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To keep the resources renewable, a singular ecological-economic model is proposed for the
populations with harvesting and migration. The local stability and the dynamic behavior of the
model are studied. Singular induced bifurcation appears when economic interest is zero, which
is different from the ordinary differential models. In order to apply variable structure control
to eliminate these complex behaviors, the singular model is transformed into a single-input
and single-output model with parameter varying within definite intervals. And then, a variable
structure controller is designed to make the model stable. Finally, an inshore-offshore fishery
model is given to illustrate the proposed method, and some numerical simulations are shown
to demonstrate the control results.

1. Introduction

The management of renewable resources is important for the development of human and
society. In exploiting the biological resources, both the economic profit and the environmental
effects should be taken into account, which initiates a new research area: biomathematics.
Interactions of mathematics and biology promote the development of the biosciences greatly
in a certain extent. Since most of biological theories evolve rapidly, it is necessary to develop
some useful mathematical models to describe the consequences of these biological models.

Singular model as a branch of modern control theory can describe a class of practical
models more accurately. Compared with the ordinary differential models, singular models
exhibit more complicated dynamics, such as the impulse phenomenon. They have more
applications in power systems, aerospace engineering, chemical processes, social economic
systems, biological systems, network analysis, and so forth. With the help of the singular
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models for the power systems and bifurcation theory, complex dynamical behaviors of the
power systems have been extensively studied, which reveal the instability mechanism of
power systems [1–3]. Applications of singular models are also found in neural networks [4],
fault diagnosis [5, 6], robotics [7, 8] and epidemic [9–11], economics [12, 13], and chemistry
[14]. As far as the singular system theory is concerned, there are a few research results in
biology. Since a singular biological economics model with stage structure was established
to model the biological systems in [15], some singular biological models appeared [16–19].
These ideas are based on the economic theory [20]:

Net Economic Revenue = Total Revenue − Total Cost. (1.1)

This formula presents some solid preliminary on singular biological systems.
In biology, many mathematicians, ecologists, and economists are concerned with the

exploitation of renewable resources in recent years, and some results are achieved [21–24].
Though the harvesting can bring economic profit for people, the overexploitation may cause
the extinction of some populations. In order to prevent the population from damages, some
methods are introduced, such as, to raise taxes or to make the young population forbidden
to be harvested. We propose a singular ecological-economic model to model such a problem.
Singular model is often strongly nonlinear and unstable. In this case, one of control methods,
which are able to perform high-quality automatic control, is demanded.

Variable structure control is considered to be used in this paper. It is a flexible control
method to deal with some models with uncertain parameters and external disturbances.
The main advantage of this technique is that once the system state variables reach a sliding
surface, the structure of the feedback loop is adaptively altered to slide the state variables
along the sliding surface. Thereafter, the system response depends on the gradients of the
sliding surface and remains insensitive to parameter variations and external disturbances.
Variable structure control with sliding mode was first proposed by Emelyanov [25] and
was elaborated in the 1970s [26, 27]. In their pioneer works, variable structure controls are
used to handle some linear models, and then expanded to nonlinear models, multi-input
and multioutput models, discrete time models, infinite-dimensional models and stochastic
models [28–33]. In recent years, variable structure control is applied to a wide variety of
engineering fields successfully, such as robot control, flight control, motor control, and power
control [34–36].

The main contents of the paper are as follows. In Section 1, in order to prevent the
extinction of some populations, a singular ecological-economic model is proposed for the
populations with harvesting and migration. In Section 2, when the local stability and the
dynamic behavior for the model are discussed, singular induced bifurcation appears, and
a control method is demanded to eliminate this bifurcation. In Section 3, in order to apply
variable structure control, the singular model is transformed into a single-input and single-
output model with parameters varying within definite intervals. In Section 4, an inshore-
offshore model is given to illustrate the analysis results, and the simulations illustrate the
effectiveness of the proposed method.

