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ByM-matrix theory, inequality techniques, and Lyapunov functional method, certain sufficient conditions are obtained to ensure
the existence, uniqueness, and global exponential stability of periodic solution for a new type of high-order BAM neural networks
with continuously distributed delays and impulses. These novel conditions extend and improve some previously known results in
the literature. Finally, an illustrative example and its numerical simulation are given to show the feasibility and correctness of the
derived criteria.

1. Introduction

As is well known, during the hardware implementation of
neural networks, time delays are inevitable due to finite
switching speeds of the amplifiers and communication time,
which may bring about complex influence on the system
such as oscillation and instability [1, 2]. On the other hand,
impulsive effects wildly exist in many realistic networks [3,
4], which may be caused by witching phenomenon, sudden
changes, or other unexpected noise. Therefore, it is more
appropriate to consider delay and impulsive effects when
modeling neural networks, and many researches on various
kinds of neural networks with delays, impulses, or both of
them have been available [5–12]. (See Figures 1(a), 1(b), and
1(c)).

Bidirectional associative memory (BAM) neural net-
works, as an extension of the unidirectional autoassociator
of Hofield neural network [13], was firstly introduced by
Kosko [14]. Due to its wide application in pattern recog-
nition, associative memory, image, and signal processing,
BAM neural networks with delays and impulses have been
extensively studied in the past few decades [15–22]. In
addition, it is worth noting that high-order neural networks
structures have advantages of stronger storage capacity, faster
convergence rate, and higher fault tolerance, and these merits

have been successfully used in pattern recognition [23].Thus,
it is important to investigate BAM neural networks with
high-order terms, which is called high-order BAM neural
networks.

In this paper, we will consider a new type of high-
order BAM neural networks with continuously distributed
delays and impulses, which can be described by the following
integrodifferential equations:

𝑑𝑥
𝑖 (𝑡)

𝑑𝑡

= −𝑎
𝑖 (𝑡) 𝑥𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

∞

0

𝐾
𝑖𝑗 (𝑠) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝑠)) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

𝑠
𝑖𝑗𝑞 (𝑡) ∫

∞

0

𝑅
𝑖𝑗𝑞 (𝑠) 𝑓𝑗 (𝑦𝑗 (𝑡−𝑠)) 𝑓𝑞 (𝑦𝑞 (𝑡−𝑠)) 𝑑𝑠

+ 𝐼
𝑖 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑥
𝑖
(𝑡

+

𝑘
) = 𝑥

𝑖
(𝑡

−

𝑘
) + Δ𝑥

𝑖
(𝑡
𝑘
) = 𝐻

𝑖𝑘
(𝑥

𝑖
(𝑡

−

𝑘
)) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ Z ≜ {1, 2, . . .} ,



2 Journal of Applied Mathematics
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(1)

where Δ𝑥
𝑖
(𝑡
𝑘
) and Δ𝑦

𝑗
(𝑡
𝑘
) are the impulses at moments

𝑡
𝑘
and 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ is a strictly increasing sequence

such that lim
𝑘→∞

𝑡
𝑘

= ∞. And 𝑥
𝑖
(𝑡) and 𝑦

𝑗
(𝑡) are the

activations of the 𝑖th neuron and the 𝑗th neuron, respectively;
𝑎
𝑖
(𝑡) > 0 and 𝑏

𝑗
(𝑡) > 0 denote the passive decay

rates; 𝑐
𝑖𝑗
(𝑡), 𝑑

𝑗𝑖
(𝑡), 𝑠

𝑖𝑗𝑞
(𝑡), 𝑒

𝑗𝑖𝑝
(𝑡) are the first- and second-order

connection weights of the neural networks, respectively; 𝐼
𝑖
(𝑡)

and 𝐽
𝑗
(𝑡) are the external inputs.

Clearly, system (1) is a more general form of BAM
neural networks, which has been widely applied in areas of
science and engineering [24], such as neurobiology, image
classification, and image recognition. In recent years, studies
of such kind of neural networks with delays and impulses
have received considerable interest, and some results have
been reported in [25–30]. In particular, authors in [25–
28] have discussed the stability of equilibrium point for a
kind of impulsive high-order BAM neural networks with
discrete delays by different methods, such as linear matrix
inequality (LMI), Razumikhin technique. Subsequently, Huo
et al. [29] and Yang [30] studied the existence of periodic
solution and its exponential stability for an impulsive high-
order BAM neural network with discrete delays by using
the theory of coincidence degree and Lyapunov functional
method. However, to the best of our knowledge, there are few
results on the existence, uniqueness, and global exponential
stability of periodic solution for system (1) with continuously
distributed delays.

