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Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR). In
this paper, an optimal control model of distributed parameter systems (DPSs) for polymer injection
strategies is established, which involves the performance index as maximum of the profit, the
governing equations as the fluid flow equations of polymer flooding, and the inequality constraint
as the polymer concentration limitation. To cope with the optimal control problem (OCP) of this
DPS, the necessary conditions for optimality are obtained through application of the calculus of
variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the
computation of optimal injection strategies. The numerical results of an example illustrate the
effectiveness of the proposed method.

1. Introduction

It is of increasing necessity to produce oil fields more efficiently and economically because of
the ever-increasing demand for petroleum worldwide. Since most of the significant oil fields
are mature fields and the number of new discoveries per year is decreasing, the use of EOR
processes is becoming more and more imperative. At present, polymer flooding technology
is the best method for chemically EOR [1]. It could reduce the water-oil mobility ratio and
improve sweep efficiency [2–5].

Because of the high cost of chemicals, it is essential to optimize polymer injection
strategies to provide the greatest oil recovery at the lowest cost. The optimization procedure
involves maximizing the objective function (cumulative oil production or profit) from
a polymer flooding reservoir by adjusting the injection concentration. One way of solving
this problem is direct optimization with the reservoir simulator. Numerical models are
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used to evaluate the complex interactions of variables affecting development decisions,
such as reservoir and fluid properties and economic factors. Even with these models, the
current practice is still the conventional trial and error approach. In each trial, the polymer
concentration of an injection well is selected based on the intuition of the reservoir engineer.
This one-well-at-a-time approach may lead to suboptimal decisions because engineering and
geologic variables affecting reservoir performance are often nonlinearly correlated. And the
problem definitely compounds when multiple producers and injectors are involved in a field
development case. The use of the optimal control method offers a way out.

The optimal control method has been researched in EOR techniques in recent years.
Ramirez et al. [6] firstly applied the theory of optimal control to determine the best possible
injection strategies for EOR processes. Their study was motivated by the high operation costs
associated with EOR projects. The objective of their study was to develop an optimization
method to minimize injection costs while maximizing the amount of oil recovered. The
performance of their algorithm was subsequently examined for surfactant injection as an
EOR process in a one-dimensional core flooding problem [7]. The control for the process was
the surfactant concentration of the injected fluid. They observed a significant improvement
in the ratio of the value of the oil recovered to the cost of the surfactant injected from 1.5
to about 3.4. Optimal control was also applied to steam flooding by Liu et al. [8]. They
developed an approach using optimal control theory to determine operating strategies to
maximize the economic attractiveness of steam flooding process. Their objective was to
maximize a performance index which is defined as the difference between oil revenue and
the cost of injected steam. Their optimization method also obtained significant improvement
under optimal operation. Ye et al. [9] were involved in the study of optimal control of
gas-cycling in condensate reservoirs. It was shown that both the oil recovery and the total
profit of a condensate reservoir can be enhanced obviously through optimization of gas
production rate, gas injection rate, and the mole fractions of each component in injection gas.
Daripa et al. [10–15] researched the basic physical mechanisms that contribute to poor
oil recovery by EOR technologies and how to individually control each of these physical
mechanisms. Brouwer and Jansen [16] and Sarma et al. [17] used the optimal control
theory as an optimization algorithm for adjusting the valve setting in smart wells of water
flooding. The water flooding scheme that maximized the profit was numerically obtained by
combining reservoir simulation with control theory practices of implicit differentiation. They
were able to achieve improved sweep efficiency and delayedwater breakthrough by dynamic
control of the valve setting.

For the previous work on optimal control of polymer flooding, Guo et al. [18] applied
the iterative dynamic programming algorithm to solve the OCP of a one-dimensional core
polymer flooding. However, the optimal control model used in their study is so simple that
it is not adapted for practical oilfield development. As a result of the complicated nature
of reservoir models with nonlinear constraints, it is very tedious and troublesome to cope
with a large number of grid points for the state variables and control variables. To avoid
these difficulties, Li et al. [19] and Lei et al. [20] used the genetic algorithms to determine
the optimal injection strategies of polymer flooding and the reservoir model equations were
treated as a “black box.” The genetic algorithms are capable of finding the global optimum on
theoretical sense, but, as Sarma et al. [17] point out, they require tens or hundreds of thousand
reservoir simulation runs of very large model and are not able to guarantee monotonic
maximization of the objective function.