2. Modeling

In order to model growth of the populations, numerous models have been introduced. The
generalized logistic growth model can provide an adequate approximation for the growth
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Figure 1: The migration between the harvesting permitted region and the harvesting forbidden region.

of the populations. However, if there is no harvesting, the populations would continue to
increase rapidly. Therefore, the harvesting is an effective measure to maintain the diversity of
species and protect the renewable resources. The equation of the harvested populations reads

dx

dt
= γx

(
1 − x

K

)
− qEx, (2.1)

where x is the number of population, γ is a positive constant which is called the intrinsic
growth rate, E is the harvesting effort, q is catch-ability coefficient, and K is usually the
environment carrying capacity or saturation level. Some papers studied the model (2.1)with
a constant effort E. But it is only suitable for some special case. In practice, the harvesting
effort E is usually time-varying. For convenience in calculation, the condition q = 1 is usually
assumed. If E > γ , a rapid collapse of the populations will occur. The extinction of population
is inevitable, and the ecological balance will be destroyed.

In order to keep the resources renewable and prevent the extinction of some
populations, the populations can be divided into two regions: Ω1 and Ω2. In region Ω1, the
harvesting is permitted, while the harvesting is forbidden in regionΩ2. If there is a difference
between region Ω1 and region Ω2, the migration can occur between two regions, which is
assumed to be proportional to the difference, and the proportional coefficient is positive. To
better understand relation of the populations between two regions, a concise schematic is
shown in Figure 1.

From Figure 1, it can be seen that the two regions are connected, and the population
can migrate freely between two regions. The number of population in region Ω1 is x1, and
x2 is the number of population in region Ω2. The ultimate aim in harvesting the biological
resources is to get economic profits and practical value. Generally, from the economic
aspect, we know that the harvesting behavior changes with many market factors. Therefore,
studying the relation between economic profits and the harvesting can help us better protect
sustainable resources. If considering the economic profits in the model (2.1), the following
mathematical model of the exploited population with protective region, called a singular
ecological-economic model, is proposed:

dx1
dt

= γx1
(
1 − x1

K1

)
− α(x1 − x2) − Ex1,

dx2
dt

= γx2
(
1 − x2

K2

)
+ α(x1 − x2),

0 =
(
px1 − c

)
E −m,

(2.2)
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where p is the unit price, c is the unit cost,m is the economic profit, and α > 0 is the migration
proportional coefficient between two regions. Considering the practical significance, p and
c are positive constants. K1 and K2 are the environment carrying capacity of Ω1 and Ω2,
respectively. The differential equations are the growth rate of the population in region Ω1

and Ω2. The algebraic equation is an economic model, which represents the relations of the
total income, the total cost, and the economic profits.

Remark 2.1. In the management of sustainable resources, the model (2.2) not only considers
the ecological balance but also includes the economic profits when the population is
harvested, which combines the biological control problems with the economic problems. The
model (2.2) provides an effective way for human being to maintain the ecological resources
sustainable when we get economic profit.

Considering the biological significance, the model (2.2) is discussed in the following
interval:

R3
+ =
{
χ = (x1, x2, E) | x1 ≥ 0, x2 ≥ 0, E ≥ 0

}
. (2.3)

Ifm = 0, the economic equilibrium occur, that is, the income is equal to the cost. When
the economic profit is zero, the population reaches the maximum harvesting effort, and it is
called the overfishing. In the exploitation of population resources, a collapse of the population
may occur.

Due to the limitation of the environment, the number of populations cannot exceed
the environment maximum carrying capacity. Otherwise, due to the crowded environment,
a large number of populations will die gradually. So the state variables and the parameters
satisfy the following conditions:

0 < x1 < K1max, 0 < x2 < K2max, 0 < K1 < K1max, 0 < K2 < K2max, 0 < E < γ,
(2.4)

where K1max and K2max are the maximum environment carrying capacities of Ω1 and Ω2,
respectively.

3. Local Stability Analysis

For convenience, the environment carrying capacity in Ω1 is assumed to be proportional to
that in Ω2, and the ratio is η, that is, ηK1 = K2 (η > 0). For the model (2.2), the equilibrium
points are the solutions for the equations:

γx1

(
1 − x1

K1

)
− α(x1 − x2) − Ex1 = 0,

γx2

(
1 − x2

ηK1

)
+ α(x1 − x2) = 0,

(
px1 − c

)
E −m = 0.

