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For an internal conductivity image, magnetic resonance electrical impedance tomography
(MREIT) injects an electric current into an object and measures the induced magnetic flux density,
which appears in the phase part of the acquired MR image data. To maximize signal intensity,
the injected current nonlinear encoding (ICNE) method extends the duration of the current
injection until the end of the MR data reading. It disturbs the usual linear encoding of the MR
k-space data used in the inverse Fourier transform. In this study, we estimate the magnetic flux
density, which is recoverable from nonlinearly encoded MR k-space data by applying a Newton
method.

1. Introduction

An electric current injected into an electrically conducting object, such as the human body,
induces an internal distribution of the magnetic flux density B = (Bx, By, Bz). Magnetic
resonance electrical impedance tomography (MREIT) visualizes the internal conductivity
distribution from the z-component Bz of B which can be measured in practice using an MRI
scanner. This technique was originally proposed by Joy et al. in 1989 [1]; since then, several
researchers [2–10] have investigated and further developed MREIT as well as magnetic
resonance current density image (MRCDI), which has similar modalities [11–13].

The magnetic flux density Bz induced by injecting current through the electrodes
attached on the surface of a conducting object Ω accumulates its signals in the phase parts
of acquired MR image data. The conventional current-injection method [1, 8] injects the
current during time Tc, between the end of the first RF pulse and the beginning of the reading
gradient, in order to ensure gradient linearity.

Since the signal-to-noise ratio (SNR) of the MR magnitude depends on the echo time
TE, it is impossible to increase both Tc and the SNR of the MR magnitude simultaneously
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in order to reduce noise effects. As an attempt to reduce the noise level, the injected current
nonlinear encoding (ICNE) method was developed in 2007 [14, 15]; it extends the duration
of the injection current until the end of a reading gradient in order to maximize the signal
intensity of Bz. Then, it disturbs the usual linear encoding of MR k-space data used in the
inverse Fourier transform.

For example, the one-dimensional inverse problem in the conventional acquisition
method is to find the unknown discrete magnetic flux density bl, l = 0, . . . ,N − 1 from the
N ×N matrix A satisfying the following:

A�ρ = �S, Akl = e−i(2π/N)(kl+Tcbl), k, l = 0, . . . ,N − 1, (1.1)

where Tc is a constant and �ρ, �S are known quantities that can be measured. By an inverse
Fourier transform F−1, the first equation in (1.1) becomes

diag
(
e−i(2π/N)Tcb0 , e−i(2π/N)Tcb1 , . . . , e−i(2π/N)TcbN−1

)
�ρ = F−1

(
�S
)
. (1.2)

The unknown data bl is simply recovered from (1.2). In the ICNE method, however, the
matrix A is perturbed to A′

kl = e−i(2π/N)k(l+bl). Then, it becomes a system of nonlinear
equations for unknown bl data, where the conventional inverse Fourier transform is no longer
applicable.

In this paper, we prove a unique determination of the magnetic flux density from
measured MR signal obtained by the ICNE acquisition method. Secondly, applying a
Newton method, we suggest a bound of l2-norm for recoverable magnetic flux density from
nonlinearly encoded MR k-space data. Numerical experiments show the feasibility of the
proposed method.

2. ICNE Method and Invertibility

For a standard spin echo pulse sequence in MR imaging, the k-space MR signal

S
(
kx, ky

)
=
∫

R2
ρ
(
x, y
)
e−iδ(x,y)ei2π(kxx+kyy)dx dy (2.1)

is measured, where ρ denotes a positive spin density of the imaging slice and δ any systematic
phase artifact [16]. From the signal S in (2.1), by applying the conventional inverse Fourier
transform, we can obtain