In this paper, an optimal control model of DPS for polymer flooding is established
which maximizes the profit by adjusting the injection concentration. Then the determination
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of polymer injection strategies turns to solve this OCP of DPS. Necessary conditions for
optimality are obtained by Pontryagin’s weak maximum principle. A gradient numerical
method is presented for solving the OCP. Finally, an example of polymer flooding project
involving a heterogeneous reservoir case is investigated and the results show the efficiency
of the proposed method.

2. Mathematical Formulation of Optimal Control

2.1. Performance Index

Let Ω ∈ R2 denote the domain of reservoir with boundary ∂Ω, n be the unit outward normal
on ∂Ω, and (x, y) ∈ Ω be the coordinate of a point in the reservoir. Given a fixed final time
tf , we set Ψ = Ω × [0, tf], Γ = ∂Ω × [0, tf], and suppose that there exist Nw injection wells
and No production wells in the oilfield. The injection and production wells are located at
Lw = {(xwi, ywi) | i = 1, 2, . . . ,Nw} and Lo = {(xoj , yoj) | j = 1, 2, . . . ,No}, respectively. This
descriptive statement of the cost functional must be translated into a mathematical form to
use quantitative optimization techniques. The oil value can be formulated as

∫ tf

0

∫∫
Ω
ξo
(
1 − fw

)
qoutdσ dt, (2.1)

where ξo is the cost of oil per unit mass (104 $/m3), fw(x, y, t) is the fractional flow of water,
and qout(x, y, t) is the flow velocity of production fluid (m/day). We define qout(x, y, t) ≥ 0 at
(x, y) ∈ Lo and qout(x, y, t) ≡ 0 at (x, y) /∈ Lo.

The polymer cost is expressed mathematically as

∫ tf

0

∫∫
Ω
ξpqincpindσ dt, (2.2)

where ξp is the cost of oil per unit volume (104 $/m3), cpin(x, y, t) is the polymer concentration
of the injection fluid (g/L), and qin(x, y, t) is the flow velocity of injection fluid (m/day). We
define qin(x, y, t) ≥ 0 at (x, y) ∈ Lw and qin(x, y, t) ≡ 0 at (x, y) /∈ Lw.

The objective functional is, therefore,

max J =
∫ tf

0

∫∫
Ω

[
ξo
(
1 − fw

)
qout − ξpqincpin

]
dσ dt. (2.3)

2.2. Governing Equations

The maximization of the cost functional J given by (2.3) is not totally free but is constrained
by the system process dynamics. The governing equations of the polymer flooding process
must therefore be developed to describe the flow of both the aqueous and oil phases through
the porous media of a reservoir formation. The equations used in this paper allow for the
adsorption of polymer onto the solid matrix in addition to the convective and dispersive
mechanisms of mass transfer. Let p(x, y, t), Sw(x, y, t) and cp(x, y, t) denote the pressure,
water saturation, and polymer concentration of the oil reservoir, respectively, at a point
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(x, y) ∈ Ω and a time t ∈ [0, tf], then p(x, y, t), Sw(x, y, t), and cp(x, y, t) satisfy the following
partial differential equations (PDEs).

(i) The flow equation for oil phase

∂

∂x

(
kpro

∂p

∂x

)
+

∂

∂y

(
kpro

∂p

∂y

)
− (1 − fw

)
qout = h

∂ao

∂t
,
(
x, y, t

) ∈ Ψ. (2.4)

(ii) The flow equation for water phase

∂

∂x

(
kprw

∂p

∂x

)
+

∂

∂y

(
kprw

∂p

∂y

)
+ qin − fwqout = h

∂aw

∂t
,
(
x, y, t

) ∈ Ψ. (2.5)

(iii) The flow equation for polymer component

∂

∂x

(
kdrd

∂cp

∂x

)
+

∂

∂x

(
kprc

∂p

∂x

)
+

∂

∂y

(
kdrd

∂cp

∂y

)
+

∂

∂y

(
kprc

∂p

∂y

)
+ qincpin − fwqoutcp

= h
∂ac

∂t
,
(
x, y, t

) ∈ Ψ.