(3.1)
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By solving (3.1), we get two equilibrium points for the model (2.2):

p0 =
(
0, 0,−m

c

)
,

p1 = (x10, x20, E0) =

(
x0,

(
m

α
(
px0 − c

) + 1 − γ

α
+
γx0
αK1

)
x0,

m

px0 − c

)
.

(3.2)

Here x0 /= 0 is the root of the equation:

C0x
3 + C1x

2 + C2x + C3 = 0, (3.3)

where C0 = γp(K1α −K1γ + γ)
2, C1 = 2ηK1pmγ(K1α −K1γ + γ) − 2pcγ(K1α −K1γ + γ)

2, C2 =
γc2(K1α −K1γ + γ)

2−2ηK1cmγ(K1α−K1γ+γ)+αpη3K1
3m(α−γ)+K1

2m2γ ,C3 = −αη3K1
3mc(α−

γ).
When the coefficients Ci (i = 0, 1, 2, 3) satisfy certain conditions, there is a positive

solution for (3.3). Here, we suppose that the positive equilibrium point p1 exists. We are
interested in the local stability of the model (2.2) at the equilibrium points p0 and the positive
equilibrium point p1. In order to analyze the local stability of the model (2.2), let

F(X, E) =

⎛
⎜⎜⎜⎝

γx1

(
1 − x1

K1

)
− α(x1 − x2) − Ex1

γx2

(
1 − x2

ηK1

)
+ α(x1 − x2)

⎞
⎟⎟⎟⎠

G(X, E) =
(
px1 − c

)
E −m,

(3.4)

where X = [ x1 x2 ]. The local stability of the model (2.2) at the equilibrium points p0 is
discussed by the following theorem.

Theorem 3.1. If 0 < γ < α +m/2c and γ(γ − 2α) + (γ − α +m/c) > 0, the model (2.2) is locally
stable at p0.

Proof. p0 = (0, 0,−m/c) is an equilibrium point of the model (2.2). Since detDEG|p0 = −c/= 0,
Jacobian matrix of the model (2.2) at p0 is given by

J =
[
DXF −DEF(DEG)−1DXG

]∣∣∣
p0

=

⎡
⎣γ − α +

m

c
α

α γ − α

⎤
⎦, (3.5)

where DEG denote the derivative of the function G on the variable E.
The characteristic equation of Jacobian matrix (3.5) can be obtained:

λ2 −
[
2
(
γ − α) + m

c

]
λ + γ

(
γ − 2α

)
+
(
γ − α +

m

c

)
= 0. (3.6)
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If 0 < γ < α +m/2c and γ(γ − 2α) + (γ − α +m/c) > 0, the roots of the characteristic equation
(3.6) all have negative real part. Therefore, the model (2.2) is locally stable at p0.

In order to analyze the local stability at the positive equilibrium point p1, a linear
transformation χT = QST is used, where

χ =
[
x1 x2 E

]
, S =

[
u v E

]
, Q =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

− pE0

px0 − c 0 1

⎞
⎟⎟⎟⎟⎠
. (3.7)

Thus,DχG(χ0)Q = [ 0 0 px0−c ], u = x1, v = x2, E = pE0/(px0 − c) +E. The model (2.2) is
changed into the following form:

du

dt
= γu

(
1 − u

K1

)
− α(u − v) − Eu +

pE0

px0 − cu
2,

dv

dt
= γv

(
1 − v

ηK1

)
+ α(u − v),

0 =
(
pu − c)

(
E − pE0

px0 − cu
)
−m.

(3.8)

Now the local stability of the model (3.8) at the positive equilibrium point p1 will be
analyzed. First, the diffeomorphism ψ is defined as follows:

[
u v E

]T
= ψ
(
Z
)
= S0

T +U0Z +V0h
(
Z
)
, (3.9)

where U0 =
[ 1 0
0 1
0 0

]
, V0 =

[ 0
0
1

]
, Z = [ y1 y2 ]T , S0 = [ u0 v0 E0 ], h : R2 → R1 is a smooth mapping.

