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We introduce an alternative skew-slash distribution by using the scale mixture of the exponential
power distribution. We derive the properties of this distribution and estimate its parameter by
Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned
estimators and their mean square errors, and we provide an example on real data to demonstrate
the modeling strength of the new distribution.

1. Introduction

The Exponential Power (EP) distribution can be considered as a general distribution for
random errors. This distribution has the following density function

gX(x) =
1

2σp1/pΓ
(
1 + 1/p

) exp

(

−
∣∣x − μ

∣∣p

pσp

)

, −∞ < x < ∞, (1.1)

where −∞ < μ < ∞, σ > 0, and p > 1. The normal distribution is obtained from this
distribution when p = 2, whereas heavier (lighter) tail distributions are produced when p < 2
(p > 2). In particular, we obtain the double exponential distribution for p = 1 and the uniform
distribution for p → ∞. This model and its extensions have been studied by [1–7] and others.

Hill and Dixon [8] have given evidence that, in real applications, the distribution
of the data is often skew, while virtually all robust methods assume symmetry of the
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error distribution. Moreover, the distribution of real data is seldom so heavily tailed as
the ones employed in theoretical robustness studies. To handle both skewness and heavy
tails simulate, Azzalini [9] proposed the skew exponential power SEP(μ, σ, λ, p) distribution,
which has probability density function pdf

fX(x) =
2
σ
Φ

(

sign
(
x − μ

σ

)∣∣
∣
∣
x − μ

σ

∣
∣
∣
∣

p/2

λ

(
2
p

)1/2
)

g

(
x − μ

σ

)
, −∞ < x < ∞, (1.2)

where −∞ < μ, λ < ∞, σ > 0, and p > 1, Φ(·) is the cumulative distribution function of
the standard normal distribution and g(·) is the density function of EP with μ = 0, σ = 1 in
(1.1). The SEP distribution reduced to the EP distribution when λ = 0, to the Skew Normal
distribution, SN(μ, σ, λ) distribution (introduced by [10]) when p = 2, and to the normal
distribution when (λ, p) = (0, 2).

Another type of the skew-exponential power distribution proposed by Ferreira et al.
[11], denoted by SEP(μ, σ2, λ, ν) has pdf given by

fX(x) = 2
ν√

2νσΓ(1/2ν)
e−((x−μ)

2)
ν
/2σ2ν

φ

(
λ
x − μ

σ

)
, 0.5 < ν ≤ 1, (1.3)

which reduces to the skew-normal distribution when ν = 1. They provide an EM type
algorithm to estimate the parameters of this distribution. Since, the name of two distributions
are the same, we use NSEP(μ, σ2, λ, ν) for the second one.

In this paper, we introduce an EP location-scale mixture distribution. This distribution
provides useful asymmetric and heavy-tailed extensions of its symmetric counterparts for
robust statistical modeling of data sets involving distributions with heavy tails and skewness.

To this end, in Section 2, the location-scale mixture exponential power (LSMEP) dis-
tribution is introduced and some properties are given. A Maximum Likelihood and Bayesian
methods are constructed to estimate its parameters. In Section 3, in order to investigate the
performance of the proposed methods, we present some simulation studies and a real data
application.

2. Location-Scale Mixture Exponential Power Distribution

In this section we introduce the location-scale mixture exponential power distribution and
derive some distributional properties. We estimate its parameter by Maximum Likelihood
(ML) and Bayesian methods.

Definition 2.1. A random variable X has LSMEP distribution with location parameter μ, scale
parameter σ, skew parameter β, and shape parameter p, denoted byX ∼ LSMEP(μ, σ, p, β, α),
if

X = μ + V −1β + V −1/2σY, (2.1)

where −∞ < μ, β < ∞, σ > 0, p > 1, α > 0, and Y ∼ EP(0, 1, p) is independent of V ∼ beta(α, 1).



Journal of Applied Mathematics 3

0

0.2

0.4

0.6

0.8

0 5−10 −5

(a)

0

0.2

0.4

0.6

0.8

0 5 10−5

(b)

Figure 1: (a) Density function of the LSMEP(0, 1, 1,−2, 2) (solid line), SEP(0, 1,−2, 1) (dashed line), and
SN(0, 1,−2) (dashed-dotted line). (b) Density function of the LSMEP(0, 1, 1, 3, 2) (solid line), SEP(0, 1, 3, 1)
(dashed line), and SN(0, 1, 3) (dashed-dotted line).