ρ0
(
x, y
)
= ρ
(
x, y
)
eiδ(x,y), (2.2)

and the clinical MR image data ρ = |ρ0|.
In MREIT, we inject the current I through the electrodes attached on the three-

dimensional conducting object Ω, having conductivity distribution σ. The injection current I
produces the internal current density J and the magnetic flux density B = (Bx, By, Bz) in Ω,
satisfying the Ampère and Biot-Savart laws. Since an MRI scanner measures only the main
magnetic field direction component of B, the z-component Bz, we focus on the problem of
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Figure 1: Conventional and ICNE current injections in a spin echo pulse sequence.

measuring Bz(x, y) = Bz(x, y, z0), where z0 is the center of the selected imaging slice. Since
MREIT is a methodology for reconstructing the internal conductivity σ from Bz data, it is
important to measure Bz more precisely.

2.1. Conventional Bz Acquisition

For a conventional Bz acquisition, current is not injected during Ts of theMR data acquisition,
ADC as shown in Figure 1. In this case, the induced magnetic flux density Bz provides
additional dephasing of spins, and, consequently, extra phase is accumulated during the
total injection time Tc. Then, the measured k-space data for the injection current I can be
represented as follows:

SI(kx, ky
)
=
∫

R2
ρ
(
x, y
)
eiδ(x,y)e−iγTcBz(x,y)e−i2π(kxx+kyy)dx dy, (2.3)

where γ = 26.75 × 107 rad/T·s is the gyromagnetic ratio of hydrogen.
From the measured S and SI in (2.1) and (2.3), by applying an inverse Fourier

transform, we obtain ρ0 in (2.2) and

ρI
(
x, y
)
= ρ
(
x, y
)
eiδ(x,y)e−iγTcBz(x,y). (2.4)

Then, the magnetic flux density Bz is precisely computed as

Bz

(
x, y
)
=

−1
γTc

arctan

(
α
(
x, y
)

β
(
x, y
)
)
, (2.5)

where α and β are the imaginary and real parts of ρI/ρ0, respectively.
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2.2. ICNE Bz Acquisition

In the ICNE Bz acquisition, in order to improve the SNR of Bz, we prolong the current
injection time Tc until the end of the MR data acquisition, as shown in Figure 1. Then, since
the induced Bz disturbs the linearity of the reading gradient, the measured k-space data has
lost the linear encoding characteristic as

SC(kx, ky
)
=
∫

R2
ρ
(
x, y
)
eiδ(x,y)e−iγTcBz(x,y)e−i2π[kx(x+Bz(x,y)/G)+kyy]dx dy, (2.6)

where G is a constant that denotes the strength of the magnetic reading gradient. The inverse
problem arising in the ICNEmethod is to recover Bz(x, y) from ρ0(x, y) obtained in (2.2) and
the measured signal SC(kx, ky) in (2.6).

Although the inversion is not uniquely solvable for Bz(x, y) in general, we can
uniquely determine Bz(x, y) by assuming that ϕ(x) := x +Bz(x, y)/G is monotone increasing
in the following theorem.

Theorem 2.1. Let ρ(x, y) have a finite support Ω. If Bz(x, y) is sufficiently small to guarantee that
ϕ(x) = x+Bz(x, y)/G is monotone increasing so that ϕ′(x) > 0 for each y, then Bz(x, y) is uniquely
recovered in Ω from ρ0(x, y) in (2.2) and SC(kx, ky) in (2.6).

Proof. We note that the linear encoding characteristic in the ky-variable remains unperturbed
in (2.6). Thus, by one-dimensional inverse Fourier transform, SC in (2.6) is reduced to ŜC in
the (kx, y)-hybrid space as the following:

ŜC(kx, y
)
=
∫∞

−∞
ρ
(
x, y
)
eiδ(x,y)e−iγTcBz(x,y)e−i2π[kx(x+Bz(x,y)/G)]dx. (2.7)

Then, the ICNE inverse problem suffices to consider the x-directional inversion of Bz(x, y)
from ρ0(x, y) in (2.2) and ŜC(kx, y) in (2.7) for each fixed y.