The main propose of this paper is to study the peri-
odicity of system (1) with distributed delays and general
impulsive effects. It should be noticed that some new criteria
on the existence and uniqueness of periodic solution for
system (1) are established by combining the general ‖ ⋅ ‖

𝑟

(see 𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) and analytical techniques, which is different
from the conventional continuation theorem of coincidence
degree theory used in [29, 30]. In addition, it is worth
mentioning that the impulsive part in this paper is not
necessarily bounded and linear, which makes its applications
more extensive.

The rest of this paper is organized as follows. In Section 2,
some assumptions, definitions, and important lemmas are
given. In Section 3, the main results and some remarks are
presented. In Section 4, an example and its numerical simula-
tion are provided. Finally, some conclusions are summarized
in Section 5.

2. Preliminaries

Notations. Throughout this paper,R and R𝑛 denote the set
of real numbers and 𝑛-dimensional vector space, respectively.
The symbol (⋅)𝑇 denotes the transpose of a vector or a matrix.
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which are used to investigate the dynamics of various kinds
of neural networks in [6–8, 10, 12, 15–17, 19, 21, 22, 25–31].
Denote 𝐶
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and then 𝐶
∗ is a Banach space with topology of the uniform

convergence. In addition, system (1) is supplemented with
initial values

𝑥
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As usual, we have the following assumptions for system
(1).
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for 𝑖, 𝑝 = 1, 2, . . . , 𝑛, 𝑗, 𝑞 = 1, 2, . . . , 𝑚 and 𝑥, 𝑦 ∈ R.
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Figure 1: It is confirmed that the system (51) has a unique 𝜋-periodic solution. Here (𝑥
1
, 𝑦

1
) and (𝑥

2
, 𝑦

2
) denote two pairs of solution of

system (51) with different initial conditions 𝜙
1
(𝑠) = (−𝑒

0.01𝑠
+ 0.4, 𝑒

0.01𝑠
− 0.4)

𝑇 and 𝜙
2
(𝑠) = (0.3, −0.3)

𝑇 for 𝑠 ∈ [−1, 0] and 𝛾 = 0.5, 𝑡
𝑘
− 𝑡

𝑘−1
=

𝜋, 𝑘 = 1, 2, . . ..

in which 𝜀 denotes some positive constant number. For more
information on these delay kernels, one can refer to [5, 9, 15,
18, 22].

(S
4
)Ω is an𝑀-matrix, where 𝑟 ≥ 1,

Ω = (
𝑟𝐴 − (𝑟 − 1) 𝐺 −𝐿

𝑓
Π

−𝐿
𝑔
Γ 𝑟𝐵 − (𝑟 − 1) 𝐹

) ,

𝐴 = diag (𝑎−
1
, 𝑎

−

2
, . . . , 𝑎

−

𝑛
) , 𝐵 = diag (𝑏−

1
, 𝑏

−

2
, . . . , 𝑏

−

𝑚
) ,

𝐺 = diag (𝐺
1
, 𝐺

2
, . . . , 𝐺

𝑛
) , 𝐹 = diag (𝐹

1
, 𝐹

2
, . . . , 𝐹

𝑚
) ,

𝐿
𝑔
= diag (𝐿𝑔

1
, 𝐿

𝑔

2
, . . . , 𝐿

𝑔

𝑛
) , 𝐿

𝑓
= diag (𝐿𝑓

1
, 𝐿

𝑓

2
, . . . , 𝐿

𝑓

𝑚
) ,

𝐺
𝑖
=

𝑚

∑

𝑗=1

[𝑐
+

𝑖𝑗
+

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
]𝐿

𝑓

𝑗
,

𝐹
𝑗
=

𝑛

∑

𝑖=1

[𝑑
+

𝑗𝑖
+

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
]𝐿

𝑔

𝑖
,

Π = (Π
𝑖𝑗
)
𝑛×𝑚

= 𝑐
+

𝑖𝑗
+

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
,

Γ = (Γ
𝑗𝑖
)
𝑚×𝑛

= 𝑑
+

𝑗𝑖
+

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
.

