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This paper investigates a new cluster synchronization scheme in the nonlinear coupled complex
dynamical networks with nonidentical nodes. The controllers are designed based on the
community structure of the networks; some sufficient criteria are derived to ensure cluster
synchronization of the network model. Particularly, the weight configuration matrix is not
assumed to be symmetric, irreducible. The numerical simulations are performed to verify the
effectiveness of the theoretical results.

1. Introduction

Complex networks model is used to describe various interconnected systems of real world,
which have become a focal research topic and have drawn much attention from researchers
working in different fields; one of the most important reasons is that most practical systems
can be modeled by complex dynamical networks. Recently, the research on synchronization
and dynamical behavior analysis of complex network systems has become a new and
important direction in this field [1–13]; many control approaches have been developed to
synchronize complex networks such as feedback control, adaptive control, pinning control,
impulsive control, and intermittent control [14–21].

Cluster synchronization means that nodes in the same group synchronize with each
other, but there is no synchronization between nodes in different groups [22–25]; Belykh et
al. [26] investigated systems of diffusively coupled identical chaotic oscillators; an effective
method to determine the possible states of cluster synchronization and ensure their stability
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is presented. The method, which may find applications in communication engineering
and other fields of science and technology, is illustrated through concrete examples of
coupled biological cell models. Wu and Lu [27] investigated cluster synchronization in
the adaptive complex dynamical networks with nonidentical nodes by a local control
method and a novel adaptive strategy for the coupling strengths of the networks. Ma et
al. [28] proposed cluster synchronization scheme via dominant intracouplings and common
intercluster couplings. Sorrentino and Ott [29] studied local cluster synchronization for
bipartite systems, where no intracluster couplings (driving scheme) exist. Chen and Lu
[30] investigated global cluster synchronization in networks of two clusters with inter- and
intracluster couplings. Belykh et al. [31, 26] studied this problem in 1D and 2D lattices of
coupled identical dynamical systems. Lu et al. [32] studied the cluster synchronization of
general networks with nonidentical clusters and derived sufficient conditions for achieving
local cluster synchronization of networks. Recently, Wang et al. [33] considered the
cluster synchronization of dynamical networks with community structure and nonidentical
nodes and with identical local dynamics for all individual nodes in each community by
using pinning control schemes. However, there is few theoretical result on the cluster
synchronization of nonlinear coupled complex networks with time-varying delays coupling
and time-varying delays in nonidentical dynamical nodes.

Motivated by the above discussions, this paper investigates cluster synchronization in
the nonlinear coupled complex dynamical networks with nonidentical nodes. The controllers
are designed based on the community structure of the networks; some sufficient criteria are
derived to ensure cluster synchronization in nonlinear coupled complex dynamical networks
with time-varying delays coupling and time-varying delays in dynamic nodes. Particularly
the weight configuration matrix is not assumed to be symmetric, irreducible.

The paper is organized as follows: the network model is introduced followed by some
definitions, lemmas, and hypotheses in Section 2. The cluster synchronization of the complex
coupled networks is discussed in Section 3. Simulations are obtained in Section 4. Finally, in
Section 5 the various conclusions are discussed.

2. Model and Preliminaries

The network with nondelayed and time-varying delays coupling and adaptive coupling
strengths can be described by

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)

+ c
N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

))
, i = 1, 2, . . . ,N,

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of node i; fφi : Rn → Rn

describes the local dynamics of nodes in the φith community. For any pair of nodes i and j,
if φi /=φj , that is, nodes i and j belong to different communities, then fφi /= fφj · ηφi(t), τφi(t),
is a time-varying delay. H1(·) and H2(·) are nonlinear functions. c is coupling strength. A =
(aij)N×N, B = (bij)N×N are the weight configuration matrices. If there is a connection from
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node i to node j (j /= i), then the aij > 0, bij > 0 otherwise, aij = aji = 0, bij = bji = 0, and the
diagonal elements of matrix A, B are defined as

aii = −
N∑

j=1, j /= i

aji, bii = −
N∑

j=1, j /= i

bji, i = 1, 2, . . . ,N. (2.2)