Jacobi matrix Dψ is a 3 × 1 real matrix.
Second, by differentiating G(ψ(Z)) = 0, the following equation is obtained:

DG(χ)Dψ
(
Z
)
= 0. (3.10)

Differentiating (3.9) and multiplying on the left by UT
0 , it can be obtained that:

UT
0Dψ

(
Z
)
= I2, (3.11)

where I2 is a 2 × 2 unit matrix. From (3.10) and (3.11), the following formula is gotten:

Dψ
(
Z
)
=

[
DG(S0)

UT
0

]−1[
0

I2

]
. (3.12)
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Furthermore, the following model is further obtained [37]:

dZ
dt

= UT
0f
(
ψ
(
Z
))

= UT
0Df

(
χ0

)[DG(S0)

UT
0

]−1[0
I2

]
+ Y
(
Z
)
, (3.13)

where Y (Z) = o(Z) (Z → 0+).
From the transformation above and (3.13), the coefficient matrix of linear model

corresponding to the model (3.8) is gotten as follows:

E(S0) =

(
DSf1(S0)

DSf2(S0)

)(
DsG(S0)

U0
T

)−1⎛
⎝

0 0
1 0
0 1

⎞
⎠

=

⎛
⎜⎜⎜⎝
γ − E0 − α − 2γu0

K1
+
2pE0u0
px0 − c α

α γ − α − 2γv0
ηK1

⎞
⎟⎟⎟⎠,

(3.14)

where u0 = x0, v0 = (m/α(px0 − c) + 1 − γ/α + γx0/αK1)x0, E0 = pE0/(px0 − c) + E0.
Thus, the characteristic equation of the matrix (3.14) is given by

λ2 +D1λ +D2 = 0, (3.15)

whereD1 = 2(α− γ) + (3pE0x0 +E0(p − c))/(px0 − c) + 2γx0/ηK1((m/α(px0 − c)) + 2− (γ/α) +
(γ/αK1)),D2 = [γ − α + (3pE0x0 + E0(p − c))/(px0 − c)][γ − α − (2γx0/ηK1)((m/α(px0 − c)) +
2 − (γ/α) + (γ/αK1))].

About the local stability of the model (2.2) at the positive equilibrium point p1, we
have the following theorem.

Theorem 3.2. For the model (2.2):

(a) if D1 > 0 and D2 > 0, the model (2.2) is locally stable at the positive equilibrium point p1;

(b) if D1 < 0 or D2 < 0, the model (2.2) is unstable at the positive equilibrium point p1.

Proof. The model (3.8) and the model (2.2) are isomorphic. The local stability of them is
discussed by the eigenvalues of the coefficient matrix E(S0). When D1 > 0 and D2 > 0, two
roots of the characteristic equation (3.15) all have negative real part. The model (3.8) and the
model (2.2) are all locally stable at the positive equilibrium point p1.

However, when D1 < 0 or D2 < 0, at least one of the eigenvalues of E(S0) has
nonnegative real part. We can conclude that the model (2.2) is unstable at the positive
equilibrium point p1. Thus, the proof is completed.
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To further study the dynamic behavior of the model (2.2), x0 is given a specified value.
If x0 = c/p, the positive equilibrium point of the model (2.2) is

p1(x10, x20, E0) =
(
c

p
,
γ − α + θ

2pγ
,
(
γ − α)

(
α

2cγ
+ 1
)
− γc

pK1
+
αθ

2cγ

)
, (3.16)

where θ =
√
(γ − α)2p2η2K1

2 + 4pηK1γαc. By analysis, we know that there is a bifurcation
at the positive equilibrium point p1 for the model (2.2), which is shown in the following
theorem.

Theorem 3.3. If γ − (γ − α + θ)/K1p − α/= 0, there is a singular induced bifurcation for the model
(2.2) at the positive equilibrium point p1, andm = 0 is a bifurcation value.