(6)

Definition 1. A function 𝑧(𝑡, 𝜙) = (𝑥
1
(𝑡, 𝜙), 𝑥

2
(𝑡, 𝜙), . . .,

𝑥
𝑛
(𝑡, 𝜙), 𝑦

1
(𝑡, 𝜙), 𝑦

2
(𝑡, 𝜙),. . .,𝑦

𝑚
(𝑡, 𝜙))

𝑇
∈ R𝑛+𝑚 is said to be

the solution of system (1) with initial condition 𝜙 ∈ 𝐶
∗ if the

following two conditions are satisfied.
(1) 𝑧(𝑡, 𝜙) is piecewise continuous with first kind discon-

tinuity at the points 𝑡
𝑘
, 𝑘 ∈ Z. Moreover, 𝑧(𝑡, 𝜙) is left

continuous at each of the discontinuity points.
(2) 𝑧(𝑡, 𝜙) satisfies system (1) for 𝑡 ≥ 0 and 𝑧(𝑠) = 𝜙(𝑠) for

𝑠 ∈ (−∞, 0].

Definition 2. The periodic solution 𝑧
∗
(𝑡, 𝜙

∗
) of system (1) is

said to be globally exponentially stable, if there exist constants
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M ≥ 1 and 𝛼 > 0 such that any other solution 𝑧(𝑡, 𝜙) of
system (1) satisfies

𝑧 (𝑡, 𝜙) − 𝑧
∗
(𝑡, 𝜙

∗
)
𝑟 ≤ M𝑒

−𝛼𝑡𝜙 − 𝜙
∗Δ, 𝑡 ≥ 0. (7)

Lemma 3 (see [32]). Let 𝐴 ∈ Z𝑛×𝑛, where Z𝑛×𝑛 is a set of
𝑛 × 𝑛 matrices with nonpositive off-diagonal elements. 𝐴 is
an 𝑀-matrix if and only if there exists a positive vector 𝜆 =

(𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑛
)
𝑇 such that ∑𝑛

𝑗=1
𝑎
𝑗𝑖
𝜆
𝑗
> 0 or ∑𝑛

𝑗=1
𝑎
𝑖𝑗
𝜆
𝑗
> 0.

Lemma 4. Assume that assumptions (S
3
) and (S

4
) hold; then

there exist positive constants 𝜀 and 𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑛+𝑚
such that

𝑃
𝑖 (𝜀) = [−𝜀 + 𝑟𝑎

−

𝑖
− (𝑟 − 1) 𝐺𝑖

] 𝜆
𝑖

−

𝑚

∑

𝑗=1

𝜆
𝑛+𝑗

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑑𝑠

−

𝑚

∑

𝑗=1

𝑛

∑

𝑝=1

𝜆
𝑛+𝑗

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

× ∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑑𝑠 ≥ 0,

𝑄
𝑗 (𝜀) = (−𝜀 + 𝑟𝑏

−

𝑗
− (𝑟 − 1) 𝐹𝑗) 𝜆𝑛+𝑗

−

𝑛

∑

𝑖=1

𝜆
𝑖
𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑑𝑠

−

𝑛

∑

𝑖=1

𝑚

∑

𝑞=1

𝜆
𝑖
(𝑠

+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

× ∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑑𝑠 ≥ 0,

(8)

for 𝑖, 𝑝 = 1, 2, . . . , 𝑛, 𝑗, 𝑞 = 1, 2, . . . , 𝑚.

Proof. Construct the aided functions as follows:

𝑃
𝑖
(𝜗

𝑖
) = [−𝜗

𝑖
+ 𝑟𝑎

−

𝑖
− (𝑟 − 1) 𝐺𝑖

] 𝜆
𝑖

−

𝑚

∑

𝑗=1

𝜆
𝑛+𝑗

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜗𝑖𝑠𝑑𝑠

−

𝑚

∑

𝑗=1

𝑛

∑

𝑝=1

𝜆
𝑛+𝑗

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖
∫

∞

0

R (𝑠) 𝑒
𝜗𝑖𝑠𝑑𝑠,

𝑄
𝑗
(𝜇

𝑗
) = (−𝜇

𝑗
+ 𝑟𝑏

−

𝑗
− (𝑟 − 1) 𝐹𝑗) 𝜆𝑛+𝑗

−

𝑛

∑

𝑖=1

𝜆
𝑖
𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜇𝑗𝑠𝑑𝑠

−

𝑛

∑

𝑖=1

𝑚

∑

𝑞=1

𝜆
𝑖
(𝑠

+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗
∫

∞

0

R (𝑠) 𝑒
𝜇𝑗𝑠𝑑𝑠

(9)

for 𝑖, 𝑝 = 1, 2, . . . , 𝑛, 𝑗, 𝑞 = 1, 2, . . . , 𝑚. Using Lemma 3 and
assumptions ((S

