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We rigorously justify a singular Euler-Poisson approximation of the incompressible Euler
equations in the quasi-neutral regime for plasma physics. Using the modulated energy estimates,
the rate convergence of Euler-Poisson systems to the incompressible Euler equations is obtained.

1. Introduction

In this paper, we shall consider the following hydrodynamic system:

∂tn
λ + div

(
nλuλ

)
= 0, x ∈ T3, t > 0,

∂tuλ +
(
uλ · ∇

)
uλ = ∇φλ, x ∈ T3, t > 0,

Δφλ =
nλ − 1

λ
, x ∈ T3, t > 0

(1.1)

for x ∈ T3 and t > 0, subject to the initial conditions

(
nλ,uλ

)
(t = 0) =

(
nλ
0 ,u

λ
0

)
(1.2)

for x ∈ T3. In the above equations, T3 is 3-dimensional torus and λ > 0 is small parameter.
Here nλ, uλ, φλ denote the electron density, electron velocity, and the electrostatic potential,
respectively.
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System (1.1) is a model of a collisionless plasma where the ions are supposed to
be at rest and create a neutralizing background field. Then the motion of the electrons
can be described by using either the kinetic formalism or the hydrodynamic equations of
conservation of mass and momentum as we do here. The self-induced electric field is the
gradient of a potential that depends on the electron’s density nλ through the linear Poisson
equation Δφλ = (nλ − 1)/λ.

To solve uniquely the Poisson equation, we add the condition
∫
T3 n

λdx = 1. Passing to
the limit when λ goes to zero, it is easy to see, at least at a very formal level, that (nλ,uλ, φλ)
tends to (nI,uI , φI), where nI = 1 and

∂tuI +
(
uI · ∇

)
uI = ∇φI,

divuI = 0.
(1.3)

In other words, uI is a solution of the incompressible Euler equations. The aim of this paper
is to give a rigorous justification to this formal computation. We shall prove the following
result.

Theorem 1.1. Let uI be a solution of the incompressible Euler equations (1.3) such that uI ∈
([0, T],Hs+3(T3)) and

∫
T3 uIdx = 0 for s > 5/2. Assume that the initial value (nλ

0 ,u
λ
0) ∈ Hs+1

is such that

∫

T3
nλ
0dx = 1,

∫

T3
uλ
0dx = 0,

Ms(λ) :=
∥∥∥uλ

0 − uI
0

∥∥∥
2

Hs+1
+
1
λ

∥∥∥nλ
0 − λΔφI

0(t) − 1
∥∥∥
2

Hs
−→ 0 (when λ −→ 0), uI

0 = uI |t=0.

(1.4)

Then, there exist λ0 and CT such that for 0 < λ ≤ λ0 there is a solution (nλ,uλ) ∈ ([0, T],Hs+1(T3))
of (1.1) satisfying

∥∥∥uλ(t) − uI(t)
∥∥∥
2

Hs+1
+
1
λ

∥∥∥nλ(t) − λΔφI − 1
∥∥∥
2

Hs
≤ CT (λ +Ms(λ)) (1.5)

for any 0 ≤ t ≤ T .

Concerning the quasi-neutral limit, there are some results for various specific models.
In particular, this limit has been performed for the Vlasov-Poisson system [1, 2], for the drift-
diffusion equations and the quantum drift-diffusion equations [3, 4], for the one-dimensional
and isothermal Euler-Poisson system [5], for the multidimensional Euler-Poisson equations
[6, 7], for the bipolar Euler-Poisson system [8, 9], for the Vlasov-Maxwell system [10], and
for Euler-Maxwell equations [11]. We refer to [12–15] and references therein for more recent
contributions.

The main focus in the present note is on the use of the modulated energy techniques
for studying incompressible fluids. We will mostly restrict ourselves to the case of well-
prepared initial data. Our result gives a more general rate of convergence in strong Hs norm
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of the solution of the singular system towards a smooth solution of the incompressible Euler
equation. We noticed that the quasi-neutral limit with pressure is treated in [5, 6]. But the
techniques used there do not apply here.

It should be pointed that the model that we considered is a collisionless plasma while
the model in [6, 7] includes the pressure. Our proof is based on the modulated energy
estimates and the curl-div decomposition of the gradient while the proof in [6, 7] is based
on formal asymptotic expansions and iterative methods. Meanwhile, the model that we
considered in this paper is a different scaling from that of [16]. Furthermore, our convergence
result is different from the convergence result in [16].