Particularly, the weight configuration matrix is not assumed to be symmetric, irreducible.
When the control inputs ui(t) ∈ Rn and vi(t) ∈ Rn (i = 1, 2, . . . ,N) are introduced, the

controlled dynamical network with respect to network (2.1) can be written as

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)

+ c
N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

))
+ ui(t), φi(t) ∈ Jφi

,

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)

+ c
N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

)) − vi(t), φi(t) ∈ Jφi − Jφi
,

(2.3)

where Jφi denotes all the nodes in the φith community and Jφi
represents the nodes in the

φith community which have direct links with the nodes in other communities.
The study presents the mathematical definition of the cluster synchronization.
Let {C1, C2, . . . , Cm} denotem (2 ≤ m ≤ N) communities of the networks and

⋃m
i=1 Ci =

{1, 2, . . .N}. If node i belongs to the jth community, then we denote φi = j. We employ fi(·) to
represent the local dynamics of all nodes in the ith community. Let si(t) be the solution of the
system ṡi(t) = fφi(t, si(t), si(t − τφi(t))), (i = 1, 2, . . . , m) where limt→∞‖si(t) − sj(t)‖/= 0 (i /= j);
the set S = {s1(t), s2(t), . . . , sm(t)} is used as the cluster synchronization manifold for network
(2.3). Cluster synchronization can be realized if and only if the manifold S is stable.

Definition 2.1 (see [19]). The error variables as ei(t) = xi(t) − sφi(t) for i = 1, 2, . . . ,N, where
sφi(t) satisfies ṡφi(t) = fφi(t, sφi(t), sφi(t − τφi(t))).

Definition 2.2 (see [19]). Let {1, 2, . . . ,N} be theN nodes of the network and {C1, C2, . . . , Cm}
be the m communities, respectively. A network with m communities is said to realize cluster
synchronization if limt→∞ei(t) = 0 and limt→∞‖xi(t) − xj(t)‖/= 0 for φi /=φj .

Lemma 2.3. For any two vectors x and y, a matrix Q > 0 with compatible dimensions, one has
2xTy ≤ xTQx + yTQ−1y.
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Assumption 2.4. For the vector valued function fφi(t, xi(t), xi(t−τφi)), assuming that there exist
positive constants αφi > 0, γφi > 0 such that f satisfies the semi-Lipschitz condition

(
xi(t) − yi(t)

)T(
fφi

(
t, xi(t), xi

(
t − τφi

)) − fφi

(
t, yi(t), yi

(
t − τφi

)))

≤ αφi

(
xi(t) − yi(t)

)T(
xi(t) − yi(t)

)

+ γφi

(
xi

(
t − τφi

) − yi

(
t − τφi

))T(
xi

(
t − τφi

) − yi

(
t − τφi

))
,

(2.4)

for all x, y ∈ Rn and τφi(t) ≥ 0. i = 1, 2, . . . ,N.

Assumption 2.5. ηφi(t) and τφi(t) is a differential function with 0 ≤ η̇φi(t) ≤ ε ≤ 1 and 0 ≤
τ̇φi(t) ≤ ε ≤ 1. Clearly, this assumption is certainly ensured if the delay ηφi(t) and τφi(t) is
constant.

Assumption 2.6. [34] (Global Lipschitz Condition)]
Suppose that there exist nonnegative constants ϑ, β, for all t ∈ R+, such that for any

time-varying vectors x(t), y(t) ∈ Rn

∥∥H1(x) −H1
(
y
)∥∥ ≤ ϑ

∥∥x − y
∥∥,

∥∥H2(x) −H2
(
y
)∥∥ ≤ β

∥∥x − y
∥∥, (2.5)

where ‖ ‖ denotes the 2-norm throughout the paper.