3
)-(S

4
)), it is easy to deduce that (8) hold by

similar proof in [7, 15–18]. For concise, it is omitted here.

Lemma 5. Let the integer 𝑟 ≥ 1; then the inequality holds as
follows:

(𝑛 + 𝑚)
(1−𝑟)/𝑟

𝑛+𝑚

∑

𝑖=1

𝑧𝑖
 ≤ (

𝑛+𝑚

∑

𝑖=1

𝑧𝑖

𝑟
)

1/𝑟

(10)

for all 𝑧 = (𝑧
1
, 𝑧

2
. . . , 𝑧

𝑛+𝑚
)
𝑇
∈ R𝑛+𝑚.

Proof. Obviously, the inequality (10) with 𝑟 = 1 is trivial.
When 𝑟 > 1, consider the aided function 𝑔(𝑥) = 𝑥

𝑟
, 𝑥 ≥ 0. It

is claimed that 𝑔(𝑥) is convex since 𝑔
(𝑥) = 𝑟(𝑟 − 1)𝑥

𝑟−1
> 0,

𝑟 > 1 for 𝑥 > 0. Let 𝑥 = (1/(𝑛 + 𝑚))∑
𝑛+𝑚

𝑖=1
|𝑧

𝑖
|; by Jensen’s

inequality, we have

1

(𝑛 + 𝑚)
𝑟
(

𝑛+𝑚

∑

𝑖=1

𝑧𝑖
)

𝑟

≤
1

𝑛 + 𝑚

𝑛+𝑚

∑

𝑖=1

𝑧𝑖

𝑟
, (11)

which implies that the inequality (10) holds. This completes
the proof.

3. Main Results

Firstly, let 𝑧(𝑡, 𝜙) = (𝑥
1
(𝑡, 𝜙), 𝑥

2
(𝑡, 𝜙), . . . , 𝑥

𝑛
(𝑡, 𝜙), 𝑦

1
(𝑡, 𝜙),

𝑦
2
(𝑡, 𝜙), . . . , 𝑦

𝑚
(𝑡, 𝜙))

𝑇 and 𝑧(𝑡, 𝜑) = (𝑥
1
(𝑡, 𝜑), 𝑥

2
(𝑡, 𝜑), . . . ,

𝑥
𝑛
(𝑡, 𝜑),𝑦

1
(𝑡, 𝜑), 𝑦

2
(𝑡, 𝜑), . . .,𝑦

𝑚
(𝑡, 𝜑))

𝑇 be any two solutions
of system (1) through 𝜙, 𝜓 ∈ 𝐶

∗, respectively; then we have
the following useful lemma.

Lemma6. Under assumptions ((S
1
)–(S

4
)), if the following two

conditions hold:

(S
5
) 𝐻

𝑖𝑘
(⋅), 𝐸

𝑗𝑘
(⋅) are Lipschitz continuous on R; that

is, there exist positive constants 𝐻
𝑖𝑘
, 𝐸

𝑗𝑘
such that

|𝐻
𝑖𝑘
(𝑥) − 𝐻

𝑖𝑘
(𝑦)| ≤ 𝐻

𝑖𝑘
|𝑥 − 𝑦|, |𝐸

𝑗𝑘
(𝑥) − 𝐸

𝑗𝑘
(𝑦)| ≤

𝐸
𝑗𝑘
|𝑥 − 𝑦| for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝑘 ∈ Z

and 𝑥, 𝑦 ∈ R;

(S
6
) there exists 𝜃 such that ln 𝜂

𝑟

𝑘
/(𝑡

𝑘
− 𝑡

𝑘−1
) ≤ 𝜃 < 𝜀, where

𝑡
0
= 0, 𝜂

𝑘
= max{1,max

1≤𝑖≤𝑛
𝐻

𝑖𝑘
,max

1≤𝑗≤𝑚
𝐸
𝑗𝑘
}, 𝑘 ∈

Z, and the scalar 𝜀 is estimated by (8).

