(zn) and (w,) converge to x, y, z, and w, respectively. Finally, we show that (x,y, z, w) is
a quadruple fixed point of F. Since F is continuous and (X, Yn, zn, wn) — (X, Yy, z,w), we
have x,.1 = F(Xu, Yn, 20, wn) — F(x,y,z,w). By the uniqueness of limit, we get that x =
F(x,y,z,w). Similarly, we show thaty = F(y,z,w,x), z = F(z,w,x,y),and w = F(w, X, y, z).
So, (x,y,z, w) is a quadruple fixed point of F. O

By taking ¢(t) = kt, where k € [0,1), in Theorem 2.1, we have the following.

Corollary 2.2. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —
X be a continuous mapping such that F has the mixed monotone property. Assume that there exists
k € [0,1) such that

d(F(x,y,z,w),F(u,v,h,1)) < kmax{d(x,u),d(y,v),d(z,h),d(w,I)} (2.14)

forall x,y,z,w,u,v,h,1 € Xwithx >u,y <v,z>h,and w < I. If there exist xo, Yo, zo, wo € X
such that xo < F(xo, Y0, Zo, wo), Yo 2> F(y(), z0, W, X0), zo < F(zo, wo,xo,yo), and wqy >

F(wo, x0, Yo, z0), then F has a quadruple fixed point.
As a consequence of Corollary 2.2, we have the following.

Corollary 2.3. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —
X be a continuous mapping such that F has the mixed monotone property. Assume that there exist
ay, az, az, a4 € [0,1) with a; + ap + as + ay < 1 such that

d(F(x,y,z,w),F(u,v,h,1)) < ard(x,u) + ad(y,v) + aszd(z, h) + asd(w, 1) (2.15)

for all x,y,z,w,u,v,h,l € X with x > u, y < v, z > h, and w < 1 If there exist

X0, Yo, Zo, wo € X such that xo < F(xo, Yo, 20, wo), Yo > F(yo, zo, wo, X0), 20 < F(zo, wo, X0, Yo)
and woy > F(wy, x0, Yo, z0), then F has a quadruple fixed point.

By adding an additional hypothesis, the continuity of F in Theorem 2.1 can be
dropped.

Theorem 2.4. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —
X be a mapping having the mixed monotone property. Assume that there exists ¢ € @ such that

d(F(x,y,z,w),F(u,v,h,1)) < $(max{d(x,u),d(y,v),d(z,h),dw,I)}) (2.16)

forall x,y,z,w,u,v,h,l € Xwithx >u,y <v,z2>h, andw < I Assume also that X has
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the following properties:

(i) if a nondecreasing sequence x, — x, then x, < x foralln € N,

(ii) if a nonincreasing sequence y, — y, then y, >y for alln € N.

If there exist xo, Yo, zo,wo € X such that xo < F(x0,Y0,20,wo), Yo = F(yo,z0, wo, x0),
zo < F(zo, wo, x0, Yo), and wy > F(wy, X0, Yo, o), then F has a quadruple fixed point.

Proof. By following the same process in Theorem 2.1, we construct four Cauchy sequences
(xn), (yn)/ (zn), and (wy,) in X with

(2.17)

such thatx, - x€X, vy, - y€ X, z, — z€ X, and w, — w € X. By the hypotheses on
X,wehavex, <x,y, >y, z, <z and w, > w for all n € N. From (2.16), we have

d(F(x,y,z,w),xp) = d(F(x,y,z,w), F(Xn, Yn, Zn, Wn))
< ¢(max{d(x, x,),d(y, yn), d(z,z,), d(w, wy)}),

A(Ynn, F(y, z,w,x)) := A(F(Yn, 2n, wn, %), F(y, z,w, x))
< (i)(l‘l’liiX{d(]/m ]/)/ d(zn, z), d(wn, w), d(xn, x) })/