Using (1.1) and independence of Y and V , the pdf of random variable X in (2.1) can
be easily shown to be

fX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

2σp1/pΓ
(
1 + 1/p

)
∫1

0
vα−1/2 exp

(

−
∣∣x − μ − v−1β

∣∣pvp/2

pσp

)

dv, x /=μ, β /= 0,

α

2σp1/pΓ
(
1 + 1/p

)
∫1

0
vα−1/2 exp

(

−
∣∣β
∣∣p

pσpvp/2

)

dv, x = μ, β /= 0,

α

2σp1/pΓ
(
1 + 1/p

) , x = μ, β = 0,

(2.2)

where −∞ < x < ∞.
We draw the density curve of LSMEP, SEP, and SN distributions in Figure 1. We see

that the LSMEP distribution is more skew and heavier than the other distributions.
We draw the density curve of LSMEP(0, 1, p, β, 2) for different values of p and β in

Figures 2(a) and 2(b), respectively. We can see that when p gets larger, the curves becomes
more fatter, and when β gets larger, the curve becomes more skew. Also we draw the density
curve of LSMEP(0, 1, 2, 2, α) for α = 0.5, 1, 2 in Figure 2(c). We see that when α gets larger, the
curve becomes more kurtosis.

2.1. Properties of the Distribution

Some properties of LSMEP distribution are given in the following theorems.

Theorem 2.2. If X ∼ LSMEP(μ, σ, p, β, α) and T = aX + b, a, b ∈ R, then T ∼ LSMEP(aμ +
b, |a|σ, p, aβ, α).
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Figure 2: (a) Density function of the LSMEP(0, 1, p, 2, 2) for p = 1 (dashed line), p = 5 (dashed-dotted
line), and p = 10 (solid line). (b) Density function of the LSMEP(0, 1, 2, β, 2) for β = −3 (solid line), β =
−1 (dashed line), β = 1 (long-dashed line), and β = 3 (dashed-dotted line). (c) Density function of the
LSMEP(0, 1, 2, 2, α) for α = 0.5 (dashed line), α = 1 (dashed-dotted line), and α = 2 (solid line).

Theorem 2.3. If X ∼ LSMEP(μ, σ, p, β, α) and V ∼ beta(α, 1), then X | V = v ∼ EP(μ +
v−1β, σ/

√
v, p).

Theorem 2.4. If X | V = v ∼ EP(v−1β, 1/
√
v, p) and V ∼ beta(α, 1), then X ∼

LSMEP(0, 1, p, β, α).

The proof of Theorems 2.2, 2.3, and 2.4, are easily derived from (1.1) and (2.2). From
these theorems we can generate LSMEP deviates.

Theorem 2.5. The nth moment of standardized LSMEP distribution (i.e., when μ = 0, σ = 1) is

μn = E(Xn) =
βn

Γ
(
1/p
)

[n/2]∑

k=0

(
n2k
)
β−2k
(
1 +

n − k

2(α − (n − k))

)
p2k/pΓ

(
2k + 1

p

)
, α > n − k.

(2.3)
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Proof. Let Y ∼ EP(0, 1, p) and independent of V ∼ beta(α, 1). Then E(V −(k+n)/2) = 2α/(2α −
(k + n)) and the nth moment of EP calculated by [6]. So the result is followed by a simple
calculation.

From Theorem 2.5 we have

E(X) =
αβ

α − 1
, α > 1,

V (X) =
α

α − 2
β2 +

α

α − 1
p2/p

Γ
(
3/p
)

Γ
(
1/p
) − α2

(α − 1)2
β2, α > 2.

(2.4)

Also, the population skewness and kurtosis are easily derived.

2.2. Maximum Likelihood Estimation

LetX1, . . . , Xn be a random sample from LSMEP(μ, σ, p, β, α)with the observations x1, . . . , xn.
We want to find the ML estimates of the parameters of this distribution. From (2.2) the log-
likelihood function is given by

l(θ) = c + n lnα − n lnσ − n ln
(
p1/pΓ

(
1 +

1
p

))

+
n∑

i=1

ln
∫1

0
vα−1/2 exp

(
−vp/2

∣∣xi − μ − v−1β
∣∣p

pσp

)

dv.