Then, the following inequality holds:

𝑧 (𝑡, 𝜙) − 𝑧 (𝑡, 𝜑)
𝑟 ≤ M𝑒

−𝛼𝑡𝜙 − 𝜑
Δ, 𝑡 ≥ 0, (12)

where the constants M ≥ 1 and 𝛼 > 0 are to be determined
later.

Proof. To be convenient, let

𝑋
𝑖 (𝑡) =

𝑥𝑖 (𝑡, 𝜙) − 𝑥
𝑖
(𝑡, 𝜑)

 , 𝑖 = 1, 2, . . . , 𝑛,

𝑌
𝑗 (𝑡) =


𝑦
𝑗
(𝑡, 𝜙) − 𝑦

𝑗
(𝑡, 𝜑)


, 𝑗 = 1, 2, . . . , 𝑚.

(13)
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It follows from ((S
1
)–(S

3
)) that

𝐷
+
𝑋

𝑖 (𝑡)

≤ −𝑎
−

𝑖
𝑋

𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑌𝑗 (𝑡 − 𝑠) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

𝑠
+

𝑖𝑗𝑞

× ∫

∞

0

R (𝑠) (𝑓𝑗 (𝑥𝑗 (𝑡 − 𝑠, 𝜙)) 𝑓
𝑞
(𝑥

𝑞
(𝑡 − 𝑠, 𝜙))

− 𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝑠, 𝜑)) 𝑓

𝑞
(𝑥

𝑞
(𝑡 − 𝑠, 𝜙))

+ 𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝑠, 𝜑)) 𝑓

𝑞
(𝑥

𝑞
(𝑡 − 𝑠, 𝜙))

− 𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝑠, 𝜑)) 𝑓

𝑞
(𝑥

𝑞
(𝑡 − 𝑠, 𝜑))) 𝑑𝑠

≤ −𝑎
−

𝑖
𝑋

𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑌𝑗 (𝑡 − 𝑠) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗
∫

∞

0

R (𝑠) 𝑌𝑗 (𝑡 − 𝑠) 𝑑𝑠,

(14)

for 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛. Similarly, we have

𝐷
+
𝑌
𝑗 (𝑡) ≤ − 𝑏

−

𝑗
𝑌
𝑗 (𝑡) +

𝑚

∑

𝑗=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠)𝑋𝑖 (𝑡 − 𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖
∫

∞

0

R (𝑠)𝑋𝑖 (𝑡−𝑠) 𝑑𝑠,

(15)

for 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑚. Also,

𝑋
𝑖
(𝑡
𝑘
+ 0) =

𝐻𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
, 𝜙)) − 𝐻

𝑖𝑘
(𝑥

𝑖
(𝑡
𝑘
, 𝜑))



≤ 𝐻
𝑖𝑘
𝑋

𝑖
(𝑡
𝑘
) , 𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛,

𝑌
𝑗
(𝑡
𝑘
+ 0) =


𝐸
𝑗𝑘
(𝑦

𝑗
(𝑡
𝑘
, 𝜙)) − 𝐸

𝑗𝑘
(𝑦

𝑗
(𝑡
𝑘
, 𝜑))



≤ 𝐸
𝑗𝑘
𝑌
𝑗
(𝑡
𝑘
) , 𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑚.

(16)

Now define

𝑈
𝑖 (𝑡) = 𝑒

𝜀𝑡
(𝑋

𝑖 (𝑡))
𝑟
, 𝑖 = 1, 2, . . . , 𝑛,

𝑉
𝑗 (𝑡) = 𝑒

𝜀𝑡
(𝑌

𝑗 (𝑡))
𝑟

, 𝑗 = 1, 2, . . . , 𝑚.