(2.6)

(iv) The boundary conditions and initial conditions

∂p

∂n

∣∣∣∣
∂Ω

= 0,
∂Sw

∂n

∣∣∣∣
∂Ω

= 0,
∂cp

∂n

∣∣∣∣∣
∂Ω

= 0,
(
x, y, t

) ∈ Γ, (2.7)

p
(
x, y, 0

)
= p0
(
x, y
)
, Sw

(
x, y, 0

)
= S0

w

(
x, y
)
,

cp
(
x, y, 0

)
= c0p
(
x, y
)
,
(
x, y
) ∈ Ω,

(2.8)

where the corresponding parameters are defined as

kp = Kh, kd = Dh, (2.9)

ro =
kro
Boμo

, rw =
krw

BwRkμw
, rc =

krwcp

BwRkμp
, rd =

φpSw

Bw
, (2.10)

ao =
φ(1 − Sw)

Bo
, aw =

φSw

Bw
, ac =

φpSwcp

Bw
+ ρr
(
1 − φ

)
Crp. (2.11)

The constant coefficient K(x, y) is the absolute permeability (μm2), h is the thickness of the
reservoir bed (m), D is the diffusion coefficient of polymer (m2/s), ρr (kg/m3) is the rock
density, and μo (mPa·s) is the oil viscosity.
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The oil volume factor Bo, the water volume factor Bw, the rock porosity φ, and the
effective porosity to polymer φp are expressed as functions of the reservoir pressure p:

Bo =
Bor[

1 + Co

(
p − pr

)] ,

Bw =
Bwr[

1 + Cw

(
p − pr

)] ,

φ = φr

[
1 + CR

(
p − pr

)]
,

φp = faφ,

(2.12)

where pr is the reference pressure (MPa), φr , Bor , and Bwr denote the porosity, the oil, and
water volume factor under the condition of the reference pressure, respectively, fa is the
effective pore volume coefficient, Co, Cw, and CR denote the compressibility factors of oil,
water, and rock, respectively.

Functions relating values of the oil and water relative permeabilities kro and krw to the
water saturation Sw are

krw = krwro

(
Sw − Swc

1 − Swc − Sor

)nw

,

kro = krocw

(
1 − Sw − Sor

1 − Swc − Sor

)no

,

(2.13)

where krwro is the oil relative permeability at the irreducible water saturation Swc, krwcw is
the water relative permeability at the residual oil saturation and Sor, nw, and no are constant
coefficients.

The polymer solution viscosity μp (mPa·s), the permeability reduction factor Rk, and
the amount adsorbed per unit mass of the rock Crp (mg/g) which depend on the polymer
concentration cp are given by

μp = μw

[
1 +
(
ap1cp + ap2c

2
p + ap3p

)]
,

Rk = 1 +
(Rkmax − 1) · brk · cp

1 + brk · cp ,

Crp =
acp

1 + bcp
,

(2.14)

where μw is the viscosity of the aqueous phase with no polymer (mPa·s), ap1, ap2, ap3,
Rkmax, brk, and a (cm3/g) and b (g/L) are constant coefficients.

The fractional flow of water fw is given by,

fw =
rw

ro + rw
. (2.15)
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2.3. Constraint

Since the negative and overhigh injection polymer concentrations are not allowed, the
constraint in polymer flooding is expressed mathematically as

0 ≤ cpin ≤ cmax, (2.16)

where cmax is the maximum injection polymer concentration.

2.4. Optimal Control Formulation

The reservoir pressure p, the water saturation Sw and the polymer concentration cp are the
three state variables for the problem as formulated. The system state vector is denoted by

u
(
x, y, t

)
=
[
p, Sw, cp

]T
. (2.17)

The control for the process is the polymer concentration of injected fluid

v
(
x, y, t

)
= cpin,

(
x, y
) ∈ Lw. (2.18)

Then the OCP of DPS for polymer flooding has the general form,

max
v

J =
∫ tf

0

∫∫
Ω
F(u, v)dσ dt, (2.19)

s.t. f
(
u̇,u,ux,uy,uxx,uyy, v

)
= 0,

(
x, y, t

) ∈ Ψ, (2.20)

g
(
u,ux,uy,uxx,uyy

)
= 0,

(
x, y, t

) ∈ Γ, (2.21)

u
(
x, y, 0

)
= u0(x, y), (

x, y
) ∈ Ω, (2.22)

0 ≤ v ≤ vmax, (2.23)

where u̇ = ∂u/∂t, ul = ∂u/∂l, ull = ∂2u/∂l2, l = x, y, (2.19) denotes the performance
index (2.3), (2.20) expresses the governing equations (2.4)–(2.6), (2.21) and (2.22) denote
the boundary and initial conditions, respectively, and (2.23) denotes the injection polymer
concentration constraint (2.16).

