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The aim of this paper is to extend the notions of E.A. property and CLRg property for coupled
mappings and use these notions to generalize the recent results of Xin-Qi Hu (2011). The main
result is supported by a suitable example.

1. Introduction and Preliminaries

The concept of fuzzy set was introduced by Zadeh [1] and after his work there has been
a great endeavor to obtain fuzzy analogues of classical theories. This problem has been
searched by many authors from different points of view. In 1994, George and Veeramani [2]
introduced and studied the notion of fuzzy metric space and defined a Hausdorff topology
on this fuzzy metric space.

Bhaskar and Lakshmikantham [3] introduced the notion of coupled fixed points and
proved some coupled fixed point results in partially ordered metric spaces. The work [3]was
illustrated by proving the existence and uniqueness of the solution for a periodic boundary
value problem. These results were further extended and generalized by Lakshmikantham
and Cirić [4] to coupled coincidence and coupled common fixed point results for nonlinear
contractions in partially ordered metric spaces.

Sedghi et al. [5] proved some coupled fixed point theorems under contractive con-
ditions in fuzzy metric spaces. The results proved by Fang [6] for compatible and weakly
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compatible mappings under φ-contractive conditions in Menger spaces that provide a tool
to Hu [7] for proving fixed points results for coupled mappings and these results are the
genuine generalization of the result of [5].

Aamri and Moutawakil [8] introduced the concept of E.A. property in a metric space.
Recently, Sintunavarat and Kuman [9] introduced a new concept of (CLRg). The importance
of CLRg property ensures that one does not require the closeness of range subspaces.

In this paper, we give the concept of E.A. property and (CLRg) property for coupled
mappings and prove a result which provides a generalization of the result of [7].

2. Preliminaries

Before we give our main result, we need the following preliminaries.

Definition 2.1 (see [1]). A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 2.2 (see [10]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous t-norm, if
([0, 1], ∗) is a topological abelian monoid with unit 1 such that a ∗ b ≤ c ∗ d whenever a ≤ c
and b ≤ d for all a, b, c, d ∈ [0, 1].

Some examples are below:

(i) ∗(a, b) = ab,

(ii) ∗(a, b) = min(a, b).

Definition 2.3 (see [11]). Let supt∈(0,1)Δ(t, t) = 1. A t-norm Δ is said to be of H-type if the
family of functions {Δm(t)}∞m=1 is equicontinuous at t = 1, where

Δ1(t) = t, Δ(Δm) = Δm+1(t) = t. (2.1)

A t-norm Δ is anH-type t-norm if and only if for any λ ∈ (0, 1), there exists δ(λ) ∈ (0, 1) such
that Δm(t) > (1 − λ) for all m ∈ N, when t > (1 − δ).

The t-norm ΔM = min is an example of t-norm, of H-type.

Definition 2.4 (see [2]). The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × [0,∞) satisfying the
following conditions:

(FM-1) M(x, y, 0) > 0 for all x, y ∈ X,

(FM-2) M(x, y, t) = 1 if and only if x = y, for all x, y ∈ X and t > 0,

(FM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0,

(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and t, s > 0,

(FM-5) M(x, y, ·) : [0,∞) → [0, 1] is continuous for all x, y ∈ X.

In present paper, we consider M to be fuzzy metric space with, the following condi-
tion:

(FM-6) limt→∞M(x, y, t) = 1, for all x, y ∈ X and t > 0.

Definition 2.5 (see [2]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} ∈ X is said to
be:
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(i) convergent to a point x ∈ X, if for all t > 0,

lim
n→∞

M(xn, x, t) = 1, (2.2)

(ii) a Cauchy sequence, if for all t > 0 and p > 0,

lim
n→∞

M
(
xn+p, xn, t

)
= 1. (2.3)

A fuzzy metric space (X,M, ∗) is said to be complete if and only if every Cauchy
sequence in X is convergent.

We note that M(x, y, ·) is nondecreasing for all x, y ∈ X.

Lemma 2.6 (see [12]). Let xn → x and yn → y, then for all t > 0:

(i) limn→∞M(xn, yn, t) ≥ M(x, y, t),

(ii) limn→∞M(xn, yn, t) = M(x, y, t) ifM(x, y, t) is continuous.

Definition 2.7 (see [7]). Define Φ = {φ : R
+ → R

+}, and each φ ∈ Φ satisfies the following
conditions:

(φ-1) φ is nondecreasing;

(φ-2) φ is upper semicontinuous from the right;

(φ-3)
∑∞

n=0 φ
n(t) < +∞ for all t > 0, where φn+1(t) = φ(φn(t)), n ∈ N.