(17)

By using Young inequality 𝑎𝑝𝑏𝑞 ≤ 𝑝𝑎+𝑞𝑏, where 𝑎, 𝑏, 𝑝, 𝑞 > 0

and 1/𝑝 + 1/𝑞 = 1, it follows from (14)-(15) that

𝐷
+
𝑈
𝑖 (𝑡)

≤ (𝜀 − 𝑟𝑎
−

𝑖
) 𝑈

𝑖 (𝑡)

+ 𝑟𝑒
𝜀𝑡

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗

× ∫

∞

0

K (𝑠) ((𝑋𝑖 (𝑡))
𝑟
)
(𝑟−1)/𝑟

((𝑌
𝑗 (𝑡 − 𝑠))

𝑟

)
1/𝑟

𝑑𝑠

+ 𝑟𝑒
𝜀𝑡

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

× ∫

∞

0

R (𝑠) ((𝑋𝑖 (𝑡))
𝑟
)
(𝑟−1)/𝑟

((𝑌
𝑗 (𝑡 − 𝑠))

𝑟

)
1/𝑟

𝑑𝑠

≤ (𝜀 − 𝑟𝑎
−

𝑖
+ (𝑟 − 1) 𝐺𝑖

) 𝑈
𝑖 (𝑡)

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑉
𝑗 (𝑡 − 𝑠) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗
∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑉
𝑗 (𝑡 − 𝑠) 𝑑𝑠,

(18)

for 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛. Similarly, we have

𝐷
+
𝑉
𝑗 (𝑡)

≤ (𝜀 − 𝑟𝑏
−

𝑗
+ (𝑟 − 1) 𝐹𝑗)𝑉𝑗 (𝑡)

+

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑈
𝑖 (𝑡 − 𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖
∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑈
𝑖 (𝑡 − 𝑠) 𝑑𝑠,

(19)

for 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑚. Also

𝑈
𝑖
(𝑡
𝑘
+ 0) ≤ 𝐻

𝑟

𝑖𝑘
𝑈
𝑖
(𝑡
𝑘
) , 𝑘 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛,

𝑉
𝑗
(𝑡
𝑘
+ 0) ≤ 𝐸

𝑟

𝑗𝑘
𝑉
𝑗
(𝑡
𝑘
) , 𝑘 ∈ Z, 𝑗 = 1, 2, . . . , 𝑚.

(20)

Consider the candidate Lyapunov-Krasovskii functional as
follows:

V (𝑡) = V
1 (𝑡) + V

2 (𝑡) , (21)
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where

V
1 (𝑡)

=

𝑛

∑

𝑖=1

𝜆
𝑖
[

[

𝑈
𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗

× ∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠]

]

,

V
2 (𝑡)

=

𝑛

∑

𝑗=1

𝜆
𝑛+𝑗

[𝑉
𝑗 (𝑡) +

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖

× ∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

× ∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠] .

(22)

When 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ Z, calculating the upper right Dini de-

rivative of V
1
(𝑡) along the solutions of system (1), we get

𝐷
+
V
1 (𝑡)

=

𝑛

∑

𝑖=1

𝜆
𝑖
[𝐷

+
𝑈
𝑖 (𝑡)

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(𝑉

𝑗 (𝑡) − 𝑉
𝑗 (𝑡 − 𝑠)) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

× ∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(𝑉

𝑗 (𝑡) − 𝑉
𝑗 (𝑡 − 𝑠)) 𝑑𝑠]

≤

𝑛

∑

𝑖=1

𝜆
𝑖
[ (𝜀 − 𝑟𝑎

−

𝑖
+ (𝑟 − 1) 𝐺𝑖

) 𝑈
𝑖 (𝑡)

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑑𝑠𝑉

𝑗 (𝑡)

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑑𝑠𝑉

𝑗 (𝑡)] .

(23)

Similarly, we have

𝐷
+
V
2 (𝑡)

≤

𝑛

∑

𝑗=1

𝜆
𝑛+𝑗

[ (𝜀 − 𝑟𝑏
−

𝑗
+ (𝑟 − 1) 𝐹𝑗)𝑉𝑗 (𝑡)

+

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
𝑑𝑠𝑈

𝑖 (𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
𝑑𝑠𝑈

𝑖 (𝑡)] .

(24)

Therefore, by Lemma 4, we obtain that

𝐷
+
V (𝑡) ≤ 𝐷

+
V
1 (𝑡) + 𝐷

+
V
2 (𝑡)

≤ −

𝑛

∑

𝑖=1

𝑃
𝑖 (𝜀) 𝑈𝑖 (𝑡) −

𝑚

∑

𝑗=1

𝑄
𝑗 (𝜀) 𝑉𝑗 (𝑡)

≤ 0.