By change of variables with ϕ(x), (2.7) is changed into

ŜC(kx, y
)
=
∫∞

−∞

ρ
(
x, y
)

ϕ′(x)
eiδ(x,y)e−iγTcBz(x,y)e−i2πkxϕdϕ. (2.8)

From (2.8), by inverse Fourier transform for the ϕ-variable, ϕ satisfies

Φ
(
ϕ
)
=

ρ
(
x, y
)

ϕ′(x)
eiδ(x,y)e−iγTcBz(x,y), (2.9)
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where Φ is a function defined with the given ŜC by

Φ(z) =
∫∞

−∞
ŜC(kx, y

)
ei2πkxzdkx. (2.10)

The relation (2.9) gives us the simple ordinary differential equation as follows:

∣∣Φ(ϕ(x))∣∣ϕ′(x) = ρ
(
x, y
)
. (2.11)

Since ρ has a finite support, for each y, we can define

x0 = min
{
x: ρ
(
x, y
)
/= 0
}
, β = min{z: Φ(z)/= 0}. (2.12)

If ϕ(x0) < β, then ϕ(x0 + ε) < β for a sufficiently small ε > 0. It contradicts (2.11), since it
implies that

0 =
∣∣Φ(ϕ(x0 + ε)

)∣∣ϕ′(x0 + ε) = ρ
(
x0 + ε, y

)
/= 0. (2.13)

By the same argument, the reverse inequality is not possible. Thus, we have

φ(x0) = β. (2.14)

By separation of variables, (2.11) and (2.14) lead us to

∫ϕ(x)

β

∣∣Φ(ϕ)∣∣dϕ =
∫x

x0

ρ
(
x, y
)
dx. (2.15)

For any given x, ϕ(x) is uniquely determined from (2.15). It completes the proof.

Remark 2.2. In Theorem 2.1, we assume that ϕ′(x) = 1 + (1/G)(∂Bz(x, y)/∂x) > 0. The
magnetic flux density Bz is smooth and its intensity is 10−7 ∼ 10−8 T in practical experimental
environments. Furthermore, the usual range of the reading gradient G is 10−3 ∼ 10−4 T/m.
Thus, the assumption of ϕ′(x) > 0 is not severe in Theorem 2.1.

3. Discrete ICNE Inverse Problem

In a practical MRI scanner, the MR k-space data in (2.1), (2.3), and (2.6) are acquired by
finite sampling with a dwell time dt. If N is the reading time Ts divided by dt, we have the
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following N ×N discrete signals with dimensionless variables instead of those in (2.6):

SC
d (k, l) =

N−1∑
m=0

N−1∑
n=0

ρ(n,m)eiδ(n,m)e−i(2π/N)MBz(n,m)e−i(2π/N)(k(n+Bz(n,m))+lm), (3.1)

for a constant M > 0.
The discrete ICNE inverse problem is to recover Bz(n,m) from (3.1) with known a

priori ρ(n,m)eiδ(n,m) and the measured signal SC
d
(k, l), where n,m, k, l = 0, 1, . . . ,N − 1. By

discrete inverse Fourier transform for l, (3.1) can be suppressed into

ŜC
d (k,m) =

N−1∑
n=0

ρ(n,m)eiδ(n,m)e−i(2π/N)(M+k)Bz(n,m)e−i(2π/N)kn. (3.2)

For each fixed m, let s(k), ρn, and bn denote ŜC
d (k,m), ρ(n,m)eiδ(n,m), and Bz(n,m),

respectively. Then, the discrete ICNE inversion problem is a system ofN nonlinear equations
for N unknowns, b0, b1, . . . , bN−1 such that

s(k) =
N−1∑
n=0

ρne
−i(2π/N)(M+k)bne−i(2π/N)kn, k = 0, 1, . . . ,N − 1, (3.3)

where M > 0 and s(k), ρn ∈ C, n, k = 0, 1, . . . ,N − 1 are known.
In the rest of the paper, we assume that N is even and k, n = 0, 1, . . . ,N − 1 denote the

row and column numbers, respectively. A matrix whose (k, n) entry isMkn is represented by