Clearly, if φ ∈ Φ, then φ(t) < t for all t > 0.

Definition 2.8 (see [4]). An element (x, y) ∈ X ×X is called:

(i) a coupled fixed point of the mapping f : X ×X → X if f(x, y) = x, f(y, x) = y,

(ii) a coupled coincidence point of the mappings f : X × X → X and g : X → X if
f(x, y) = g(x), f(y, x) = g(y),

(iii) a common coupled fixed point of the mappings f : X × X → X and g : X → X if
x = f(x, y) = g(x), y = f(y, x) = g(y).

Definition 2.9 (see [6]). An element x ∈ X is called a common fixed point of the mappings
f : X ×X → X and g : X → X if x = f(x, x) = g(x).

Definition 2.10 (see [6]). The mappings f : X ×X → X and g : X → X are called:

(i) commutative if gf(x, y) = f(gx, gy) for all x, y ∈ X,

(ii) compatible if

lim
n→∞

M
(
gf
(
xn, yn

)
, f
(
g(xn), g

(
yn

))
, t
)
= 1,

lim
n→∞

M
(
gf
(
yn, xn

)
, f
(
g
(
yn

)
, g(xn)

)
, t
)
= 1,

(2.4)

for all t > 0 whenever {xn} and {yn} are sequences in X, such that limn→∞f(xn,
yn) = limn→∞g(xn) = x, and limn→∞f(yn, xn) = limn→∞g(yn) = y, for some x, y ∈
X.
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Definition 2.11 (see [13]). The maps f : X × X → X and g : X → X are called w-compatible
if gf(x, y) = f(gx, gy) whenever f(x, y) = g(x), f(y, x) = g(y).

We note that the maps f : X ×X → X and g : X → X are called weakly compatible if

f
(
x, y
)
= g(x), f

(
y, x
)
= g
(
y
)
, (2.5)

implies gf(x, y) = f(gx, gy), gf(y, x) = f(gy, gx), for all x, y ∈ X.

There exist pair of mappings that are neither compatible nor weakly compatible, as
shown in the following example.

Example 2.12. Let (X,M, ∗) be a fuzzymetric space, ∗ being a continuous normwithX = [0, 1).
DefineM(x, y, t) = t/(t+|x−y|) for all t > 0, x, y ∈ X. Also define themaps f : X×X → X and
g : X → X by f(x, y) = (x2/2) + (y2/2) and g(x) = x/2, respectively. Note that (0, 0) is the
coupled coincidence point of f and g in X. It is clear that the pair (f, g) is weakly compatible
on X.

We next show that the pair (f, g) is not compatible.
Consider the sequences {xn} = {(1/2)+ (1/n)} and {yn} = {(1/2)− (1/n)}, n ≥ 3, then

lim
n→∞

f
(
xn, yn

)
=

1
4
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
=

1
4
= lim

n→∞
g
(
yn

)
,

(2.6)

but

M
(
f
(
gxn, gyn

)
, gf
(
xn, yn

)
, t
)
=

t

t +
∣∣f
(
gxn, gyn

) − gf
(
xn, yn

)∣∣ =
t

t + (1/8)((1/2) + (2/n2))
,

(2.7)

which is not convergent to 1 as n → ∞.
Hence the pair (f, g) is not compatible.

We note that, if f and g are compatible then they are weakly compatible. But the
converse need not be true, as shown in the following example.

Example 2.13. Let (X,M, ∗) be a fuzzy metric space, ∗ being a continuous norm with X =
[2, 20]. DefineM(x, y, t) = t/(t+ |x−y|) for all t > 0, x, y ∈ X. Define the maps f : X×X → X
and g : X → X by

f
(
x, y
)
=

⎧
⎨

⎩

2, if x = 2 or x > 5, y ∈ X,

6, if 2 < x ≤ 5, y ∈ X,

g(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2, if x = 2,

12, if 2 < x ≤ 5,

x − 3, x > 5.

(2.8)
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The only coupled coincidence point of the pair (f, g) is (2, 2). The mappings f and g are
noncompatible, since for the sequences {xn} = {yn} = {5+(1/n)}, n ≥ 1we have f(xn, yn) = 2,
g(xn) → 2, f(yn, xn) = 2, g(yn) → 2, M(f(gxn, gyn), g(f(xn, yn)), t) = t/(t + 4) � 1 as n →
∞. But they are weakly compatible since they commute at their coupled coincidence point
(2, 2).