2. Proof of Theorem 1.1

First, let us set

(
n,u, φ

)
=
(
nλ − 1 − λΔφI,uλ − uI , φλ − φI

)
. (2.1)

Then, we know the vector (n,u, φ) solves the system

∂tu +
(
u + uI

)
· ∇u + (u · ∇)uI = ∇φ,

∂tn +
(
u + uI

)
· ∇n = −(n + 1)divu − λ

(
∂tΔφI + div

(
ΔφI

(
u + uI

)))
,

Δφ =
n

λ
,

(2.2)

where ∇u : ∇v =
∑3

i,j=1(∂xiu/∂xj )(∂xjv/∂xi). In fact, from (1.3), we get ΔφI = ∇uI : ∇uI .
As in [16], we make the following change of unknowns:

(d, c) = (divu, curlu). (2.3)

By using the last equation in (2.2), we get the following system:

∂td +
(
u + uI

)
· ∇d =

n

λ
− ∇

(
u + 2uI

)
: ∇u,

∂tc +
(
u + uI

)
· ∇c = c · ∇

(
u + uI

)
+ curl

(
∇uI · u

)
− dc − curl

(
(u · ∇)uI

)
,

∂tn +
(
u + uI

)
· ∇n = −(n + 1)d − λ

(
∂tΔφI + div

(
ΔφI

(
u + uI

)))
.

(2.4)

This last system can be written as a singular perturbation of a symmetrizable hyperbolic
system:

∂tv +
3∑

j=1

(
u + uI

)j
∂xjv =

1
λ
Kλv +L(v) + S(v) + λR(v), (2.5)
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where (u + uI)j denotes the ith component of (u + uI) and where

v =

⎛
⎝

d
c
n

⎞
⎠, Kλ =

⎛
⎝

0 0 1
0 0 0
−λ 0 0

⎞
⎠, L(v) =

⎛
⎝

0
−dc
−dn

⎞
⎠,

S(v) =

⎛
⎝

−∇
(
u + 2uI

)
: ∇u

c · ∇
(
u + uI

)
+ curl

(
∇uI · u

)
− curl

(
(u · ∇)uI

)
0

⎞
⎠,

R(v) =

⎛
⎝

0
0

−
(
∂tΔφI + div

(
ΔφI

(
u + uI

)))

⎞
⎠.

(2.6)

Now, let us set Aλ
0 =

(
1 0 0
0 Id 0
0 0 1/λ

)
and for |α| ≤ s with s > d/2,

Eλ
α,s(t) =

1
2

(
Aλ

0∂
α
xv, ∂

α
xv

)
=

1
2

(
‖∂αxd‖

2 + ‖∂αxc‖
2 +

1
λ
‖∂αxn‖

2
)
,

Eλ
s (t) =

∑
|α|≤s

Eλ
α,s(t).

(2.7)

It is easy to know that system (2.5) is a hyperbolic system. Consequently, for λ > 0 fixed, we
have a result of local existence and uniqueness of strong solutions in C([0, T],Hs), see [17].
This allows us to define Tλ as the largest time such that

Eλ
s (t) ≤ Mλ, ∀t ∈

[
0, Tλ

]
, (2.8)

where Mλ which is such that Mλ → 0 when λ goes to zero will be chosen carefully later. To
achieve the proof of Theorem 1.1, and in particular inequality (1.5), it is sufficient to establish
that Tλ ≥ T , which will be proved by showing that in (2.8) the equality cannot be reached for
Tλ < T thanks to a good choice of Mλ.

Before performing the energy estimate, we apply the operator ∂αx for α ∈ N
3 with |α| ≤ s

to (2.5), to obtain

∂t∂
α
xv +

3∑
j=1

(
u + uI

)j
∂xj ∂

α
xv =

1
λ
Kλ∂αxv + ∂αxL(v) + ∂αxS(v) + λ∂αxR(v) + Σλ

α, (2.9)

where

Σλ
α =

3∑
j=1

[(
u + uI

)j
∂xj ∂

α
xv − ∂αx

((
u + uI

)j
∂xjv

)]
. (2.10)

Along the proof, we shall denote by C a number independent of λ, which actually may
change from line to line, and by C(·) a nondecreasing function. Moreover (·, ·) and ‖ · ‖ stand
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for the usual L2 scalar product and norm, ‖ · ‖s is the usual Hs Sobolev norm, and ‖ · ‖s,∞ is
the usual Ws,∞ norm.

Now, we proceed to perform the energy estimates for (2.9) in a classical way by taking
the scalar product of system (2.9) withAλ

0∂
α
xv. Then, we have

d

dt
Eλ
α,s(t) = −

⎛
⎝Aλ

0∂
α
xv,

3∑
j=1

(
u + uI

)j
∂xj ∂

α
xv

⎞
⎠

+
1
λ

(
Aλ

0∂
α
xv,Kλ∂αxv

)
+
(
Aλ

0∂
α
xv, ∂

α
xL(v)

)

+
(
Aλ

0∂
α
xv, ∂

α
xS(u)

)
+ λ

(
Aλ

0∂
α
xv, ∂

α
xR(u)

)
+
(
Aλ

0∂
α
xv,Σ

λ
α

)

=
6∑
i=1

Ii.