Proof. Let m be a bifurcation parameter for the model (2.2). x1 = c/p makes Δ = det[DEG] =
px1 − c = 0. If γ − (γ − α + θ)/K1p − α/= 0, the following three conditions are satisfied:

(i) trace
[
DEFadj(DEG)

(
Dx1G Dx2G

)]
p1

=
(−pEx1 0

0 0

)

p1

= −c(γ − α)
(

α

2cγ
+ 1
)
+
γc2

pK1
− αθ

2γ /
= 0;

(ii)
∣∣∣∣
DXF DEF
DXG DEG

∣∣∣∣
p0

=

∣∣∣∣∣∣∣∣∣∣

γ − 2γ
K1

x1 − α − E α −x1

α γ − 2γ
ηK1

x2 − α 0

pE 0 px1 − c

∣∣∣∣∣∣∣∣∣∣
p1

=

[
c
(
γ − α)

(
α

2cγ
+ 1
)
− γc2

pηK1
+
αθ

2γ

](
γ − γ − α + θ

K1p
− α
)
/= 0;

(iii)

∣∣∣∣∣∣

DXF DEF DmF
DXG DEG DmG
DXΔ DEΔ DmΔ

∣∣∣∣∣∣
p0

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ − 2γ
K1

x1 − α − E α −x1 0

α γ − 2γ
ηK1

x2 − α 0 0

pE 0 px1 − c −1
p 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
p1

= − c
p

(
γ − γ − α + θ

K1p
− α
)
/= 0.

(3.17)
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Thus, we can conclude that there exists a smooth curve in R3 which passes through the
positive equilibrium point p1, and it is transversal to the singular surface at the positive
equilibrium point p1. And we can get the following equations:

i = −trace[DEFadj(DEG)
(
Dx1G Dx2G

)]
p1

= c
(
γ − α)

(
α

2cγ
+ 1
)
− γc2

pK1
+
αθ

2γ
;

j = DmΔ − (DXΔ DEΔ
)(DXF DEF
DXG DEG

)−1(
DmF
DmG

)

= −(p 0 0
)

⎛
⎜⎜⎜⎜⎝

γ − 2γ
K1

x1 − α − E α −x1

α γ − 2γ
ηK1

x2 − α 0

pE 0 px1 − c

⎞
⎟⎟⎟⎟⎠

−1

p1

⎛
⎝

0
0
−1

⎞
⎠

=
1(

γ − α)(α/2cγ + 1
) − γc/pK1 + αθ/2cγ

.

(3.18)

From above we can get that i/j = c[(γ − α)(α/2cγ + 1) − γc/pK1 + αθ/2cγ]2. Obviously,
i/j > 0. According to Theorem 3 in [38], whenm passes through 0, one eigenvalue of matrix
J = DXF−DEF(DEG)

−1DXGmoves fromC− toC+ along the real axis by diverging through∞.
There is a singular induced bifurcation for the model (2.2), and the model turns to unstable.
The proof is completed.

Remark 3.4. When the economic profit is zero, it is called the overfishing in economics. One
eigenvalue of the model (2.2) is approaching to endless, and the impulse occurs in the model
(2.2). This would lead to the collapse of the population and destroy the ecological balance. It
is necessary to find an effective method to make that the population develop sustainably.

4. Controller Design

Variable structure control is often used to deal with some models with internal varying
parameters and external disturbances since it provides effective means to design robust state
feedback controllers. In this section, variable structure control is introduced to eliminate the
bifurcation behavior and ensure the system stable. This approach makes direct use of the
nonlinear model and the full biological state information. In order to facilitate the controller
design, differentiating the second differential equation in the model (2.2) and substituting
the other two equations into it, the model (2.2) is transformed into a second-order differential
equation [39]:

d2x2
dt2

+
(
α +

2γx2
K2

− γ
)
dx2
dt

− α2x2

=
K1pE

(
αγm − Ecαγ − α2m − α2cE − αmE) − αγm(m + cE + cE) − cα2γE2

K1p2E2
+
c

p
E.