3. Necessary Conditions of Optimal Control

3.1. Maximum Principle of DPS

We desire to find a set of necessary conditions for the state vector, u, and the control, v, to
be extremals of the functional J (2.19) subject to the PDEs (2.20)∼(2.22) and the constraint
(2.23). A convenient way to cope with such an OCP of DPS (2.19)∼(2.23) is through the use
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of distributed adjoint variables. The first step is to form an augmented functional by adjoining
the governing equations to the performance index J . We define the Hamiltonian as

H = F + λT f, (3.1)

where λ(x, y, t) is the adjoint vector. Then the argument functional is given by,

JA = J +
∫ tf

0

∫∫
Ω
λT f
(
u̇,u,ux,uy,uxx,uyy, v

)
dσ dt =

∫ tf

0

∫∫
Ω
H
(
u̇,u,ux,uy,uxx,uyy, v

)
dσ dt.

(3.2)

Following the standard procedure of the calculus of variables, the increment of JA,
denoted by ΔJA, is formed by introducing variations δu, δux, δuy, δuxx, δuyy, δu̇, and δv
giving

ΔJA = JA
(
u + δu,ux + δux,uy + δuy,uxx + δuxx,uyy + δuyy, u̇ + δu̇, v + δv

)
− JA
(
u,ux,uy,uxx,uyy, u̇, v

)
.

(3.3)

This formulation assumes that the final time, tf , is fixed.
Expanding (3.3) in a Taylor series and retaining only the linear terms give the variation

of the functional, δJA,

δJA =
∫ tf

0

∫∫
Ω

⎡
⎣
(
∂H

∂u

)T

δu +
(
∂H

∂ux

)T

δux +
(

∂H

∂uxx

)T

δuxx +

(
∂H

∂uy

)T

δuy

+

(
∂H

∂uyy

)T

δuyy +
(
∂H

∂u̇

)T

δu̇ +
(
∂H

∂v

)
δv

⎤
⎦dσ dt.

(3.4)

Since the variations δu, δul, δull (l = x, y), and δu̇ are not independent can be expressed in
terms of the variations δu by integrating the following three terms by parts:

∫∫
Ω

[(
∂H

∂ul

)T

δul

]
dσ =

∫∫
Ω

∂

∂l

[(
∂H

∂ul

)T

δu

]
dσ −

∫∫
Ω

[
∂

∂l

(
∂H

∂ul

)T

δu

]
dσ, (3.5)

∫∫
Ω

[(
∂H

∂ull

)T

δull

]
dσ =

∫∫
Ω

[
∂2

∂l2

(
∂H

∂ull

)]T
δudσ

+
∫∫

Ω

∂

∂l

[(
∂H

∂ull

)T

δul − ∂

∂l

(
∂H

∂ull

)T

δu

]
dσ,

(3.6)

∫ tf

0

(
∂H

∂u̇

)T

δu̇ =

[(
∂H

∂u̇

)T

δu

]∣∣∣∣∣
tf

0

−
∫ tf

0

∂

∂t

(
∂H

∂u̇

)T

δudt. (3.7)



8 Journal of Applied Mathematics

Using the Green’s formula in (3.5) and (3.6), we obtain

∫∫
Ω

∑
l=x,y

[(
∂H

∂ul

)T

δul +
(
∂H

∂ull

)T

δull

]
dσ

=
∫∫

Ω

∑
l=x,y

[
− ∂

∂l

(
∂H

∂ul

)
+

∂2

∂l2

(
∂H

∂ull

)]T
δudσ

+
∮
∂Ω

⎧⎨
⎩
[(

∂H

∂ux
− ∂

∂x

∂H

∂uxx

)T

δu +
(

∂H

∂uxx

)T

δux

]
dy

−
⎡
⎣
(

∂H

∂uy
− ∂

∂y

∂H

∂uyy

)T

δu +

(
∂H

∂uyy

)T

δuy

⎤
⎦dx
⎫⎬
⎭.