[Mkn]. (3.4)

For a vector x = (x0, x1, . . . , xN−1)
t, V (x) = [e−i(2π/N)(n+xn)k] denotes a Vandermonde matrix as

V (x) =

⎛
⎜⎜⎜⎝

1 1 · · · 1
e−i(2π/N)x0 e−i(2π/N)(1+x1) · · · e−i(2π/N)(N−1+xN−1)

...
...

...
...

e−i(2π/N)x0(N−1) e−i(2π/N)(1+x1)(N−1) · · · e−i(2π/N)(N−1+xN−1)(N−1)

⎞
⎟⎟⎟⎠. (3.5)

3.1. Newton Iterations

Define a function F = (F0, F1, . . . , FN−1)
t by

Fk(x) =
N−1∑
n=0

ρne
−i(2π/N)(M+k)xne−i(2π/N)kn − s(k), k = 0, 1, . . . ,N − 1, (3.6)

for x = (x0, x1, . . . , xN−1)
t ∈ R

N . The discrete ICNE inverse problem is to find the zero of F for
s(k) given in (3.3).
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The Jacobian matrix DF(x) is composed of four parts as

DF(x) = −i2π
N

DKV (x)DxDρ, (3.7)

where DK, Dxj , Dρ are diagonal matrices such that

DK = diag(M,M + 1, . . . ,M +N − 1),

Dx = diag
(
e−i(2π/N)Mx0 , e−i(2π/N)Mx1 , . . . , e−i(2π/N)MxN−1

)
,

Dρ = diag
(
ρ0, ρ1, . . . , ρN−1

)
.

(3.8)

Newton iterations to find the zero of F are as the following:

xj+1 = xj − real
(
DF
(
xj
)−1

F
(
xj
))

, (3.9)

with an initial x0 and the iterates xj = (xj

0, x
j

1, . . . , x
j

N−1)
t ∈ R

N, j = 0, 1, 2, . . ..
The previous method in [14, 15] was based on the Taylor approximation, but as a

coincidental result, it can be interpreted as the first Newton iterate x1 in (3.9)with x0 = 0.

3.2. Convergence of Newton Iterations

Let b = (b0, b1, . . . , bN−1)
t, �ρ = (ρ0, ρ1, . . . , ρN−1)

t, and ρmax = maxn|ρn|, ρmin = minn|ρn|. If

‖b‖∞ <
1
2
, ρmin /= 0, (3.10)

the JacobianDF(b) in (3.7) is invertible, since the Vandermonde matrix V (b) in (3.5) is based
on the N distinct points. Thus, the Newton iterations in (3.9) converge to b for an initial x0

which is sufficiently close to b [17].
The following theorem suggests a condition for b in which the Newton iterations

in (3.9) converge to b with the trivial initial guess 0 = (0, 0, . . . , 0)t. The proof is based on
the Theorem 6.14 in [17], which states a sufficient condition for the convergence of Newton
iterations that

q := αβγ <
1
2
, (3.11)

where α = ‖DF(0)−1F(0)‖∞ and β, γ are the respective bounds of

∥∥∥DF(x)−1
∥∥∥
∞
,

‖DF(x) −DF(y)‖∞
‖x − y‖∞

for ‖x‖∞, ‖y‖∞ < 2α. (3.12)
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Theorem 3.1. Let s(k) in (3.6) be made through (3.3) from b such that

‖b‖∞ ≤ min

{
ρmin

2πρmax(M +N)
,

1
12π
(
2 + log cot π/2N

) , ρminM

12πρmax(M +N)2

}
. (3.13)

Then, starting with x0 = 0, the Newton iterations in (3.9) are well defined and converge to b. One
also has the following quadratic error estimate:

∥∥∥xj − b
∥∥∥
∞
≤ 3‖b‖∞

(
1
2

)2j−1
, j = 0, 1, 2, . . . . (3.14)

As a consequence, the zero of F satisfying (3.13) is unique.