Now we introduce our notions.
Aamri and ElMoutawakil [8] introduced the concept of E.A. property in ametric space

as follows.
Let (X, d) be a metric space. Self mappings f : X → X and g : X → X are said to

satisfy E.A. property if there exists a sequence {xn} ∈ X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = t (2.9)

for some t ∈ X.
Now we extend this notion for a pair of coupled maps as follows.

Definition 2.14. Let (X, d) be a metric space. Two mappings f : X × X → X and g : X → X
are said to satisfy E.A. property if there exists sequences {xn}, {yn} ∈ X such that

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
g(xn) = x,

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= y,

(2.10)

for some x, y ∈ X.

In a similar mode, we state E.A. property for coupled mappings in fuzzy metric spaces
as follows.

Let (X,M, ∗) be a FM space. Two maps f : X × X → X and g : X → X satisfy E.A.
property if there exists sequences {xn} and {yn} ∈ X such that f(xn, yn), g(xn) converges to
x and f(yn, xn), g(yn) converges to y in the sense of Definition 2.5.

Example 2.15. Let (−∞,∞) be a usual metric space. Define mappings f : X × X → X and
g : X → X by f(x, y) = x2 + y2 and g(x) = 2x for all x, y ∈ X. Consider the sequences
{xn} = {1/n} and {yn} = {−1/n}. Since

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
f

(
1
n
,− 1

n

)
= 0 = lim

n→∞
g

(
1
n

)
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
f

(
− 1
n
,
1
n

)
= 0 = lim

n→∞
g

(
− 1
n

)
= lim

n→∞
g
(
yn

)
,

(2.11)

therefore, f and g satisfy E.A. property, since 0 ∈ X.
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Remark 2.16. It is to be noted that property E.A. need not imply compatibility, since in
Example 2.12, the maps f and g defined are not compatible, but satisfy property E.A., since
for the sequences {xn} = {(1/2) + (1/n)} and {xn} = {(1/2) − (1/n)}we have

lim
n→∞

f
(
xn, yn

)
=

1
4
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
=

1
4
= lim

n→∞
g
(
yn

)
,

(2.12)

since 1/4 ∈ X.

Recently, Sintunavarat and Kuman [9] introduced a new concept of the common limit
in the range of g, (CLRg) property, as follows.

Definition 2.17. Let (X, d) be a metric space. Two mappings f : X → X and g : X → X are
said to satisfy (CLRg) property if there exists a sequence {xn} ∈ X such that limn→∞f(xn) =
limn→∞g(xn) = g(p) for some p ∈ X.

Now we extend this notion for a pair of coupled mappings as follows.

Definition 2.18. Let (X, d) be a metric space. Two mappings f : X × X → X and g : X → X
are said to satisfy (CLRg) property if there exists sequences {xn}, {yn} ∈ X such that

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
g(xn) = g

(
p
)
,

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= g
(
q
)
,

(2.13)

for some p, q ∈ X.

Similarly, we state (CLRg) property for coupled mappings in fuzzy metric spaces.
Let (X,M, ∗) be an FM space. Two maps f : X ×X → X and g : X → X satisfy (CLRg)

property if there exists sequences {xn}, {yn} ∈ X such that f(xn, yn), g(xn) converge to g(p)
and f(yn, xn), g(yn) converge to g(q), in the sense of Definition 2.5.

Example 2.19. Let X = [0,∞) be a metric space under usual metric. Define mappings f :
X × X → X and g : X → X by f(x, y) = x + y + 2 and g(x) = 2(1 + x) for all x, y ∈ X. We
consider the sequences {xn} = {1 + (1/n)} and {xn} = {1 − (1/n)}. Since

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
f

(
1 +

1
n
, 1 − 1

n

)
= 4 = g(1) = lim

n→∞
g

(
1 +

1
n

)
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
f

(
1 − 1

n
, 1 +

1
n

)
= 4 = g(1) = lim

n→∞
g

(
1 − 1

n

)
= lim

n→∞
g
(
yn

)
,

(2.14)

therefore, the maps f and g satisfy (CLRg) property.

In the next example, we show that the maps satisfying (CLRg) property need not be
continuous, that is, continuity is not the necessary condition for self maps to satisfy (CLRg)
property.