(3.8)

By substituting the above equations (3.7) and (3.8) into (3.4), the first variation δJA is
expressed as

δJA =
∫ tf

t0

∫∫
Ω

(
∂H

∂u
− ∂

∂x

∂H

∂ux
− ∂

∂y

∂H

∂uy
+

∂2

∂x2

∂H

∂uxx
+

∂2

∂y2

∂H

∂uyy
− ∂

∂t

∂H

∂u̇

)T

δudσ dt

+
∫ tf

t0

∮
∂Ω

⎧⎨
⎩
[(

∂H

∂ux
− ∂

∂x

∂H

∂uxx

)T

δu +
(

∂H

∂uxx

)T

δux

]
dy

−
⎡
⎣
(

∂H

∂uy
− ∂

∂y

∂H

∂uyy

)T

δu +

(
∂H

∂uyy

)T

δuy

⎤
⎦dx
⎫⎬
⎭dt

+
∫∫

Ω

[(
∂H

∂u̇

)T

δu

]∣∣∣∣∣
tf

0

dσ +
∫ tf

t0

∫∫
Ω

(
∂H

∂v

)
δv dσ dt.

(3.9)

When the state and control regions are not bounded, the variation of the functional
must vanish at an extremal (the fundamental theorem of the calculus of variations). When
the control region is constrained by a boundary, then the necessary condition for optimality
is to maximize the performance index JA with respect to the control v. This means that the
variation δJA is

δJA(v∗, δv) ≥ 0, (3.10)

where v∗ denotes the optimal control. Equation (3.10) is the weak minimum principle of
Pontryagin. The necessary conditions for these two cases are the same except for the term
involving the variation of the control, δv. For polymer flooding problem there are higher and
lower bounds on the control variable v given as (2.16).

The following necessary conditions for optimality are obtained when we apply Pon-
tryagin’s maximum principle.
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(1) Adjoint Equations

Since the variation δu is free and not zero, the coefficient terms involving the δu variation in
the first term of (3.9) are set to zero. This results in the adjoint equations as given by

∂H

∂u
−
∑
l=x,y

(
∂

∂l

∂H

∂ul
+

∂2

∂l2
∂H

∂ull

)
− ∂

∂t

∂H

∂u̇
= 0. (3.11)

Substitute the Hamiltonian (3.1) into (3.11) and the adjoint equations become

∂F

∂u
+
(
∂f
∂u

− ∂

∂t

∂f
∂u̇

)T

λ

+
∑
l=x,y

⎡
⎣
(

∂2

∂l2
∂f
∂ull

− ∂

∂l

∂f
∂ul

)T

λ +
(
2
∂

∂l

∂f
∂ull

− ∂f
∂ul

)T ∂λ

∂l
+
(

∂f
∂ull

)T ∂2λ

∂l2

⎤
⎦

−
(
∂f
∂u̇

)T ∂λ

∂t
= 0.

(3.12)

Equation (3.12) is a set of PDEs with nonconstant coefficients.

(2) Transversality Boundary Conditions

The adjoint boundary conditions are obtained from the second term of (3.9):

[(
∂H

∂ul
− ∂

∂l

∂H

∂ull

)T

δu +
(
∂H

∂ull

)T

δul

]∣∣∣∣∣
∂Ω

= 0, l = x, y. (3.13)

(3) Transversality Terminal Conditions

Since the initial state is specified, the variation δu|t=0 of (3.9) is zero. However, the final state is
not specified; therefore, the variation δu|t=tf is free and nonzero. Thismeans that the following
relation must be zero:

∂H

∂u̇
=
(
∂f

∂u̇

)T

λ = 0, at t = tf . (3.14)

(4) Optimal Control

With all the previous terms vanishing, the variation of the functional δJA becomes

δJA =
∫ tf

0

∫∫
Ω

(
∂H

∂v

)
δv dσ dt. (3.15)

This equation expresses the direct influence of variation δv on δJA. A necessary condition for
the optimality of v∗ is that δJA ≥ 0 for all possible small variations, δv. Since there are lower
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and higher bounds on the control v (2.9), we use the weak maximum principle to assert the
following necessary conditions for optimality:

∂H

∂v
= 0 for 0 ≤ v∗ ≤ vmax, (3.16)

when the control vector is unconstrained. Because the variation δv can only be negative along
the lower bound, we have

∂H

∂v
≤ 0 for v∗ = 0. (3.17)

And because the variation δv can only be positive along the higher bound, we have

∂H

∂v
≥ 0 for v∗ = vmax. (3.18)