Proof. Let α = ‖DF(0)−1F(0)‖∞. The condition (3.13) and Lemma 3.3 lead us to

1
2
‖b‖∞ ≤ α ≤ 3

2
‖b‖∞. (3.15)

If ‖x‖∞ ≤ 2α, we have from (3.13), (3.15), and Lemma 3.5, the following:

∥∥∥V (x)−1
∥∥∥
∞
≤ 2. (3.16)

By (3.7), (3.16) implies that

∥∥∥DF(x)−1
∥∥∥
∞
≤ N

πρminM
, if ‖x‖∞ < 2α. (3.17)

For two constants in (3.17) and (3.21), let

q = α
N

πρminM

4π2

N
(N +M)2ρmax. (3.18)

From (3.15) and the condition (3.13), we have

q ≤ 1
2
. (3.19)
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Then, with the aid of the Theorem 6.14 in [17], F has a unique zero x� in the ball

B = {x : ‖x‖∞ ≤ 2α}, (3.20)

and the Newton iterations in (3.9) converge to x� with x0 = 0. Since b is a zero of F contained
in B from (3.15), we have x� = b. The quadratic error estimate in (3.14) also comes from the
same theorem in [17].

Lemma 3.2. If x,y ∈ R
N , then

‖DF(x) −DF(y)‖∞ ≤ 4π2

N
(N +M)2ρmax‖x − y‖∞. (3.21)

Proof. From (3.7), we expand

DF(x) −DF(y) = − i
2π
N

DK

[
e−i(2π/N)((n+xn)k+Mxn) − e−i(2π/N)((n+yn)k+Myn)

]
Dρ

= − i
2π
N

DK

[(
e−i(2π/N)((xn−yn)(k+M)) − 1

)
e−i(2π/N)((n+yn)k+Myn)

]
Dρ.

(3.22)

Since |eiθ − 1| = 2| sin(θ/2)|, we have for each k,

N−1∑
n=0

∣∣∣e−i(2π/N)((xn−yn)(k+M)) − 1
∣∣∣ = 2

N−1∑
n=0

∣∣∣sin π

N

(
xn − yn

)
(k +M)

∣∣∣ (3.23a)

≤ 2
N−1∑
n=0

π

N

∣∣xn − yn

∣∣(k +M) (3.23b)

≤ 2π(k +M)‖x − y‖∞. (3.23c)

We can combine (3.22), (3.23a), (3.23b), and (3.23c) into (3.21).

Lemma 3.3. For the trivial initial x0 = 0, one has

‖b‖∞ − ρmax

ρmin
π(M +N)‖b‖∞2 ≤

∥∥∥DF(0)−1F(0)
∥∥∥
∞
≤ ‖b‖∞ +

ρmax

ρmin
π(M +N)‖b‖∞2. (3.24)

Proof. Since

Fk(0) =
N−1∑
n=0

ρne
−i(2π/N)kn −

N−1∑
n=0

ρne
−i(2π/N)(M+k)bne−i(2π/N)kn, (3.25)

we can represent F(0) as

F(0) =
[(

1 − e−i(2π/N)(M+k)bn
)
e−i(2π/N)kn

]
�ρ. (3.26)
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Thus, we expand

DF(0)−1F(0) =
(
−i2π

N

)−1
D−1

ρ V (0)−1D−1
K

[(
1 − e−i(2π/N)(M+k)bn

)
e−i(2π/N)kn

]
�ρ (3.27a)

= D−1
ρ V (0)−1

[
1 − e−i(2π/N)(M+k)bn

−i(2π/N)(M + k)
e−i(2π/N)kn

]
�ρ (3.27b)