Journal of Applied Mathematics 7

Example 2.20. Let X = [0,∞) be a metric space under usual metric. Define mappings f : X×
X → X and g : X → X by

f
(
x, y
)
=

⎧
⎪⎨

⎪⎩

x + y, if x ∈ [0, 1), y ∈ X,

x + y

2
, if x ∈ [1,∞), y ∈ X,

g(x) =

⎧
⎨

⎩

1 + x, if x ∈ [0, 1),
x

2
, if x ∈ [1,∞).

(2.15)

We consider the sequences {xn} = {1/n} and {yn} = {1 + (1/n)}. Since

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
f

(
1
n
, 1 +

1
n

)
= 1 = g(0) = lim

n→∞
g

(
1
n

)
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
f

(
1 +

1
n
,
1
n

)
=

1
2
= g(1) = lim

n→∞
g

(
1 +

1
n

)
= lim

n→∞
g
(
yn

)
,

(2.16)

therefore, the maps f and g satisfy (CLRg) property but the maps are not continuous.

We next show that the pair of maps satisfying (CLRg) propertymay not be compatible.

Example 2.21. Let (X,M, ∗) be a fuzzy metric space, ∗ being a continuous norm, X = [0, 1/2),
and M(x, y, t) = t/(t + |x − y|) for all x, y ∈ X and t > 0.

Define the maps f : X × X → X and g : X → X by f(x, y) = (x2 + y2)/2 and
g(x) = x/3, respectively.

Consider the sequences {xn} = {(1/3)+(1/n)} and {yn} = {(1/3)−(1/n)}, n > 7. Then

lim
n→∞

f
(
xn, yn

)
=

1
9
= lim

n→∞
g(xn),

lim
n→∞

f
(
yn, xn

)
=

1
9
= lim

n→∞
g
(
yn

)
.

(2.17)

Further there exists the point 1/3 in X such that g(1/3) = 1/9, so that the pair (f, g) satisfies
(CLRg) property. But,

M
(
f
(
gxn, gyn

)
, gf
(
xn, yn

)
, t
)

=
t

t +
∣∣f
(
gxn, gyn

) − gf
(
xn, yn

)∣∣ =
t

t + (1/18)((1/9) + (1/n2))

(2.18)

does not converge to 1 as n → ∞.
Hence, the pair (f, g) is not compatible.
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3. Main Results

For convenience, we denote

(1)

[
M(x, y, t)

]n =
M
(
x, y, t

) ∗M(x, y, t) ∗ · · · ∗M(x, y, t)

n
, (3.1)

for all n ∈ N.

Hu [7] proved the following result.

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space where ∗ is a continuous t-norm of
H-type. Let f : X ×X → X and g : X → X be two mappings and there exists φ ∈ Φ such that

(2)

M
(
f
(
x, y
)
, f(u, v), φ(t)

) ≥ M
(
gx, gu, t

) ∗M(gy, gv, t), (3.2)

for all x, y, u, v ∈ X and t > 0. Suppose that f(X × X) ⊆ g(X), g is continuous, f and g
are compatible maps. Then there exists a unique point x ∈ X such that x = g(x) = f(x, x),
that is, f and g have a unique common fixed point in X.

We now give our main result which provides a generalization of Theorem 3.1.

Theorem 3.2. Let (X,M, ∗) be a Fuzzy Metric Space, ∗ being continuous t-norm of H-type. Let
f : X × X → X and g : X → X be two mappings and there exists φ ∈ Φ satisfying (2) with the
following conditions:

(3) the pair (f, g) is weakly compatible,

(4) the pair (f, g) satisfy (CLRg) property.

Then f and g have a coupled coincidence point inX. Moreover, there exists a unique point x ∈ X such
that x = f(x, x) = g(x).

Proof . Since f and g satisfy (CLRg) property, there exists sequences {xn} and {yn} in X such
that

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
g(xn) = g

(
p
)
, lim

n→∞
f
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= g
(
q
)
, (3.3)

for some p, q ∈ X.

Step 1. To show that f and g have a coupled coincidence point. From (2),

M
(
f
(
xn, yn

)
, f
(
p, q
)
, t
) ≥ M

(
f
(
xn, yn

)
, f
(
p, q
)
, φ(t)

) ≥ M
(
gxn, g

(
p
)
, t
) ∗M(gyn, g

(
q
)
, t
)
.

(3.4)

Taking limit n → ∞, we get M(g(p), f(p, q), t) = 1, that is, f(p, q) = g(p) = x.
Similarly, f(q, p) = g(q) = y.
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Since f and g are weakly compatible, so that f(p, q) = g(p) = x(say) and f(q, p) =
g(q) = y(say) implies gf(p, q) = f(g(p), g(q)) and gf(q, p) = f(g(q), g(p)), that is, g(x) =
f(x, y) and g(y) = f(y, x). Hence f and g have a coupled coincidence point.