(4.1)
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Equation (4.1) can be rewritten as a single-input and single-output model with the
parameters varying within definite intervals:

d2y

dt2
+ a1

dy

dt
+ a0y = b0u + β, (4.2)

where y = x2, u = E, a1 = α + 2γx2/K2 − γ , a0 = −α2, b0 = c/p, β = (K1pE(αγm−Ecαγ − α2m −
α2cE − αmE) − αγm(m + 2cE) − cα2γE2)/K1p

2E2.
Obviously, a0 and b0 are fixed, while a1 and β change with the parameters and the

variables. From the varying intervals (2.4), we can get the varying intervals of the coefficients
a1 and β:

α − γ < a1 < α + γ,

−cαγ − (α2 + α)m
p

< β <

(
αγ − α2)m

pγ
−
(
αγ + α2

)
c + αm

p
− αm

(
m + 2cγ

)

K1p2γ
− cα2γ

K1p2
.

(4.3)

In order to make the number of the population in protecting region Ω2 reach the
carrying capacity, let

e = K2 − y, (4.4)

where e is the error of y and K2. Here y is the number of population in Ω2, while K2 is the
carrying capacity of region Ω2.

Differentiating the formula (4.4) twice and considering the model (4.2), the following
equation is obtained:

d2e

dt2
+ a1

de

dt
+ a0e = −b0u +

(
a0K2 − β

)
. (4.5)

For the differential equation (4.5), a0K2 − β is considered as an external disturbance.
According to the transformation, the model (4.1) is considered as a linear uncertain system
with the control input. And then the model (4.5) is transformed into

de1
dt

= e2,

de2
dt

= −a0e1 − a1e2 − b0u + a0K2 − β,
(4.6)

where e1 = e.
The model (4.6) can be rewritten as a matrix form:

dw
dt

= Aw + Bu + CK2 +D, (4.7)

where w = [ e1 e2 ]T , A =
( 0 1
−a0 −a1

)
, B = [ 0 −b0 ]T , C = [ 0 a0 ]T , and D = [ 0 −β ]T .
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To stabilize the model (4.7), the variable structure controller is designed as

u = −(λ1e1 + λ2e2 + λ3K2)Sgn(δ(w)), (4.8)

where λi (i = 1, 2, 3) are switching coefficients and Sgn(δ(w)) is a sign function. δ(w) is called
sliding surface, which divides the phase plane into two regions. The function δ(w) contains
only endpoints of the trajectories of the model (4.7) coming from both sides of the surface
and is defined as

δ(w) = fe1 + e2, (4.9)

where f > 0 is a constant. To suppress the effect of the uncertainty and drive the trajectories of
the model (4.7) toward the sliding surface until intersection occurs, the following reachable
condition is established:

δ(w)
dδ(w)
dt

< 0, for δ(w)/= 0. (4.10)

That is

dδ(w)
dt

= f
de1
dt

+
de2
dt

=

⎧
⎨
⎩
(λ1 − a0)e1 +

(
f + λ2 − a1

)
e2 + (a0 + λ3)K2 < 0, δ(w) > 0

(−λ1 − a0)e1 +
(
f + λ2 − a1

)
e2 + (a0 − λ3)K2 > 0, δ(w) < 0.

(4.11)

According to the reachable condition (4.10), we get the variable structure controller
for the model (4.7):

u =

⎧
⎨
⎩
u+ = −(λ1e1 + λ2e2 + λ3K2), δ(w) > 0

u− = λ1e1 + λ2e2 + λ3K2, δ(w) < 0.
(4.12)

Using the controller u = u+ in the model (4.7), the controlled model is

⎡
⎢⎢⎣

de1
dt

de2
dt

⎤
⎥⎥⎦ =

[
0 1

λ1 − a0 λ2 − a1

][
e1

e2

]
+

[
0

a0 + λ3

]
K2 +

[
0

−β

]
. (4.13)

Let e′1 = e1 + (λ3 + a0)K2/(λ1 − a0) and e′2 = e2, then
⎡
⎢⎢⎢⎣

de′1
dt

de′2
dt

⎤
⎥⎥⎥⎦ =

[
0 1

λ1 − a0 λ2 − a1

][
e′1
e′2

]
+

[
0

−β

]
. (4.14)
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Obviously, the model (4.13) and the model (4.14) have the same state matrix M =[
0 1

λ1−a0 λ2−a1
]
. β is a bounded constant, and it does not influence the local stability of the

controlled model. Thus, we have the following theorem.