(2.18)
AP (20,5, ), 2001) = A (2,10, ), F 2y 0n, 5, )
< p(max{d(x,x,),d(y,yn),d(z, zn), d(w, wy)}),
A0, F(20,%,,2)) = AP, 30,022, F20,%,9,2))
< p(max{d(Yn, y), d(2n, 2), d(w,, w), d(xs, )} ).
From (2.18), we have
d(F(x,y, Z,w)/xn+1)/
d(yn1, F(y,z,w,x)), d(x, xu), d(Y, yn),
S Pt ai g EUCE e ot
d(wnn, F(w,x,y,z))

Letting n — +oo in (2.19), it follows that x = F(x,y,z,w), y = F(y,z,w,x), z = F(z,w, x,y),
and w = F(w, x,y, z). Hence, (x,y, z, w) is a quadruple fixed point of F. O

By taking ¢(t) = kt, where k € [0,1), in Theorem 2.4, we have the following result.
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Corollary 2.5. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —

X be a mapping having the mixed monotone property. Assume that there exists k € [0,1) such that

d(F(x,y,z,w),F(u,v,h,1)) < kmax{d(x,u),d(y,v),d(z,h),d(w,l)} (2.20)

forall x,y,z,w,u,v,h,1l € Xwithx >u,y <v,z>h,and w < l. Assume also that X has the
following properties:

(i) if a nondecreasing sequence x, — x, then x, < x foralln € N,

(ii) if a nonincreasing sequence y, — y, then y, > y for alln € N.

Ifthere exist xo,Yo, z0,wy € X such that xg < F(xo,yo,zo,wo), Yo 2 F(yo,zo,wo,xo), zo <
F(zo, wo, x0,Y0), and wy > F(wo, x0, Yo, Zo), then F has a quadruple fixed point.

As a consequence of Corollary 2.5, we have the following.

Corollary 2.6. Let (X, <) be a partially ordered set and (X, d) a complete metric space. Let F : X* —
X be a mapping having the mixed monotone property. Assume that there exist a1, a», az, as € [0,1)
with ay + ap + az + ag < 1 such that

d(F(x,y,z,w),F(u,v,h,1)) < ard(x,u) + axd(y,v) + azd(z, h) + asd(w, 1) (2.21)

forall x,y,z,w,u,v,h,l € Xwithx >u,y <v,z>h, and w < I. Assume that X has the following
properties:

(i) if a nondecreasing sequence x, — x, then x, < x foralln € N,

(ii) if a nonincreasing sequence y,, — y, then y, >y for alln € N.

If there exist xo, Yo, zo,wo € X such that xo < F(xo,Yo,Z0,wo), Yo > F(yo, 20, wo, x0), o <
F(zo, wo, x0,Y0), and wy > F(wy, x0, Yo, z0), then F has a quadruple fixed point.

Now we prove the following result.

Theorem 2.7. In addition to the hypotheses of Theorem 2.1 (resp., Theorem 2.4), suppose that

[(x0<y0) A(z0<y0) A (30 <o) A(z0 <wo)] V [(Yo<x0) A(yo<20) Awo <xo) Awo< 20)].-
(2.22)

Then,x =y =z =w.
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Proof. Without loss of generality, we may assume that xy < v, 2o < yo, X0 < Wy, and zy < wy.

By the mixed monotone property of F, we have x,, < v, 2, < Yy, X, < Wy, and z, < w, for all
n € N. Thus, by (2.1), we have

d(ynHr xn+1) = d(F(yn/ Zn, wn/xn)r F(xn/yn/ Zn/wn))