Step 2. To show that g(x) = x, and g(y) = y. Since ∗ is a t-norm of H-type, for any ε > 0,
there exists δ > 0 such that

(1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

p

≥ (1 − ε),
(3.5)

for all p ∈ N.
Since limt→∞M(x, y, t) = 1 for all x, y ∈ X, there exists t0 > 0 such that

M
(
gx, x, t0

) ≥ (1 − δ), M
(
gy, y, t0

) ≥ (1 − δ). (3.6)

Also since φ ∈ Φ using condition (φ − 3), we have
∑∞

n=1 φ
n(t0) < ∞.

Then for any t > 0, there exists n0 ∈ N such that t >
∑∞

k=n0
φk(t0). From (2), we have

M
(
gx, x, φ(t0)

)
= M

(
f
(
x, y
)
, f
(
p, q
)
, φ(t0)

) ≥ M
(
gx, gp, t0

) ∗M(gy, gq, t0
)

= M
(
gx, x, t0

) ∗M(gy, y, t0
)
,

M
(
gy, y, φ(t0)

)
= M

(
f
(
y, x
)
, f
(
q, p
)
, φ(t0)

) ≥ M
(
gy, gq, t0

) ∗M(gx, gp, t0
)

= M
(
gy, y, t0

) ∗M(gx, x, t0
)
.

(3.7)

Similarly, we can also get

M
(
gx, x, φ2(t0)

)
= M

(
f
(
x, y
)
, f
(
p, q
)
, φ2(t0)

)

≥ M
(
gx, gp, φ(t0)

) ∗M(gy, gq, φ(t0)
)

= M
(
gx, x, φ(t0)

) ∗M(gy, y, φ(t0)
)

≥ [M(gx, x, t0
)]2 ∗ [M(gy, y, t0

)]2
,

M
(
gy, y, φ2(t0)

)
= M

(
f
(
y, x
)
, f
(
q, p
)
, φ2(t0)

)

≥ [M(gy, y, t0
)]2 ∗ [M(gx, x, t0

)]2
.

(3.8)

Continuing in the same way, we can get for all n ∈ N,

M
(
gx, x, φn(t0)

)
= M

(
gx, x, φn−1(t0)

)
∗M

(
gy, y, φn−1(t0)

)

≥ M
(
gx, x, t0

)2n−1 ∗M(gy, y, t0
)2n−1

,

M
(
gy, y, φn(t0)

) ≥ [M(gy, y, t0
)]2n−1 ∗ [M(gx, x, t0

)]2n−1
.

(3.9)
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Then, we have

M
(
gx, x, t

) ≥ M

(

gx, x,
∞∑

k=n0

φk(t0)

)

≥ M
(
gx, x, φn0t0

)

≥ [M(gx, x, t0)
]2n0−1 ∗ [M(gy, y, t0)

]2n0−1

≥ (1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

2n0

≥ (1 − ε).

(3.10)

So, for any ε > 0, we have M(gx, x, t) ≥ (1 − ε) for all t > 0.
This implies g(x) = x. Similarly, g(y) = y.

Step 3. Next we shall show that x = y. Since ∗ is a t-norm ofH-type, for any ε > 0 there exists
δ > 0 such that

(1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

p

≥ (1 − ε),
(3.11)

for all p ∈ N.
Since limt→∞M(x, y, t) = 1 for all x, y ∈ X, there exists t0 > 0 such that M(x, y, t0) ≥

(1 − δ).
Also since φ ∈ Φ, using condition (φ-3), we have

∑∞
n=1 φ

n(t0) < ∞. Then for any t > 0,
there exists n0 ∈ N such that

t >
∞∑

k=n0

φk(t0). (3.12)

Using condition (2), we have

M
(
x, y, φ(t0)

)
= M

(
f
(
p, q
)
, f
(
q, p
)
, φ(t0)

) ≥ M
(
gp, gq, t0

) ∗M(gq, gp, t0
)

= M
(
x, y, t0

) ∗M(y, x, t0
)
.