3.2. Necessary Conditions of OCP for Polymer Flooding

Let λ(x, y, t) = (λ1, λ2, λ3)
T denote the adjoint vector of OCP for polymer flooding. Applying

the theory developed in Section 3.1 and substituting the governing equations (2.4)–(2.6) into
(3.12), the adjoint equations, given by (3.12), reduce for the polymer flooding problem under
consideration as given in,

∑
l=x,y

{
∂

∂l

(
kpro

∂λ1
∂l

)
+

∂

∂l

(
kprw

∂λ2
∂l

)
+

∂

∂l

(
kprc

∂λ3
∂l

)

−
[
kp

∂ro
∂p

∂p

∂l

∂λ1
∂l

+ kd
∂rw
∂p

∂p

∂l

∂λ2
∂l

+

(
kp

∂rc
∂p

∂p

∂l
+ kd

∂rd
∂p

∂cp

∂l

)
∂λ3
∂l

]}

− qout

(
ξo
∂fw
∂p

− ∂fw
∂p

λ1 +
∂fw
∂p

λ2 + cp
∂fw
∂p

λ3

)

+
∂ao

∂p

∂λ1
∂t

+
∂aw

∂p

∂λ2
∂t

+
∂ac

∂p

∂λ3
∂t

= 0,
(
x, y, t

) ∈ Ψ,

∑
l=x,y

[
−kp

∂p

∂l

(
∂ro
∂Sw

∂λ1
∂l

+
∂rw
∂Sw

∂λ2
∂l

+
∂rc
∂Sw

∂λ3
∂l

)
− kd

∂rd
∂Sw

∂cp

∂l

∂λ3
∂l

]

− qout

(
ξo

∂fw
∂Sw

− ∂fw
∂Sw

λ1 +
∂fw
∂Sw

λ2 + cp
∂fw
∂Sw

λ3

)
+

∂ao

∂Sw

∂λ1
∂t

+
∂aw

∂Sw

∂λ2
∂t

+
∂ac

∂Sw

∂λ3
∂t

= 0,
(
x, y, t

) ∈ Ψ,
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∑
l=x,y

[
∂

∂l

(
kdrd

∂λ3
∂l

)
− kp

∂p

∂l

(
∂rw
∂cp

∂λ2
∂l

+
∂rc
∂cp

∂λ3
∂l

)]

− qout

[
ξo
∂fw
∂cp

− ∂fw
∂cp

λ1 +
∂fw
∂cp

λ2 +

(
cp

∂fw
∂cp

+ fw

)
λ3

]

+
∂ac

∂cp

∂λ3
∂t

= 0,
(
x, y, t

) ∈ Ψ.

(3.19)

The boundary conditions (2.7) of the DPS result in (∂u/∂l)|∂Ω = 0 and δul|∂Ω = 0, l =
x, y, in (3.13). The coefficients of the arbitrary variation δul|∂Ω terms must be zero and yield
the boundary conditions for the adjoint equations as given by

∂H

∂ul
− ∂

∂l

∂H

∂ull
= 0, l = x, y. (3.20)

By substituting the governing equations (2.4)–(2.6) into (3.20), the boundary conditions of
adjoint equations for the polymer flooding OCP are expressed as

(
ro
∂λ1
∂l

+ rw
∂λ2
∂l

)∣∣∣∣
∂Ω

= 0,
∂λ3
∂l

∣∣∣∣
∂Ω

= 0, l = x, y,
(
x, y, t

) ∈ Γ. (3.21)

The following transversality terminal conditions at t = tf are obtained by substituting
the governing equations (2.4)–(2.6) into (3.14):

−∂ao

∂p
λ1 − ∂aw

∂p
λ2 − ∂ac

∂p
λ3 = 0,

− ∂ao

∂Sw
λ1 − ∂aw

∂Sw
λ2 − ∂ac

∂Sw
λ3 = 0, −∂ac

∂cp
λ3 = 0.

(3.22)

Since the coefficient terms involving the adjoint variables in (3.22) are not zero, the terminal
conditions of adjoint equations in the OCP of polymer flooding can be simplified to

λ1
(
x, y, tf

)
= 0, λ2

(
x, y, tf

)
= 0, λ3

(
x, y, tf

)
= 0,

(
x, y
) ∈ Ω. (3.23)

Equation (3.23) shows that the adjoint variables are known at the final time tf . Since the state
variables are known at the initial time and the adjoint variables are known at the final time,
the OCP is a split two-point boundary-value problem.