3. Main Results

In this section, a control scheme is developed to synchronize a delayed complex network
with nonidentical nodes to any smooth dynamics sφi(t). Let synchronization errors ei(t) =
xi(t) − sφi(t) for i = 1, 2, . . . ,N, according to system (2.1), the error dynamical system can be
derived as

ėi(t) = f̃φi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aij

[
H1

(
xj(t)

) −H1
(
sφi(t)

)]

+ c
N∑

j=1

bij
[
H2

(
xj

(
t − ηφi(t)

)) −H2
(
sφi

(
t − ηφi(t)

))]
+

N∑

i=1

aijH1
(
sφi(t)

)

+
N∑

i=1

bijH2
(
sφi

(
t − ηφi(t)

))
+ ui(t), φi(t) ∈ Jφi

,

ėi(t) = f̃φi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aij

[
H1

(
xj(t)

) −H1
(
sφi(t)

)]

+ c
N∑

j=1

bij
[
H2

(
xj

(
t − ηφi(t)

)) −H2
(
sφi

(
t − ηφi(t)

))]

− vi(t), φi(t) ∈ Jφi − Jφi
,

(3.1)

where f̃φi(t, xi(t), xi(t − τφi(t))) = fφi(t, xi(t), xi(t − τφi(t))) − fφi(t, sφi(t), sφi(t − τφi(t))) for i =
1, 2, . . . ,N.
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According to the diffusive coupling condition (2.2) of the matrix A,B we have

c
N∑

i=1

aijH1
(
sφi(t)

)
+ c

N∑

i=1

bijH2
(
sφi

(
t − ηφi(t)

))
= 0, i ∈ Jφi − Jφi

. (3.2)

On the basis of this property, for achieving cluster synchronization, we design controllers as
follows:

ui(t) =

⎧
⎪⎨

⎪⎩

−c
N∑

i=1

aijH1
(
sφi(t)

) − c
N∑

i=1

bijH2
(
sφi

(
t − ηφi(t)

)) − diei(t), i ∈ Jφi
,

vi(t) = diei(t), i ∈ Jφi − Jφi
,

(3.3)

where ḋi = kie
T
i (t)ei(t).

Theorem 3.1. Suppose assumptions 2.4–2.5 hold. Consider the network (2.1) via control law (3.3).
If the following conditions hold:

α + ϑcλmax(Q) +
1
2
β2c2λmax

(
PPT

)
+

1
1 − ε

(
γ +

1
2

)
< d, (3.4)

where α = max(αφ1 , αφ2 , . . . , αφm), γ = max(γφ1 , γφ2 , . . . , γφm). Then, the systems (2.3) is cluster
synchronization.

Proof. Construct the following Lyapunov functional:

V (t) =
1
2

N∑

i=1

eTi (t)ei(t) +
γ

1 − ε

∫ t

t−τφi (t)

N∑

i=1

eTi (θ)ei(θ)dθ

+
1

2(1 − ε)

∫ t

t−ηφi (t)

N∑

i=1

eTi (θ)ei(θ)dθ +
1
2

N∑

i=1

(di − d)2

ki
.

(3.5)

Calculating the derivative of V (t), we have

V̇ (t) =
N∑

i=1

eTi (t)ėi(t) +
1

1 − ε

(
γ +

1
2

) N∑

i=1

eTi (t)ei(t) −
γ
(
1 − τ̇φi(t)

)

1 − ε

N∑

i=1

eTi
(
t − τφi(t)

)
ei
(
t − τφi(t)

)

− 1 − η̇φi(t)
2(1 − ε)

N∑

i=1

eTi
(
t − ηφi(t)

)
ei
(
t − ηφi(t)

)
+

N∑

i=1

(di − d)eTi (t)ei(t)



6 Journal of Applied Mathematics

=
N∑

i=1

eTi (t)

⎧
⎨

⎩
f̃φi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aij

[
H1

(
xj(t)

) −H1
(
sφi(t)

)]

+c
N∑

j=1

bij
[
H2

(
xj

(
t − ηφi(t)

)) −H2
(
sφi

(
t − ηφi(t)

))] − diei(t)

⎫
⎬

⎭

+
1

1 − ε

(
γ +

1
2

) N∑

i=1

eTi (t)ei(t) −
γ
(
1 − τ̇φi(t)

)

1 − ε

N∑

i=1

eTi
(
t − τφi(t)

)
ei
(
t − τφi(t)

)

− 1 − η̇φi(t)
2(1 − ε)