(2.5)

Suppose p and β are known. Differentiate (2.5)with respect to μ, σ, α, and equating the results
to zero, we get the following system of equations,

μ̂(k+1) =

∑n
i=1

(
xiω0

(
ŝ
(k)
i,0,0

)
− βω1

(
ŝ
(k)
i,0,0

))

∑n
i=1 ω0

(
ŝ
(k)
i,0,0

) ,

σ̂2(k+1) =

∑n
i=1

((
xi − μ̂(k+1))2ω0

(
ŝ
(k)
i,1,0

)
+ β2ω2

(
ŝ
(k)
i,1,0

)
− 2β

(
xi − μ̂(k+1))ω1

(
ŝ
(k)
i,1,0

))

n
,

α̂(k+1) = − n
∑n

i=1 ω3

(
ŝ
(k)
i,1,1

) , k = 0, 1, 2, . . . ,

(2.6)
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where

ŝ
(k)
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ŝ
(k)
i,j,m

)
=

∫1
0 v

α+((p−1)/2)−l
(
ŝ
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vŝ
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)
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0 v

α−1/2 exp
(
−
(√

vŝ
(k)
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)p
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, l = 0, 1, 2, j,m = 0, 1, p > 1.

(2.7)

By choosing the initial values μ(0), σ(0), α(0), and iterating (2.6) until convergence, we can find
the ML estimates.

2.3. Bayesian Method

In this section, we implement the Bayesian methodology using Markov Chain Monte Carlo
(MCMC) techniques for estimation of the parameters of the LSMEP distribution. Let x =
(x1, x2, . . . , xn), then the likelihood function of Θ = (μ, σ, p, β, α) is given by

L(Θ | x) ∝
(

α

σp1/pΓ
(
1 + 1/p

)

)n n∏

i=1

∫1

0
vα−1/2 exp

(

−
∣∣xi − μ − v−1β

∣∣pvp/2

pσp

)

dv. (2.8)

Now, to find the posterior distribution, we need to specify the prior distribution of the
unknown parameters Θ. By considering a normal prior N(μai , σ

2
ai) i = 1, 2 on both μ and β

and a truncated normal (on a (0,∞)) prior N(μbi , σ
2
bi
)I(0,∞) i = 1, 2 on both σ and α and a

truncated normal (on a (1,∞)) prior N(μc, σ
2
c )I(1,∞) on p, and without loss of generality the

independence of the parameters, that is,

π(Θ) = π
(
μ
)
π(σ)π

(
p
)
π
(
β
)
π(α). (2.9)

The posterior distribution of Θ given x can be obtained from (2.8) and (2.9) as follows

π(Θ | x) ∝
(

α

σp1/pΓ
(
1 + 1/p

)

)n n∏

i=1

[∫1

0
vα−1/2 exp

(

−
∣∣xi − μ − v−1β

∣∣pvp/2

pσp

)

dv

]

π(Θ).

(2.10)

Distribution (2.10) does not have a closed form. Hence for doing inference, MCMC algorithm
such as the Metropolis-Hasting can be used to generate samples of the posterior distribution
of the parameters. We present the following general scheme of sampling.
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(1) Set t = 0 and get starting values for the parameters Θ(t) = (μ(t), σ(t), p(t), β(t), α(t)).

(2) For t = 1, 2, . . .

(i) generate Θ̃ from q(Θ | Θ(t−1)),
(ii) compute

r =
L
(
Θ̃ | x

)
π
(
Θ̃
)

L
(
Θ(t−1) | x)π(Θ(t−1)) ,

(2.11)

(we take q(·) based on the symmetric function.)

(iii) generate u from U[0, 1],

if r < u then Θ(k) = Θ̃, else Θ(t) = Θ(t−1).

(3) Set t = t + 1 and return 2 until convergence is achieved.

2.4. The Observed Information Matrix

In this section we evaluate the observed informationmatrix of the LSMEP distribution, which
is defined by

J0
(
Θ | y) = −∂

2l
(
Θ | y)

∂Θ∂ΘT
. (2.12)

Under some regularity conditions, the covariance matrix of the maximum likelihood
estimates Θ̂ = (μ̂, σ̂, p̂, β̂, α̂) can be approximated by the inverse of J0(Θ | y). The observed
information matrix can be obtained as follows

J0
(
Θ̂ | y

)
=

n∑

i=1

tit
T
i , (2.13)

where

t̂i =
∂
(
log f

(
yi; θj

))

∂θj
, j = 1, 2, 3, 4, 5, (2.14)

see [12, 13].
Now, we consider t̂i which is partitioned into components corresponding to all the

parameters in Θ as

t̂i =
(
t̂i,μ, t̂i,σ , t̂i,p, t̂i,β, t̂i,α

)T
, (2.15)

where

t̂i,θj =
∂ ln f

(
yi;Θ

)