(25)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z, we have

V (𝑡
𝑘
+ 0)

=

𝑛

∑

𝑖=1

𝜆
𝑖
[𝑈

𝑖
(𝑡
𝑘
+ 0)

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

𝑡𝑘+0

𝑡𝑘+0−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡𝑘+0

𝑡𝑘+0−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠] ,
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𝑛

∑

𝑗=1

𝜆
𝑛+𝑗

[𝑉
𝑗
(𝑡
𝑘
+ 0)

+

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

𝑡𝑘+0

𝑡𝑘+0−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡𝑘+0

𝑡𝑘+0−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠] ,

≤

𝑛

∑

𝑖=1

𝜆
𝑖
[

[

𝜂
𝑟

𝑘
𝑈
𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠]

]

,

𝑛

∑

𝑗=1

𝜆
𝑛+𝑗

[𝜂
𝑟

𝑘
𝑉
𝑗 (𝑡)

+

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

× ∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

𝑡

𝑡−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠]

≤ 𝜂
𝑟

𝑘
V (𝑡

𝑘
) .

(26)

Now, we claim that

V (𝑡
𝑘
+ 0) ≤ 𝜂

𝑟

𝑘
𝜂
𝑟

𝑘−1
⋅ ⋅ ⋅ 𝜂

𝑟

1
V (𝑡

0
) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡

𝑘
] , 𝑘 ∈ Z.

(27)

In fact, for 𝑡 ∈ (𝑡
0
, 𝑡

1
], noticing that 𝜂

1
≥ 1 and (25), we have

𝜂
𝑟

1
V (𝑡

1
) ≤ 𝜂

𝑟

1
V (𝑡

0
) . (28)

On the other hand, from (26), we have

V (𝑡
1
+ 0) ≤ 𝜂

𝑟

1
V (𝑡

1
) . (29)

Combining (28) and (29), we obtain

V (𝑡
1
+ 0) ≤ 𝜂

𝑟

1
V (𝑡

0
) , (30)

which implies that (27) holds for 𝑘 = 1. Assume that (27)
holds for 𝑘 = 𝑚, that is,

V (𝑡
𝑚
+ 0) ≤ 𝜂

𝑟

𝑚
𝜂
𝑟

𝑚−1
⋅ ⋅ ⋅ 𝜂

𝑟

1
V (𝑡

0
) . (31)

Then, for 𝑡 ∈ (𝑡
𝑚
, 𝑡

𝑚+1
], from (25), we have

V (𝑡
𝑚+1

) ≤ V (𝑡
𝑚
+ 0) . (32)

On the other hand, from (26), we have

V (𝑡
𝑚+1

+ 0) ≤ 𝜂
𝑟

𝑚+1
V (𝑡

𝑚+1
) . (33)

From (31)–(33), we obtain

V (𝑡
𝑚+1

+ 0) ≤ 𝜂
𝑟

𝑚+1
𝜂
𝑟

𝑚
⋅ ⋅ ⋅ 𝜂

𝑟

1
V (𝑡

0
) . (34)

This shows that (27) holds for 𝑘 = 𝑚 + 1. Hence, by
mathematical induction, (27) holds for all 𝑘 ∈ Z. Combining
(25) and (27), we obtain

V (𝑡) ≤ V (𝑡
𝑘
+ 0) ≤ 𝜂

𝑟

𝑘
𝜂
𝑟

𝑘−1
, ⋅ ⋅ ⋅ , 𝜂

𝑟

1
V (𝑡

0
) , (35)

for all 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], 𝑘 ∈ Z. Noticing that 𝜂𝑟

𝑘
≤ 𝑒

𝜃(𝑡𝑘−𝑡𝑘−1), 𝑘 ∈ Z

in (𝑆
6
), we have

V (𝑡) ≤ V (𝑡
0
) 𝑒

𝜃(𝑡𝑘−𝑡𝑘−1)𝑒
𝜃(𝑡𝑘−1−𝑡𝑘−2) ⋅ ⋅ ⋅ 𝑒

𝜃(𝑡1−𝑡0) ≤ V (0) 𝑒
𝜃𝑡
,

(36)

for all 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], 𝑘 ∈ Z. On the other hand, it follows from

(21) that

V (𝑡)

≥ 𝜆
− [

[

𝑛

∑

𝑖=1

𝑈
𝑖 (𝑡) +

𝑚

∑

𝑗=1

𝑉
𝑗 (𝑡)