Theorem 4.1. If a0 − λ1 > 0, a1 − λ2 > 0, the model (4.7) can be stabilized by the controller u+.

Proof. When the model (4.7) is controlled by the controller u+, it is transformed into the linear
model (4.13). The characteristic equation of the state matrixM is

|λE −M| = λ2 − (λ2 − a1)λ − (λ1 − a0) = 0. (4.15)

According to the Routh-Hurwitz criterion, if a0 − λ1 > 0, a1 − λ2 > 0, two eigenvalues
for the state matrix M have negative real part. Therefore, the model (4.13) is locally stable.
That is to say, the model (4.7) can be stabilized by the controller u+.

If u = u− in the model (4.7), the controlled model is

⎡
⎢⎢⎣

de1
dt

de2
dt

⎤
⎥⎥⎦ =

[
0 1

−λ1 − a0 −λ2 − a1

][
e1

e2

]
+

[
0

a0 − λ3

]
K2 +

[
0

−β

]
. (4.16)

Let e′1 = e1 + (λ3 − a0)K2/(λ1 + a0) and e′2 = e2, then,

⎡
⎢⎢⎢⎣

de′′1
dt

de′′2
dt

⎤
⎥⎥⎥⎦ =

[
0 1

−λ1 − a0 −λ2 − a1

][
e′′1
e′′2

]
+

[
0

−β

]
. (4.17)

The model (4.16) and the model (4.17) also have the same state matrix N =[
0 1

−λ1−a0 −λ2−a1
]
. The transformation does not change the local stability of the model (4.16).

Furthermore, we have another theorem.

Theorem 4.2. If λ1 + a0 > 0, λ2 + a1 > 0, the model (4.7) can be stabilized by the controller u−.

Proof. When the model (4.7) is controlled by the controller u−, it is transformed into the linear
model (4.16). The characteristic equation of the state matrixN is

|λE −N| = λ2 − (λ2 + a1)λ − (λ1 + a0) = 0. (4.18)

According to the Routh-Hurwitz criterion, if λ1+a0 > 0, λ2+a1 > 0, two eigenvalues for
the state matrix N have negative real part. The model (4.16) is locally stable, and the model
(4.7) can be stabilized by the controller u−.
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From the condition (4.11), Theorems 4.1 and 4.2, we get the varying range of the
switching coefficients λi (i = 1, 2, 3):

λ1 ≥ max|−a0|, λ2 ≥ max
∣∣f − a1

∣∣, λ3 ≥ max|a0|. (4.19)

According to the condition δ(w) = 0 and dδ(w)/dt = 0, the equivalent control
on the sliding surface δ(w) = 0 can be obtained. If δ(w) = 0, there is a state variable
represented by the remaining state variables. From the condition Sgn(δ(w)) = 0, we
have

de1
dt

= −fe1. (4.20)

Remark 4.3. When applying variable structure control, the singular model is transformed
into a linear model with parameters varying within definite intervals. Since the sliding
surface can be designed as required and has nothing to do with the parameters and
disturbance, it makes the discontinuous control insensitive to internal parameter variations
and extraneous disturbance and decreases the chattering phenomenon. Variable structure
control can stabilize the nonlinear system effectively.

5. Simulations

Fishery production is an important aspect in human life. In order to guarantee the sustainable
development of the fishery, people have taken many necessary measures. Therefore, to study
the structure model for the inshore-offshore fishery is necessary. It is a good idea to divide
the population into two categories in keeping resources sustainable, a harvesting-permitted
category and a harvesting-forbidden category. Some inshore-offshore models in an aquatic
environment have ever been studied to keep the fishery sustainable [40–42]. But these papers
did not consider the economic profits that the fishery brings for people. In this paper, the
sustainable fishery and the economic interest are discussed for the inshore-offshore fishery
model.