The variation of the performance index, J , reduces to the following simplified
functional of the control variation:

δJA =
∫ tf

0

∫∫
Ω
qin
(
ξp + λ3

)
δv dσ dt. (3.24)
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From the results of (3.16)–(3.18), the necessary condition for optimality of polymer flooding
problem is

qin
(
ξp + λ3

)
⎧⎪⎪⎨
⎪⎪⎩
= 0, for 0 ≤ v∗ ≤ vmax,

≤ 0, for v∗ = 0,
≥ 0, for v∗ = vmax.

(3.25)

4. Numerical Solution

We propose an iterative numerical technique for determining the optimal injection strategies
of polymer flooding. The computational procedure is based on adjusting estimates of control
function v to improve the value of the objective functional. For a control to be optimal, the
necessary condition given by (3.25) must be satisfied. If the control v is not optimal, then
a correction δv is determined so that the functional is made lager, that is, δJA > 0. If δv is
selected as

δv = wqin
(
ξp + λ3

)
, (4.1)

where w is an arbitrary positive weighting factor, the functional variation becomes

δJA =
∫ tf

0

∫∫
Ω
w
[
qin(ξp + λ3)

]2
dσdt ≥ 0. (4.2)

Thus, choosing δv in the gradient direction ensures a local improvement in the objective
functional, JA. At the higher and lower bounds on v, we must make the appropriate
weighting terms equal to zero to avoid leaving the allowable region.

The computational algorithm of control iteration based on gradient direction is as
follows.

(1) Initialization

Make an initial guess for the control function, v(x, y, t), (x, y) ∈ Lw, t ∈ [0, tf].

(2) Resolution of the State Equations

Using stored current value of v(x, y, t), (x, y) ∈ Lw, integrate the governing equations
forward in time with known initial state conditions. We use the finite difference method of a
full implicit scheme for the PDEs as discussed in [21, 22]. The profit functional is evaluated,
and the coefficients involved in the adjoint equations which are function of the state solution
are computed and stored.

(3) Resolution of the Adjoint Equations

Using the stored coefficients, integrate the adjoint equations numerically backward in time
with known final time adjoint conditions by (3.23). Compute and store δv as defined by (4.1).
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Figure 1: Permeability (μm2) distribution.
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Figure 2: Initial water saturation contour map.

(4) Computation of the New Control

Using the evaluated δv, an improved function is computed as

v
(
x, y, t

)new = v
(
x, y, t

)old + δv
(
x, y, t

)
,
(
x, y
) ∈ Lw, (4.3)
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Figure 3: Initial reservoir pressure (MPa) contour map.

Table 1: Parameters of reservoir description used in the example.

Parameters Values
Number of production well,Np 1
Number of injection wells,Nw 4
Thickness of the reservoir bed, h (m) 5
Reference pressure, pr (MPa) 12
Porosity under the condition of the reference pressure, φr 0.31
Rock density, ρr (kg/m3) 2000
Rock compressibility factor, CR (1/MPa) 9.38 × 10−6

Irreducible water saturation, Sor 0.25
Residual oil saturation, Swc 0.22
Oil relative permeability at the irreducible water saturation, krwro 0.5228
Water relative permeability at the residual oil saturation, krocw 0.9
Index of oil relative permeability curve, no 4.287
Index of water relative permeability curve, nw 2.3447

where 0 ≤ vnew ≤ vmax. A single variable search strategy can be used to find the value
of the positive weighting factor w which maximizes the improvement in the performance
functional using (4.3).

(5) Termination

The optimization algorithm is stopped when the variation δv is too small to effectively
change the performance measure, that is, when

∣∣∣Jnew − Jold
∣∣∣ < ε, (4.4)

where ε is a small positive number.
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Table 2: Fluid data used in the example.

Parameters Values
Oil viscosity, μo (mPa·s) 50
Compressibility factors of oil, Co (1/MPa) 5 × 10−6

Oil volume factor under the condition of the reference pressure, Bor 1
Aqueous phase viscosity with no polymer, μw (mPa·s) 0.458
Compressibility factors of water, Cw (1/MPa) 4.6 × 10−6

Water volume factor under the condition of the reference pressure, Bwr 1
Polymer absorption parameter, a (g/cm3) 0.03
Polymer absorption parameter, b (g/cm3) 3.8
Diffusion coefficient, D (m2/s) 1 × 10−5

Effective pore volume coefficient, fa 1
Permeability reduction parameter, Rkmax 1.15
Permeability reduction parameter, brk 1.2
Viscosity parameter, ap1 15.426
Viscosity parameter, ap2 0.4228
Viscosity parameter, ap3 0.2749

5. Case Study

In this section we present a numerical example of optimal control for polymer flooding done
with the proposed iterative gradient method.