N∑

i=1

eTi
(
t − ηφi(t)

)
ei
(
t − ηφi(t)

)
+

N∑

i=1

(di − d)eTi (t)ei(t). (3.6)

By assumptions 2.4–2.6, we obtain

≤ α
N∑

i=1

eTi (t)ei(t) + γ
N∑

i=1

eTi
(
t − τφi(t)

)
ei
(
t − τφi(t)

)
+ ϑc

N∑

i=1

eTi (t)
N∑

j=1

aijej(t)

+ βc
N∑

i=1

eTi (t)
N∑

j=1

bijej
(
t − ηφi(t)

) − di

N∑

i=1

eTi (t)ei(t)

+
1

1 − ε

(
γ +

1
2

) N∑

i=1

eTi (t)ei(t) − γ
N∑

i=1

eTi
(
t − τφi(t)

)
ei
(
t − τφi(t)

)

− 1
2

N∑

i=1

eTi
(
t − ηφi(t)

)
ei
(
t − ηφi(t)

)
+

N∑

i=1

(di − d)eTi (t)ei(t)

≤ α
N∑

i=1

eTi (t)ei(t) + ϑceT(A ⊗ I)e + βceT(B ⊗ I)e
(
t − ηφi(t)

)
+

1
1 − ε

(
γ +

1
2

) N∑

i=1

eTi (t)ei(t)

− 1
2

N∑

i=1

eTi
(
t − ηφi(t)

)
ei
(
t − ηφi(t)

) − deT(t)e(t).

(3.7)

Let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))T ∈ RnN, Q = (A ⊗ I), P = (B ⊗ I), where ⊗ represents the

Kronecker product. Then

V̇ (t) ≤ αeT (t)e(t) + ϑceT(t)Qe(t) + βceT(t)Pe
(
t − ηφi(t)

)
+

1
1 − ε

(
γ +

1
2

)
eT(t)e(t)

− 1
2
eT

(
t − ηφi(t)

)
e
(
t − ηφi(t)

) − deT(t)e(t).
(3.8)

By the Lemma 2.3, we have

≤ αeT (t)e(t) + ϑceT(t)Qe(t) +
1
2
(
βc

)2
eT (t)PPTe(t) +

1
1 − ε

(
γ +

1
2

)
eT (t)e(t) − deT(t)e(t)

≤
(
α + ϑcλmax(Q) +

1
2
β2c2λmax

(
PPT

)
+

1
1 − ε

(
γ +

1
2

)
− d

)
eT (t)e(t).

(3.9)
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Therefore, if we have α + ϑcλmax(Q) + (1/2)β2c2λmax(PPT) + (1/(1 − ε))(γ + (1/2)) < d then

V̇ (t) ≤ 0. (3.10)

Theorem 3.1 is proved completely.
We can conclude that, for any initial values, the solutions x1(t), x2(t), . . . , xN(t) of the

system (2.3) satisfy limt→∞
∑m

k=1
∑

i∈Ck
‖xi(t) − sk(t)‖ = 0, that is, we get the global stability

of the cluster synchronization manifold S. Therefore, cluster synchronization in the network
(2.3) is achieved under the local controllers (3.3). This completes the proof.

Corollary 3.2. When A = 0, network (2.1) is translated into

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

))
, i = 1, 2, . . . ,N. (3.11)

We design the controllers, as follows, then the complex networks can also achieve
synchronization, where

ui(t) =

⎧
⎪⎨

⎪⎩

−c
N∑

i=1

bijH2
(
sφi

(
t − ηφi(t)

)) − diei(t), i ∈ Jφi
,

vi(t) = diei(t), i ∈ Jφi − Jφi
.

(3.12)

Corollary 3.3. When B = 0, network (2.1) is translated into

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)
, i = 1, 2, . . . ,N. (3.13)

We design the controllers, as follows, then the complex networks can also achieve
synchronization, where

ui(t) =

⎧
⎪⎨

⎪⎩

−c
N∑

i=1

aijH1
(
sφi(t)

) − diei(t), i ∈ Jφi
,

vi(t) = diei(t), i ∈ Jφi − Jφi
,

(3.14)
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Figure 1: Time evolution of the synchronization errors E(t).