(2.11)

Let us start the estimate of each term in the above equation. For I1, since Aλ
0 is

symmetric and divuI = 0, by Cauchy-Schwartz’s inequality and Sobolev’s lemma, we have
that

I1 =
1
2

(
divuAλ

0∂
α
xv, ∂

α
xv

)
≤ ‖divu‖0,∞Eλ

s (t) ≤ C
(
Eλ
s (t)

)3/2
. (2.12)

Next, since Aλ
0Kλ is skew-symmetric, we have that

I2 = 0. (2.13)

For I3, by a direct calculation, one gets

I3 = −(∂αxc, ∂αx(dc)) −
1
λ
(n, ∂αx(dn))

≤ ‖∂αxc‖‖∂αx(dc)‖ +
1
λ
‖∂αxn‖

2‖∂αxd‖

≤ C
(
Eλ
s (t)

)3/2
.

(2.14)

Here, we have used the basic Moser-type calculus inequalities [18].
To give the estimate of the term I4, we split it in two terms. Specifically, we can deduce

that

I4 = −
(
∂αxd, ∂

α
x

(
∇
(
u + 2uI

)
: ∇u

))

+
(
∂αxc, ∂

α
x

(
c · ∇

(
u + uI

)
+ curl

(
∇uI · u

)
− curl

(
(u · ∇)uI

)))
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≤ ‖d‖s
∥∥∥∇

(
u + 2uI

)
: ∇u

∥∥∥
s

+ ‖c‖s
(∥∥∥c · ∇

(
u + uI

)∥∥∥
s
+
∥∥∥curl

(
∇uI · u

)∥∥∥
s
+
∥∥∥curl

(
(u · ∇)uI

)∥∥∥
s

)

≤ C

(
Eλ
s +

(
Eλ
s

)3/2
)
.

(2.15)

Here, we have used the curl-div decomposition inequality

‖∇u‖s ≤ C(‖d‖s + ‖c‖s). (2.16)

For I5, we have that

I5 ≤ ‖n‖s
∥∥∥∂tΔφI + div

(
ΔφI

(
u + uI

))∥∥∥
s

≤ C‖n‖s(1 + ‖d‖s + ‖c‖s)
≤ Cλ + Eλ

s .

(2.17)

To estimate the last term, that is, I5, by using basic Moser-type calculus inequalities
and Sobolev’s lemma, we have

I6 =

⎛
⎝∂αxd,

3∑
j=1

[(
u + uI

)j
∂xj ∂

α
xd − ∂αx

((
u + uI

)j
∂xj d

)]⎞
⎠

+

⎛
⎝∂αxc,

3∑
j=1

[(
u + uI

)j
∂xj ∂

α
xc − ∂αx

((
u + uI

)j
∂xj c

)]⎞
⎠

+
1
λ

⎛
⎝∂αxn,

3∑
j=1

[(
u + uI

)j
∂xj ∂

α
xn − ∂αx

((
u + uI

)j
∂xj n

)]⎞
⎠

≤ C‖d‖s
(∥∥∥∇

(
u + uI

)∥∥∥
0,∞

‖∂αxd‖ + ‖∇d‖0,∞
∥∥∥∂αx

(
u + uI

)∥∥∥
)

+ C‖c‖s
(∥∥∥∇

(
u + uI

)∥∥∥
0,∞

‖∂αxc‖ + ‖∇c‖0,∞
∥∥∥∂αx

(
u + uI

)∥∥∥
)

+
C

λ
‖n‖s

(∥∥∥∇
(
u + uI

)∥∥∥
0,∞

‖∂αxn‖ + ‖∇n‖0,∞
∥∥∥∂αx

(
u + uI

)∥∥∥
)

≤ C

(
‖d‖2s + ‖c‖2s +

1
λ
‖n‖2s

)
(‖d‖s + ‖c‖s + 1)

≤ C

(
Eλ
s +

(
Eλ
s

)3/2
)
.

(2.18)

Now, we collect all the previous estimates (2.12)–(2.18) and we sum over α to find

d

dt
Eλ
s ≤ Cλ + CEλ

s +
(
Eλ
s

)2
. (2.19)
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By using (2.8), we get withMλ 
 1 that

d

dt
Eλ
s ≤ Cλ + CEλ

s , ∀t ∈
[
0, Tλ

]
. (2.20)

Hence, by the Gronwall inequality, we get that

Eλ
s (t) ≤ (Ms(λ) + Ctλ)eCt, ∀t ∈

[
0, Tλ

]
. (2.21)

Consequently, if we choose Mλ = (Ms(λ) + Ctλ)1/2, we see that we cannot reach
equality in (2.8) for Tλ < T . This proves that Tλ > T and that (2.21) is valid on [0, T].
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