= D−1
ρ V (0)−1

[
1 − e−i(2π/N)(M+k)bn

−i(2π/N)(M + k)bn
e−i(2π/N)kn

]
Dρb (3.27c)

= D−1
ρ V (0)−1(E − V (0))Dρb (3.27d)

= D−1
ρ V (0)−1EDρb − b, (3.27e)

where

E =

[
1 − e−i(2π/N)(M+k)bn

−i(2π/N)(M + k)bn
e−i(2π/N)kn + e−i(2π/N)kn

]
. (3.28)

From Lemma 3.4, we estimate that

‖E‖∞ = max
k

N−1∑
n=1

|Ekn| ≤ max
k

N−1∑
n=1

π

N
(M + k)|bn| ≤ π(M +N)‖b‖∞. (3.29)

Since V (0) is the matrix of the discrete Fourier transform, we have

V (0)−1 =
1
N

V (0)′, (3.30)

which implies that

‖V (0)‖∞ = N,
∥∥∥V (0)−1

∥∥∥
∞
= 1. (3.31)

The proof is completed by (3.27a), (3.27b), (3.27c), (3.27d), (3.27e), (3.29), and (3.31).

Lemma 3.4. If θ is real, then

∣∣∣∣∣
1 − eiθ

iθ
+ 1

∣∣∣∣∣ ≤
1
2
|θ|. (3.32)
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Proof. If |θ| ≤ 3, we have (3.32) since the series in the following expansion is alternating.

∣∣∣eiθ − 1 − iθ
∣∣∣
2
= (cos θ − 1)2 + (sin θ − θ)2 = 2(1 − cos θ − θ sin θ) + θ2

= 2

[(
θ2

2
− θ4

4!
+
θ6

6!
− · · ·

)
− θ

(
θ − θ3

3!
+
θ5

5!
− · · ·

)]
+ θ2

= 2
[(

1
3!

− 1
4!

)
θ4 −

(
1
5!

− 1
6!

)
θ6 +

(
1
7!

− 1
8!

)
θ8 − · · ·

]

= 2
(

3
4!
θ4 − 5

6!
θ6 +

7
8!
θ8 + · · ·

)
≤ 1

4
θ4.

(3.33)

If |θ| > 3, we obtain (3.32) from

∣∣∣eiθ − 1 − iθ
∣∣∣
2 ≤ 2(2 + |θ|) + θ2 ≤ 1

4
θ4. (3.34)

3.3. Norm of Inverse of Vandermonde Matrix

The norms of inverses of Vandermondematrices were estimated by Gautschi [18, 19]. In some
estimations there, the equality holds if all base points are on the same ray through the origin.

Compared to (3.31), for a small perturbation x, a bound of ‖V (x)−1‖∞ is investigated in
the following lemma. Since the norm estimation of inverse of Vandermonde matrix must be
interesting, we separate the result in this subsection from other ingredients for Theorem 3.1.

Lemma 3.5. If ‖x‖∞ < 1/4π(2 + log cot(π/2N)), then

∥∥∥V (x)−1
∥∥∥
∞
≤ 2. (3.35)

Proof. Let I = [δkn] be the identity matrix and W = V (0)−1V (x) − I, whose entries are

Wkn =
1
N

1 − e−i2πxn

1 − ei(2π/N)(k−n−xn)
− δkn. (3.36)

Since eiθ − 1 = 2i sin(θ/2)eiθ/2, the off-diagonal entries satisfy the following

|Wkn| = 1
N

∣∣∣∣
sinπxn

sin(π/N)(k − n − xn)

∣∣∣∣ ≤
1
N

∣∣∣∣
πxn

sin(π/N)(k − n − xn)