(2.23)
< ¢p(max{d(yn, xn),d(zn, Yn), d(Wn, z4), d(xn, wn) }),
d(yn+lr Zn+1) = d(F(}/n, Zn, Wn, xn)r F(Zn/ Wn, Xn, yn)) @ 24)
< ¢(max{d(ynr Zn)r d(zn, wy), d(wn, Xn), d(xnryn> })/
d(wn+l/ xn+1) = d(F(wn/ Xn,Yns Zn)r F(xn/ Yn, Zn, wn))
(2.25)
S (,b(max{d(xn/wn)/d(]/n/xn)/d(zn/yn)/d(wn/ Zn)})/
d(Wns1,Zns1) = d(F(wnrxn/ynrzn)/ F(Zn/wn/xn/yn))
(2.26)
< ¢ (max{d(zn, wn), d(wn, xn), d(Xn, Yn), d(Yn, zn) })-
By (2.23) and (2.26), we have
max{d(Yn+1, Xns1), d(Yns1, Zna1), A(Wni1, Xni1), d(Wpi1, Zni1) }
< d)(maX{d(ym xn)r d(ynr Zn)rd(wn/ xn)/ d(wnl Zn) })
< ¢* (max{d(Yn-1,%n-1), d(Yn-1,2n-1), A(Wn-1, Xn-1), d(Wn-1, 2n-1) }) (2.27)

< ¢™* (max{d(yo, x0), d(vo, z0), d(wo, x0), d(wo, 20) }).

By letting n — +oo in (2.27) and using the property of ¢ and the fact that d is continuous on
its variable, we get that max{d(y, x),d(y, z),d(w,x),d(w,z)} =0. Hence, y =z =x=w. O

Corollary 2.8. In addition to the hypotheses of Corollary 2.3 (resp., Corollary 2.5), suppose that

[(x0<yo) A (20 <yo) Ao Swo) A(zo Swo) | V [ (Yo <x0) A (Yo < 20) A(20g < x0) Awo < 20)]-
(2.28)

Then,x =y =z =w.

Example 2.9. Let X = [0,1] with usual order. Define d : X xX — X by d(x,y) = |x—y|. Define
F:X* - Xby

0, max{y,w} > min{x, z},
F(x,y,z,w) = { {y, w0} (2.29)

1 min{x, z} —max{y,w}), max{y, w} <min{x,z}.
3 (v.w)), max{y, w)
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Then,

(a) (X, d, <) is a complete ordered metric space,

(b) for x,y,z,w,u,v,h,l € X withx >u, y <v,z> h,and w < I, we have that
d(F(x,y,z,w),F(u,v,h,l)) < %max{d(x, u),d(y,v),d(z,h),d(w,l)}, (2.30)
(c) holdsforallx >u, y<v,z>h,and w <,

(d) F has the mixed monotone property.

Proof. To prove (b), given x,y,z,w,u,v,h,l € X withx > u, y < v,z > h,and w < [, we
examine the following cases.
Case 1. If max{y, w} > min{x, z}, and max{v,!} > min{u, w}. Here, we have

d(F(x,y,z,w),F(u,v,h,1)) =0< %max{d(x,u),d(y, v),d(z,h),d(w,1)}. (2.31)

Case 2. If max{y,w} > min{x,z} and max{v,l} < min{u, h}. This case is impossible

since
y < v <min{u, h} < min{x, z},
(2.32)
w <l <min{u, h} < min{x, z}.
So,
max{y,w} < min{x, z}. (2.33)
Case 3. If max{y, w} < min{x, z} and max{v,l} > min{u, h}.
This case will have different possibilities.
(i) Let max{y, w} = y and max{v,l} = v. Suppose that h < v; then h —y < v -y and
hence

min{x,z} - max{y,w} = min{x,z} -y
<z-y=z-h+h-y
(2.34)
<z-h+v-y=d(z,h)+d(y,v)

< 2max{d(x,u),d(y,v),d(z,h),d(w,I)}.
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Therefore,
1 .
d(F(x,y,z,w),F(u,v,h1)) = d(z(mm{x,z} - max{y,w}),O)
= ji(min{x,z} -y) (2.35)

< =max{d(x,u),d(y,v),d(z, h),d(w,I)}.

NI~

Suppose that u < v; then u — y < v — y and hence

min{x, z} - max{y,w} = min{x,z} -y
<x-y=x-utu-y
(2.36)
< (x-u)+ (v-y) =dx,u)+d(v,y)

< 2max{d(x,u),d(y,v),d(z, h),d(w,I)}.