∂θj
, j = 1, 2, 3, 4, 5. (2.16)
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We define

I1 =
∫∞

0
v1/p lnv exp(−v)dv,

I2i(u) =
∫1

0
vα−u/2 exp
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−
∣
∣xi − μ − v−1β

∣
∣pvp/2

pσp

)

dv,

Iv2i(u) =
∫1

0
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−
∣
∣xi − μ − v−1β

∣
∣pvp/2

pσp

)
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∫1
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vα+(p−u1)/2

∣
∣
∣xi − μ − v−1β

∣
∣
∣
p−u2

exp

(

−
∣
∣xi − μ − v−1β

∣
∣pvp/2

pσp

)

dv,

Iv3i(u1, u2) =
∫1

0
vα+(p−u1)/2 lnv

∣∣∣xi − μ − v−1β
∣∣∣
p−u2

exp

(

−
∣∣xi − μ − v−1β

∣∣pvp/2

pσp

)

dv,

Ix,v3i (u1, u2) =
∫1

0
vα+(p−u1)/2 ln

∣∣∣xi − μ − v−1β
∣∣∣
∣∣∣xi − μ − v−1β

∣∣∣
p−u2

× exp

(

−
∣∣xi − μ − v−1β

∣∣pvp/2

pσp

)

dv.

(2.17)

After some algebraic calculation, we obtain

∂

∂μ

(
f
(
yi;Θ

))
=

α

2σp+1p1/pΓ
(
1 + 1/p

)
[(
xi − μ

)
I3i(1, 2) − βI3i(3, 2)

]
,

∂

∂σ

(
f
(
yi;Θ

))
=

α

2σ2p1/pΓ
(
1 + 1/p

)
[
1
σp

I3i(1, 0) − I2i(1)
]
,

∂

∂p

(
f
(
yi;Θ

))
=

α

2σp1+1/pΓ
(
1 + 1/p

)

[
1

pΓ
(
1 + 1/p

)I1I2i(1) −
(
1 − ln p

)

p
I2i(1) − 1

σp
Ixi

3i (1, 0)

− 1
2σp

Iv3i(1, 0) +
1

σpp
I3i(1, 0) +

lnσ
σp

I3i(1, 0)

]

,

∂

∂β

(
f
(
yi;Θ

))
=

α

2σp+1p1/pΓ
(
1 + 1/p

)
[(
xi − μ

)
I3i(3, 2) − βI3i(5, 2)

]
,

∂

∂α

(
f
(
yi;Θ

))
=

1
2σp1/pΓ

(
1 + 1/p

)
[
I2i(1) + αIv2i(1)

]
.

(2.18)

In the next section we use the above techniques to estimate the parameters.
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2.5. Sensitivity Analysis

In this section, we perform sensitivity analysis to detect observations that under small
perturbation of the model exert great influence on the maximum likelihood estimators. The
best known perturbation schemes are based on case deletion in which the effects are studied
of completely removing cases from the analysis by metrics such as the likelihood distance
and Cook’s distance (see [14]). In this paper, we use the classical measures, namely, Cook
distance and the likelihood displacement.

Let Θ̂(i) be the ML estimate of Θ without the ith observation in the sample. To assess
the influence of the ith case on the ML estimate Θ̂, the basic idea is to compare the difference
between Θ̂(i) and Θ̂. If deletion of a case seriously influences the estimates, more attention
should be paid to that case. Hence, if Θ̂(i) is far from Θ̂, then the ith case is regarded as an
influential observation. A first measure of global influence is defined as the standardized
norm of Θ̂(i) − Θ̂, namely, the generalized Cook distance

GDi(Θ) =
(
Θ̂(i) − Θ̂

)T[−L̈(Θ)
](

Θ̂(i) − Θ̂
)
, (2.19)

where −L̈(Θ) = ∂2L(Θ)/∂Θ∂ΘT is the observed information matrix (in Θ = Θ̂ point)
presented in Section 2.4. Another measure of the difference between Θ̂(i) − Θ̂ is the likelihood
distance

LDi(Θ) = 2
(
L
(
Θ̂
)
− L
(
Θ̂i

))
. (2.20)

In the next section we perform sensitivity analysis to illustrate the usefulness of the
proposed methodology.

3. Applications

In this section, we present two examples of application of LSMEP distribution. The first one
is the two small simulation studies and the other is two statistical analysis of real data sets.