The sea around Zhoushan is a famous fishing ground in Zhejiang province. The total
sea area is about more than 10800 km2. The area of the inshore region is about 3700 km2, and
the offshore region is about 7100 km2 [43]. The coiliaspp is a kind of fish, and it is about
1099 million in the whole sea area [44]. To protect the fishery resources, the coiliaspp in
the inshore region is permitted to be harvested, while the offshore region is forbidden. In
the inshore region, the density of the coiliaspp is greater than that in the offshore region
because of the environment effect. So the environment carrying capacity of the inshore
region is about 423 million, and the offshore environment carrying capacity is 676 million.
The intrinsic growth rate γ is assumed to be 0.2. When the number of the fish in two
regions are different, they migrate between two regions at the proportional α = 0.6. It is
supposed that they are sold at the average unit price p = 11, and its unit cost c is 6.
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Considering these conditions, the following singular ecological-economic model can be
established:

dx1
dt

= 0.2x1
(
1 − x1

423

)
− 0.6(x1 − x2) − Ex1,

dx2
dt

= 0.2x2
(
1 − x2

676

)
+ 0.6(x1 − x2),

0 = (11x1 − 6)E −m.

(5.1)

When the economic profit m varies, there are some complex dynamic behaviors for
the model (5.1), such as the singular induced bifurcation. When the economic profit m = 0,
the model (5.1) has a positive equilibrium point p∗(0.545, 0.818, 0.499). When economic profit
m = 0.001, there are two eigenvalues for the matrix J = DXF − DEF(DEG)

−1DXG, −1.2998
and −0.0002. The eigenvalues became −1.2998 and 0.0017 when the parameter m = −0.001.
It obvious that one eigenvalue remains constant, and the other eigenvalue moves from C−

to C+ along the real axis by diverging through ∞. It is called the overexploitation, and it
causes the extinction of the coiliaspp. In order to avoid such phenomena, a variable structure
controller is designed to make the coiliaspp in the offshore region reach the environment
carrying capacity 676 million. According to the varying range of the switching coefficients
(4.19), the variable structure controller is designed as follows:

u = −(10e1 + 76e2 + 15800)Sgn(δ(w)), (5.2)

where the sliding surface is chosen as δ(w) = 9.6e1 + e2. By controlling the harvesting effort
E, x2 reaches the environment carrying capacity 676 million inΩ2. Figure 2 shows the control
result of x1, x2, and E with variable structure control.

In Figure 2, when the harvesting effort E is controlled at 0.16 million, the number of
fish in region Ω2 reaches 675.2 million controlled by the controller u. Due to the migration
between Ω1 and Ω2, the coiliaspp in inshore region reaches 424.3 million accordingly. The
state variables stay in a stable situation, and the singular induced bifurcation is eliminated by
the controller u. In practical, we can regulate the harvesting behavior by the revenue to keep
the harvesting and the reproduction in balance. Therefore, the sustainable development of the
fishery can be realized by this controller. Further, we know that the corresponding nonlinear
singular ecological-economic model can be stabilized by variable structure control.

6. Conclusions

In this paper, the population is divided into the harvesting region and the protecting region,
in which the population can migrate between two regions. In harvesting the population
resources, when the economic interest and the environmental effects are taken into account,
a singular ecological-economic model is established. The local stability and the dynamic
behavior for this model are discussed. As the parameters changing, the singular model
undergoes the singular induced bifurcation. In order to apply variable structure control to
eliminate this complex behavior, the singular model is transformed into a linear single-
input and single-output model with parameters varying within definite intervals. Variable
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Figure 2: The state response of x1, x2, and E whenm = 1325 with the controller u.

structure control with sliding mode is designed to stabilize the model. An inshore-offshore
fishery model illustrates the analysis result. Some simulations show the effectiveness of the
control method.
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