Therefore,

d(F(x,y,z,w),F(u,v,h,l)) = d<}1(min{x,z} —max{y,w}),O)

31 (min{x, z} - y) (2.37)

N

< % max{d(x,u),d(y,v),d(z, h),d(w,1)}.

(ii)Let max{y, w} = y and max{v,l} = I. Suppose that h < [; then h -y <1 -y and
(since w < y) hence

min{x, z} - max{y, w} = min{x,z} -y

<z-y=z-h+h-y

(2.38)
<z-h+l-y<z-h+l-w=d(z h)+dw,l)
< 2max{d(x,u),d(y,v),d(z, h),d(w,1)}.
Therefore,
1, .
d(F(x,y,z,w),F(u,v,h,1l)) = d(z(mm{x,z} —max{y,w}),O)
= Alz(min{x,z} -y) (2.39)

< s max{d(x,u),d(y,v),d(z, h),d(w,l)}.

1
2
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Suppose that u < I; then u — y <1 -y and (since w < i ) hence

min{x, z} - max{y, w}

Therefore,

= min{x,z} -y

SxX-y=x—-u+u-y
(2.40)
<(x-u)+(l-y)<x-u+l-w=d(x,u) +dw,l)
< 2max{d(x,u),d(y,v),d(z, h),d(w,1)}.
1, .
d(F(x,y,z,w),F(u,v,h,l)) = d<z(mm{x,z} —max{y,w}),O)
= ji(min{x,z} -y) (2.41)

% max{d(x,u),d(y,v),d(z, h),d(w,1)}.

IN

(iii)Let max{y, w} = w and max{v,I} = v. Suppose that h < v; then h—w < v —w, but

y < w, and hence

min{x, z} - max{y,w} = min{x,z} - w

Therefore,

<z-w=z-h+h-w

Suppose that u < v; then u — w < v — w and hence

min{x, z} - max{y, w}

(2.42)
<z-h+v-w<z-h+v-y=d(zh)+d(y,v)
< 2max{d(x,u),d(y,v),d(z, h),d(w,I)}.
1, .
d(F(x,y,z,w),F(u,v,h,1l)) = d<z(mm{x,z} —max{y,w}),O)
= jz(min{x,z} -w) (2.43)
< %max{d(x,u),d(y,v),d(z,h),d(w,l)}.
= min{x,z} —w
<x-—-w=x-u+u-w
(2.44)

S(x-u)+(@w-w)<x-u+v-y=d(x,u)+d(v,y)

< 2max{d(x,u),d(y,v),d(z, h),d(w,I)}.
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Therefore,
1, .
d(F(x,y,z,w),F(u,v,h1)) = d(z(mm{x,z} —max{y,w}),O)
= %(min{x,z} -w) (2.45)

< s max{d(x,u),d(y,v),d(z,h),d(w,1)}.

N~

(iv)Let max{y,w} = w and max{v,l} = I. Suppose that h < [; then h —w < | —w and
hence

min{x, z} - max{y,w} = min{x,z} -w
<z-w=z-h+h-w
(2.46)
<z-h+l-w=d(zh)+dw,l)

< 2max{d(x,u),d(y,v),d(z, h),d(w,I)}.
Therefore,

d(F(x,y,z,w),F(u,v,h,1l)) = d<31(min{x,z} —max{y,w}),O)

}I(min{x, z} —w) (2.47)

% max{d(x,u),d(y,v),d(z, h),d(w,1)}.

IN

Suppose that u < I; then u — w < I - w and hence

min{x, z} - max{y, w} = min{x,z} -w
<x-w=x-u+u—-w
(2.48)
<x-u)+(-w)=d(x,u)+dw,l)

< 2max{d(x,u),d(y,v),d(z, h),d(w,I)}.
Therefore,
1 .
d(F(x,y,z,w),F(u,v,h1l)) = d(z(mm{x,z} —max{y,w}),O)
= Alz(min{x,z} -w) (2.49)

< s max{d(x,u),d(y,v),d(z, h),d(w,1)}.