(3.13)

Continuing in the same way, we can get for all n0 ∈ N,

M
(
x, y, φn(t0)

) ≥ [M(x, y, t0)
]2n0−1 ∗ [M(y, x, t0)

]2n0−1
. (3.14)
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Then we have

M
(
x, y, t

) ≥ M

(

x, y,
∞∑

k=n0

φk(t0)

)

≥ M
(
x, y, φn0t0

)

≥ [M(x, y, t0)
]2n0−1 ∗ [M(y, x, t0)

]2n0−1

≥ (1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

2n0

≥ (1 − ε),

(3.15)

which implies that x = y. Thus, we have proved that f and g have a common fixed point
x ∈ X.

Step 4. We now prove the uniqueness of x. Let z be any point in X such that z/=x with g(z) =
z = f(z, z). Since ∗ is a t-norm of H-type, for any ε > 0, there exists δ > 0 such that

(1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

p

≥ (1 − ε),
(3.16)

for all p ∈ N. Since limt→∞M(x, y, t) = 1 for all x, y ∈ X, there exists t0 > 0 such that
M(x, z, t0) ≥ (1 − δ). Also since φ ∈ Φ and using condition (φ-3), we have

∑∞
n=1 φ

n(t0) < ∞.
Then for any t > 0, there exists n0 ∈ N such that

t >
∞∑

k=n0

φk(t0). (3.17)

Using condition (2), we have

M
(
x, z, φ(t0)

)
= M

(
f(x, x), f(z, z), φ(t0)

)

≥ M
(
g(x), g(z), t0

) ∗M(g(x), g(z), t0
)

≥ M(x, z, t0) ∗M(x, z, t0) = [M(x, z, t0)]2.

(3.18)

Continuing in the same way, we can get for all n ∈ N,

M
(
x, z, φn(t0)

) ≥
(
[M(x, z, t0)]2

n0−1
)2
. (3.19)
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Then we have

M(x, z, t) ≥ M

(

x, z,
∞∑

k=n0

φk(t0)

)

≥ M
(
x, z, φn0(t0)

)

≥
(
[M(x, z, t0)]

2n0−1
)2

= [M(x, z, t0)]
2n0

≥ (1 − δ) ∗ · · · ∗ (1 − δ)
︸ ︷︷ ︸

2n0

≥ (1 − ε),

(3.20)

which implies that x = z.
Hence f and g have a unique common fixed point in X.

Remark 3.3. We still get a unique common fixed point if weakly compatible notion is replaced
by w-compatible notion.

Now we give another generalization of Theorem 3.1.

Corollary 3.4. Let (X,M, ∗) be a fuzzy metric space where ∗ is a continuous t-norm of H-type. Let
f : X ×X → X and g : X → X be two mappings and there exists φ ∈ Φ satisfying (2) and (3) with
the following condition:

(5) the pair (f, g) satisfy E.A. property.

If g(X) is a closed subspace of X, then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy E.A. property, there exists sequences {xn} and {yn} inX such that

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
g(xn) = x,

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= y,

(3.21)

for some x, y ∈ X.
It follows from g(X) being a closed subspace of X that x = g(p), y = g(q) for some

p, q ∈ X and then f and g satisfy the (CLRg) property. By Theorem 3.2, we get that f and g
have a unique common fixed point in X.

Corollary 3.5. Let (X,M, ∗) be a fuzzy metric space where ∗ is a continuous t-norm of H-type. Let
f : X ×X → X and g : X → X be two mappings and there exists φ ∈ Φ satisfying (2), (3), and (5).

Suppose that f(X × X) ⊆ g(X), if range of one of the maps f or g is a closed subspace of X,
then f and g have a unique common fixed point in X.

Proof. It follows immediately from Corollary 3.5.

Taking g = IX in Theorem 3.2, the Corollary 3.6 follows immediately the following.
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Corollary 3.6. Let (X,M, ∗) be a fuzzy metric space where ∗ is a continuous t-norm of H-type. Let
f : X × X → X and g : X → X be two mappings and there exists φ ∈ Φ satisfying the following
conditions, for all x, y, u, v ∈ X and t > 0:

(6) M(f(x, y), f(u, v), φ(t)) ≥ M(x, u, t) ∗M(y, v, t),

(7) there exists sequences {xn} and {yn} in X such that

lim
n→∞

f
(
xn, yn

)
= lim

n→∞
xn = x,

lim
n→∞

f
(
yn, xn

)
= lim

n→∞
yn = y,

(3.22)

for some x, y ∈ X.

Then, there exists a unique z ∈ X such that z = f(z, z).
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[13] M. Abbas, M. A. Khan, and S. Radenović, “Common coupled fixed point theorems in cone metric
spaces for w-compatible mappings,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 195–
202, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