4. Illustrative Examples

In this section, a numerical example will be given to demonstrate the validity of the
synchronization criteria obtained in the previous sections. Considering the following
network:

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)

+ c
N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

))
+ ui(t), φi(t) ∈ Jφi

,

ẋi(t) = fφi

(
t, xi(t), xi

(
t − τφi(t)

))
+ c

N∑

j=1

aijH1
(
xj(t)

)

+ c
N∑

j=1

bijH2
(
xj

(
t − ηφi(t)

)) − vi(t), φi(t) ∈ Jφi − Jφi
, i = 1, 2, . . . ,N,

(4.1)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , f1(t, xi(t), xi(t − τ1(t))) = D1xi(t) + h11(xi(t)) + h12(xi(t −

τ1(t))), f2(t, xi(t), xi(t − τ2(t))) = D2xi(t) + h21(xi(t)) + h22(xi(t − τ2(t))) + V, f3(t, xi(t), xi(t −
τ3(t))) = D3xi(t) + h31(xi(t)) + h32(xi(t − τ3(t))). k1 = k2 = · · · = kN = 10, c = 1, H1(x) =
sin x,H2(x) = cos x.

In simulation, we choose h11(xi) = (0,−xi1xi3, xi1xi2)
T , h12(xi) = (0, 5xi2, 0)

T , h21(xi) =
(0, 0, xi1xi3)

T , h22(xi) = (xi1, 0, 0)
T , V = [0, 0, 0.2]T , h31(xi) = (3.247(|xi1 + 1| − |xi1 −
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Figure 2: Time evolution of the synchronization errors E12(t).

1|), 0, 0)T , h32(xi) = (0, 0,−3.906 sin(0.5xi1))
T , τ1(t) = et/(1 + et), τ2(t) = 2et/(1 + et), τ3(t) =

0.5et/(1 + et),

D1 =

⎡

⎢⎢
⎣

−10 10 0
28 4 0

0 0 −8
3

⎤

⎥⎥
⎦, D2 =

⎡

⎣
0 −1 −1
1 0.2 0
0 0 −1.2

⎤

⎦, D3 =

⎡

⎣
−2.169 10 0

1 −1 1
0 −19.53 −0.1636

⎤

⎦. (4.2)

Taking the weight configuration coupling matrices

A = B =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−2 1 0 0 0 1
−1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.3)

The following quantities are utilized to measure the process of cluster synchronization

E(t) =
N∑

i=1

∥∥xi(t) − sφi(t)
∥∥,

E12(t) = ‖xu(t) − xv(t)‖, u ∈ C1, v ∈ C2,

E13(t) = ‖xu(t) − xv(t)‖, u ∈ C1, v ∈ C3,

E23(t) = ‖xu(t) − xv(t)‖, u ∈ C2, v ∈ C3,

(4.4)

where E(t) is the error of cluster synchronization for this controlled network (2.2); E12(t),
E13(t), and E23(t) are the errors between two communities; cluster synchronization is
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Figure 3: Time evolution of the synchronization errors E13(t).
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Figure 4: Time evolution of the synchronization errors E23(t).

achieved if the synchronization error E(t) converges to zero and E12(t), E13(t) and E23(t)
do not as t → ∞. Simulation results are given in Figures 1, 2, 3, and 4. From the Figures
1–4, we see the time evolution of the synchronization errors. The numerical results show that
Theorem 3.1 is effective.

5. Conclusions

The problems of cluster synchronization and adaptive feedback controller for the nonlinear
coupled complex networks are investigated. The weight configuration matrix is not assumed
to be symmetric, irreducible. It is shown that cluster synchronization can be realized via
adaptive feedback controller. The study showed that the use of simple control law helps
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to derive sufficient criteria which ensure that nodes in the same group synchronize with
each other, but there is no synchronization between nodes in different groups is derived.
Particularly the synchronization criteria are independent of time delay. The developed
techniques are applied three complex community networks which are synchronized to
different chaotic trajectories. Finally, the numerical simulations were performed to verify the
effectiveness of the theoretical results.
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