1
2
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Case 4. (i)If max{y, w} < min{x, z} and max{v,l} < min{u, h}.
Since x > u and z > h, then min{x, z} > min{u, h}, and also since y > v and w > [,
then max{v, !} > max{y, w}. Thus,

d(F(x,y,z),F(u,v,w)) = d(}l(min{x,z} -max{y,w}), }L(min{u,h} —max{v,l})>
(2.50)

= }d(min{x,z} —min{u, h}) + (max{v,l} - max{y,w})|.

(ii)If min{u, h} = u and max{v,l} = v, then min{x,z} — min{u,h} < x — u and
max{v,l} —max{y, w} < v —y. Thus,

d(F(x,y,z,w),F(u,v,h,1)) < 411[(3( —u)+ (v-y)]
= jz[d(x, u) +d(y,v)] (2.51)
< %max{d(x,u),d(y,v),d(z, h),d(w,1)}.

(iii)If min{u, h} = h and max{v,l} = v, then min{x,z} — min{u,h} < z — h and
max{v,l} - max{y, w} < v -y, hence

d(F(x,y,z,w),F(u,v,h,1)) < }L[(Z —h)+ (v-y)]
= jI[d(z, h) +d(y,v)] (2.52)
< %max{d(x,u),d(y,v),d(z, h),d(w,1)}.

(iv)If min{u,h} = u and max{v,I} = I, then min{x,z} — min{u,h} < x — u and
max{v,l} —max{y, w} <I-w, and hence

d(F(x,y,z,w),F(u,v,h,l)) < %[(x —u)+ (I-w)]
= le[d(x, u) +d(w,1)] (2.53)

< s max{d(x,u),d(y,v),d(z, h),d(w,1)}.

1
2
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(WMIf min{u, h} = hand max{v,!} = [, then min{x, z} -min{u, h} < z—h and max{v,[}-
max{y,w} <1 —w, and hence

d(F(x,y,z,w),F(u,v,h,l)) < %[(z -h)+(I-w)]

= }I[d(z, h) + d(w, 1)] (2.54)

1

< 5 max{d(x,u),d(y,v),d(z, h),dw,l)}.

To prove (c), let x,y,z,w € X. To show that F(x,y, z, w) is monotone nondecreasing
in x, let x1,x, € X with x1 < x35.

If max{y,w} > min{xy,z}, then F(x1,y,z,w) = 0 < F(xp,y,z w). If max{y, w} <
min{xi, z}, then

F(x1,y,z,w) = jz(min{xl,z} -max{y,w}) < }—L(min{xz,z} -max{y,w}) = F(x,y,z,w).
(2.55)

Therefore, F(x,y,z,w) is monotone nondecreasing in x. Similarly, we may show that
F(x,y,z,w) is monotone nondecreasing in z.

To show that F(x,y, z, w) is monotone nonincreasing in y, let y1, y» € X with y1 < y».
If max{y,, w} > min{x, z}, then F(x,y,,z,w) = 0 < F(x1,y, z,w). If max{y,, w} < min{x, z},
then

F(x,y2,z,w) = %(min{x,z} —max{y, w}) < %(min{x,z} —max{y1, w}) = F(x, 5, z,w).
(2.56)

Therefore, F(x,y,z,w) is monotone nonincreasing in y. Similarly, we may show that
F(x,y, z, w) is monotone nonincreasing in w.

Thus, by Theorem 2.1 (let ¢(t) = (t/2)), F has a unique quadruple fixed point, namely,
(0,0,0,0). Since the condition of Theorem 2.7 is satisfied, (0,0,0,0) is the unique quadruple
fixed point of F. O

Remark 2.10. We notice that for, F : X** — X, (n € N), itis very natural to consider the
analog of Theorem 2.1-Theorem 2.7 to get fixed points. Moreover, for F : X***! — X (n€
N), the analog of Theorem 7-Theorem 11 of Berinde and Borcut [2] yields fixed points.
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