∣∣∣∣. (3.37)
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The diagonal entries are estimated by the Cauchy mean value theorem as follows:

|Wkk| =
∣∣∣∣∣
1
N

1 − e−i2πbk

1 − e−i(2π/N)xk
− 1

∣∣∣∣∣ =
∣∣∣∣
1
N

sinπxk

sin(π/N)xk
e−i((N−1)/N)πxk − 1

∣∣∣∣

=

∣∣∣∣∣
cosπx′

k

cos(π/N)x′
k

e−i((N−1)/N)πxk − 1

∣∣∣∣∣, for some
∣∣x′

k

∣∣ ≤ |xk|,

≤
∣∣∣∣∣

cosπx′
k

cos(π/N)x′
k

e−i((N−1)/N)πxk − e−i((N−1)/N)πxk

∣∣∣∣∣ +
∣∣∣e−i((N−1)/N)πxk − 1

∣∣∣

≤
∣∣∣∣∣

cosπx′
k

cos(π/N)x′
k

− 1

∣∣∣∣∣ + π |xk| ≤ 3π |xk|.

(3.38)

Regarding summations of |Wkn|, the maximum occurs when k = N/2 ± 1 from the
symmetry of the sine function in (3.37). In both cases, we have

N−1∑
n=0

|Wkn| ≤ 3π |xk| + 2
N/2∑
m=1

1
N

∣∣∣∣
π‖x‖∞

sin(π/N)(m − ‖x‖∞)
∣∣∣∣ (3.39a)

≤ 3π |xk| + 2
N

π‖x‖∞
sin(π/N)(1 − ‖x‖∞)

+ 2‖x‖∞
∫π/2

π/N

1
sin t

dt (3.39b)

≤
(
4π + 2πlog cot

π

2N

)
‖x‖∞ ≤ 1

2
. (3.39c)

Since (3.39a), (3.39b), and (3.39c) imply ‖W ‖∞ ≤ 1/2, we establish the following:

∥∥∥V (x)−1
∥∥∥
∞
≤
∥∥∥V (x)−1V (0)

∥∥∥
∞

∥∥∥V (0)−1
∥∥∥
∞
=
∥∥∥V (x)−1V (0)

∥∥∥
∞

=
∥∥∥(I +W)−1

∥∥∥
∞
≤ 1

1 − ‖W‖∞
≤ 2.

(3.40)

4. Numerical Results

From the Biot-Savart law, we simulate the magnetic flux density Bz(n,m) induced by a
horizontal current through the Logan shape ρ as in Figure 2, where N = 60. We obtain the
simulated MR signals SC

d
(k, l) as depicted in Figure 3, through (3.1) with M = 32, δ = 0.



Journal of Applied Mathematics 13

0.25
0.2
0.15
0.1
0.05
0
−0.05
−0.1
−0.15
−0.2
−0.25

(a) Simulated Bz by transversal current

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Logan shape ρ

Figure 2: Simulated Bz and ρ.
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Figure 3: Simulated data SC
d
from Bz and ρ.

We note that the maximum of Bz(n,m) is about 1/4 in Figure 2, larger than suggested in
Theorem 3.1.

By discrete inverse Fourier transform for l, we transform SC
d
(k, l) into ŜC

d
(k,m) in (3.2).

Then, setting for each fixedm,

s(k) = ŜC
d (k,m), (4.1)

the Newton iterations in (3.9) generate xj with x0 = 0. The jth approximation B
j
z is done by

Bz(n,m)j = xj(n). (4.2)

The log of error maxn,m|Bz(n,m) − Bz(n,m)j | is given in Figure 4(a), which means
that the error decay is quadratic. In the Newton iterations in (3.9), we have to solve a
Vandermonde system for V (x), which may be consuming time or unstable. Instead of V (x)
in (3.7), we can fix V (0) and simplify the Newton iterations in (3.9). Then, the error decay is
reduced to be linear as in Figure 4(b).
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Figure 4: logmaxn,m|Bz(n,m) − Bz(n,m)j | error decay.
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