3.1. Small Simulation Studies

We perform a small simulation study to investigate the ML estimators that were proposed in
Section 2.2. We first generate 100 samples of different sizes from LSMEP distribution for fixed
p and β parameters. We compute the ML estimates of μ, σ, and α by the iteration method that
was illustrated in Section 2.2, which we denote by μ̂(i), σ̂(i), and α̂(i), i = 1, 2, . . . , 100. Then the
mean and mean square error (MSE) of these values are reported as the estimates and MSE.
For example, μ̂ = (1/100)

∑100
i=1 μ̂(i) and MSE(μ̂) = (1/100)

∑100
i=1(μ̂(i) − μ)2. The estimates and

the MSEs are given in Table 1. This table shows that when the sample size increase, the MSE
of estimates μ̂, σ̂, and α̂ convergence to zero. A similar result was happened for the bias of
these estimators.

The second small simulation study is the performance of the Bayesianmethod that was
proposed in Section 2.3. We generate 100 samples of sample size 100 from LSMEP(0,1,1.5,1,3),
LSMEP(-1,2,3.5,-5,5.5), and LSMEP(2,3,4.5,3,7). Then we compute the Bayes estimates of the
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Table 1: Estimates of the parameters by choosing 100 samples of sizes n = 50, 100, 200, and 500 from the
LSMEP distribution with μ = 1, σ = 2, α = 5, and (β, p) = (1.5, 1.5), (−3, 2.5), (5.5, 3.5).

n μ̂ MSE(μ̂) σ̂ MSE(σ̂) α̂ MSE(α̂)
(β, p) = (1.5, 1.5)

50 0.8889 0.1437 1.9073 0.0796 4.4925 2.0219
100 0.9095 0.0814 1.9181 0.0445 4.4072 1.6825
200 1.0248 0.0259 1.9685 0.0088 4.7590 0.5509
500 1.0422 0.0230 1.9694 0.0065 4.5369 0.5505

(β, p) = (−3, 2.5)
50 1.0597 0.1671 1.9881 0.0497 5.6578 3.8411
100 1.0795 0.0496 1.9984 0.0137 4.8799 0.3877
200 1.0377 0.0433 2.0086 0.0192 5.3394 2.1051
500 1.0137 0.0309 2.0009 0.0121 5.1260 0.4680

(β, p) = (5.5, 3.5)
50 0.9072 0.0247 1.9727 0.0073 4.8450 1.3445
100 0.9309 0.1365 1.9610 0.0402 4.9806 0.1360
200 0.9520 0.0989 1.9170 0.0624 5.0175 0.8248
500 0.9571 0.0712 1.9982 0.0274 4.8970 0.7012

Table 2: Bayesian estimation results for parameters of LSMEP distribution.

μ σ p β α

Real parameter 0 1 1.5 1 3
Estimated parameter 0.0662 0.9295 1.7012 0.8850 2.8903
MSE 0.0043 0.0049 0.0405 0.0132 0.0120
Real parameter −1 2 3.5 −5 5.5
Estimated parameter −0.8894 1.8922 3.3992 −4.9062 5.4144
MSE 0.0122 0.0117 0.0101 0.0087 0.0073
Real parameter 2 3 4.5 3 7
Estimated parameter 2.0489 2.9102 4.7143 2.9061 6.9099
MSE 0.0024 0.0081 0.0459 0.0088 0.0081

parameters for each sample by MCMCmethod and derive the final estimates and their MSEs
similar to the method that used in ML estimation. The estimated parameters and their MSEs
are given in Table 2.

3.2. Real Data Application

We use the Australian athletes dataset analyzed in [15–19]. The dataset contains several
variables measured on 202 athletes. We consider the variable red cell count (rcc). They
note skewness on the left as well as heavy-tail behavior. We fit a LSMEP(μ, σ, p, β, α), an
SEP(μ, σ, λ, p) and an NSEP(μ, σ2, λ, υ) distribution to this data set. In the first method we use
the optim routine in R software to find the maximum likelihood estimates of the parameters
for LSMEP and SEP distributions and we use the EM type algorithm for the estimated
parameters for NSEP distribution. In the second method we use the Bayesian estimates of
the parameters. The results are shown in Tables 3 and 4. These tables contain the estimates
of the parameters of the LSMEP, SEP, and NSEP distributions, besides their corresponding
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Table 3: Maximum likelihood estimates for fitting LSMEP(μ, σ, p, β, α), SEP(μ, σ, λ, p) distribution, and
NSEP(μ, σ2, λ, υ) distribution to the rcc data.