The two-phase flow of oil and water in a heterogeneous two-dimensional reservoir is
considered. The reservoir covers an area of 421.02 × 443.8m2 and has a thickness of 5m and
is discretized into 90(9 × 10 × 1) grid blocks. The production model is a five-spot pattern,
with one production well P1 located at the center of the reservoir (5, 6) and four injection
wells W1∼W4 placed at the four corners (1, 10), (9, 10), (1, 1), and (9, 1) as shown in the
permeability distribution map of Figure 1. Polymer is injected when the fractional flow of
water for the production well comes to 97% after water flooding. The time domain of polymer
injection is 0∼1440 days and the polymer flooding project life is tf = 5500 (days). Figures 2
and 3 show the contour maps of the initial water saturation S0

w and the initial reservoir
pressure p0, respectively. The initial polymer concentration is c0p = 0 (g/L). In the performance
index calculation, we use the price of oil ξo = 0.0503 (104 $/m3) (80 ($/bbl)), and the cost of
polymer ξp = 2.5 × 10−4 (104 $/kg). The fluid velocity of production well is qout = 7.225 ×
10−3 (m/day), and the fluid velocity of every injection well is qin = 2.89 × 10−2 (m/day).
The PDEs are solved by full implicit finite difference method with step size 10 days. For
the constraint (29), the maximum injection polymer concentration is cmax = 2.2 (g/L). The
parameters of the reservoir description and the fluid data are shown in Tables 1 and 2,
respectively.

The polymer injection strategies obtained by the conventional engineering judgment
method (trial and error) are the same 1.8 (g/L) for all injection wells. The performance
index is J = $1.592 × 107 with oil production 32429m3 and polymer injection 155520 kg.
For comparison, the results obtained by engineering judgment method are considered as the
initial control strategies of the proposed iterative gradient method. A backtracking search
strategy [23] is used to find the appropriate weighting term w and the stopping criterion
is chosen as ε = 1 × 10−5. By using the proposed algorithm, we obtain a cumulative oil of
33045m3 and a cumulative polymer of 151618 kg yielding the profit of J∗ = $1.624 × 107
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Figure 4: Injection polymer concentration of well W1.
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Figure 5: Injection polymer concentration of well W2.

over the polymer flooding project life of the reservoir. The results show an increase in
performance index of $3.2 × 105. Figures 8 and 9 show the fractional flow of water in
production well and the cumulative oil production curves of the two methods, respectively.
It is obvious that the fractional flow of water obtained by iterative gradient method is lower
than that by engineering judgment. Therefore, with the less cumulative polymer injection,
the proposed method gets more oil production and higher recovery ratio. Figure 4 to
Figure 7 show the optimal control policies of the injection wells W1∼W4. As a result, the
optimal injection polymer concentration profiles of W1 and W2 are significantly different
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Figure 7: Injection polymer concentration of well W4.

from those ofW3,W4. It is mainly due to the differences of the well positions and the distance
to the production well, as well as the reservoir heterogeneity and the uniform initial water
saturation distribution.

6. Conclusion

In this work, a new optimal control model of DPS is established for the dynamic injection
strategies making of polymer flooding. Necessary conditions of this OCP are obtained by
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using the calculus of variations and Pontryagin’s weak maximum principle. An iterative
computational algorithm is proposed for the determination of optimal injection strategies.
The optimal control model of polymer flooding and the proposed method are used for a
reservoir example and the optimum injection concentration profiles for each well are offered.
The results show that the profit is enhanced by the proposed method. Meanwhile, more oil
production and higher recovery ratio are obtained. And the injection strategies chosen by
engineering judgment are same for all the wells, whereas the optimal control policies by the
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proposed method are different from each other as a result of the reservoir heterogeneity and
the uniform initial conditions.

In conclusion, given the properties of an oil reservoir and the properties of a polymer
solution, optimal polymer flooding injection strategies to maximize profit can be designed by
using distributed-parameter control theory. The approach used is a powerful tool that can aid
significantly in the development of operational strategies for EOR processes.
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