Parameter MLE of LSMEP Se MLE of SEP Se MLE of NSEP Se

μ 4.3800 0.2932 4.7689 0.1442 4.7514 0.3029

σ 0.5001 0.0424 0.4752 0.0346 0.4580 0.0326

λ — — −0.1447 0.4268 −0.0898 0.8288

υ — — — — 0.9996 0.0511

p 2.6900 0.8405 2.2041 0.2545 — —

β 0.2811 0.2611 — — — —

α 7.4701 0.6649 — — — —

AIC 260.1862 264.0664 264.9651

EDC 264.3988 267.4365 268.3352

Table 4: Bayesian estimates for fitting LSMEP(μ, σ, p, β, α), SEP(μ, σ, λ, p) distribution, and NSEP(μ, σ2,
λ, υ) distribution to the rcc data.

Parameter
Bayes

estimates of
LSMEP

Se
Bayes

estimates of
SEP

Se
Bayes

estimates of
NSEP

Se

μ 4.3310 0.2211 4.7767 0.1446 4.7567 0.0814

σ 0.4594 0.0374 0.4788 0.0361 0.4588 0.0332

λ — — −0.1224 0.4274 −0.0938 0.2028

υ — — — — 0.9106 0.0455

p 2.7019 0.6869 2.3339 0.2539 — —

β 0.3076 0.1910 — — — —

α 7.4884 0.6246 — — — —

AIC 256.1897 264.3211 316.9519

EDC 260.4024 267.6912 320.3221

standard errors (Se), computed via the information-based method presented in Section 2.4
for the LSMEP distribution. We used the Hessian matrix in optim routine for computed Se
of parameters of SEP distribution and the Se for NSEP distribution computed by [11]. For
comparing the models, we also computed the AIC [20] and EDC [21] criteria. From these
criteria and Figures 3 and 4, we see that LSMEP distribution has a better fit than the others to
this dataset.

3.3. Sensitivity Analysis

We use the results obtained through simulated and real data set to illustrate the advantage of
the proposed methodology.
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Figure 3: Histogram of rcc data set with fitted LSMEP(μ, σ, p, β, α) distribution (solid line), SEP(μ, σ, λ, p)
distribution (dashed line), and NSEP(μ, σ2, λ, υ) distribution (dashed-dotted line) by method of MLE.
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Figure 4: Histogram of rcc data set with fitted LSMEP(μ, σ, p, β, α) distribution (solid line), SEP(μ, σ, λ, p)
distribution (dashed line), and NSEP(μ, σ2, λ, υ) distribution (dashed-dotted line) by method of Bayesian.

3.3.1. Simulated Data

We perform a simulation study to investigate the empirical performance of the proposed
methods in Section 2.5. We generate 4 samples of 100 size from LSMEP distribution for fixed
p and β parameters. Now we consider the following atypical points

X∗
i =

{
Xi + a, i = 5, 30, 70,
otherwise, otherwise,

(3.1)
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Figure 5: (a) Index plot of GDi for case weights perturbation for simulated data. (b) Index plot of LDi for
case weights perturbation for simulated data.
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Figure 6: (a) Index plot of GDi for case weights perturbation for rcc data. (b) Index plot of LDi for case
weights perturbation for rcc data.

where a = 6. Then we compute Θ̂ = (μ̂, σ̂, α̂) which is the ML estimate of Θ with X∗ =
(X∗

1 , . . . , X
∗
n) sample and Θ̂i which is the ML estimate of Θ without the ith observation in

X∗. We compute the generalized Cook distance and likelihood distance that was proposed
in Section 2.5. Figure 5 depicts the index plot of GDi and LDi for case weights perturbation.
In Figures 5(a) and 5(b) we see that for all the perturbation schemes considered, the atypical
points 5, 30, and 70 were correctly picked up indicating that the methodology works very
well when suspicious points are presented in the data set.

3.3.2. rcc Dataset

In this section, we use the real data set to find the points which are influential in parameters
estimation. Let Θ̂ be the ML estimate of Θ in rcc data and let Θ̂i be the ML estimate of Θ
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without the ith observation, then we compute the GDi and LDi as diagnostics for global
influence. For the case deletion diagnosis, the measures GDi and LDi presented in Figures
6(a) and 6(b), respectively, indicate individual 55, 161, 166, 174, and 181 as influential. Note
that the individual 161 and 174 are very influential.
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