]

]

= 𝜆
− [

[

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡, 𝜙) − 𝑥
𝑖
(𝑡, 𝜑)


𝑟

+

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡, 𝜙) − 𝑦

𝑗
(𝑡, 𝜑)



𝑟
]

]

𝑒
𝜀𝑡
,

V (0)

=

𝑛

∑

𝑖=1

𝜆
𝑖
[

[

𝑈
𝑖 (0)

+

𝑚

∑

𝑗=1

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠



8 Journal of Applied Mathematics

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑉
𝑗 (𝑧) 𝑑𝑧) 𝑑𝑠]

]

+

𝑛

∑

𝑗=1

𝜆
𝑛+𝑗

[𝑉
𝑗 (0)

+

𝑛

∑

𝑖=1

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑈
𝑖 (𝑧) 𝑑𝑧) 𝑑𝑠]

≤ 𝜆
+
Λ
{

{

{

𝑚

∑

𝑗=1

sup
𝑠∈(−∞,0]


𝜙
𝑥𝑖
(𝑠) − 𝜓

𝑥𝑖
(𝑠)



𝑟

+

𝑛

∑

𝑖=1

sup
𝑠∈(−∞,0]


𝜙
𝑦𝑗
(𝑠) − 𝜓

𝑦𝑗
(𝑠)



𝑟}

}

}

,

(37)

where

𝜆
+
= max {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛+𝑚
} ,

𝜆
−
= min {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛+𝑚
} ,

Λ = max{[1 +

𝑛

∑

𝑖=1

max
1≤𝑗≤𝑚

𝑑
+

𝑗𝑖
𝐿
𝑔

𝑖
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑒
𝜀𝑧
𝑑𝑧)𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑝=1

max
1≤𝑗≤𝑚

(𝑒
+

𝑗𝑖𝑝
+ 𝑒

+

𝑗𝑝𝑖
)𝑀

𝑔

𝑝
𝐿
𝑔

𝑖

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑒
𝜀𝑧
𝑑𝑧)𝑑𝑠] ,

[

[

1 +

𝑚

∑

𝑗=1

max
1≤𝑖≤𝑛

𝑐
+

𝑖𝑗
𝐿
𝑓

𝑗
∫

∞

0

K (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑒
𝜀𝑧
𝑑𝑧)𝑑𝑠

+

𝑚

∑

𝑗=1

𝑚

∑

𝑞=1

max
1≤𝑖≤𝑛

(𝑠
+

𝑖𝑗𝑞
+ 𝑠

+

𝑖𝑞𝑗
)𝑀

𝑓

𝑞
𝐿
𝑓

𝑗

×∫

∞

0

R (𝑠) 𝑒
𝜀𝑠
(∫

0

−𝑠

𝑒
𝜀𝑧
𝑑𝑧)𝑑𝑠]

]

}

}

}

.

(38)

Together with (36)-(37), we have
𝑛

∑

𝑖=1

𝑥𝑖 (𝑡, 𝜙) − 𝑥
𝑖
(𝑡, 𝜑)


𝑟
+

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡, 𝜙) − 𝑦

𝑗
(𝑡, 𝜑)



𝑟

≤
𝜆
+

𝜆−
Λ𝑒

−(𝜀−𝜃)𝑡𝜙 − 𝜑

𝑟

Δ
,

(39)

for all 𝑡 ≥ 0. LetM = ((𝜆
+
/𝜆

−
)Λ)

1/𝑟, 𝛼 = (𝜀 − 𝜃)/𝑟 and then
we have

𝑧(𝑡, 𝜙) − 𝑧 (𝑡, 𝜑)
𝑟 ≤ M𝑒

−𝛼𝑡𝜙 − 𝜑
Δ. (40)

This completes the proof.

In the following, we will study the existence, uniqueness,
and global exponential stability of periodic solution of system
(1) by exploiting Lemmas 5 and 6.

Theorem 7. Assume that assumptions (S
1
)–(S

6
) hold, then

system (1) has a unique 𝜔-periodic solution, which is globally
exponentially stable.

Proof. Firstly, we prove the existence of periodic solu-
tion of system (1). To this end, let 𝑧(𝑡, 𝜑) = (𝑥

1
(𝑡, 𝜑),

𝑥
2
(𝑡, 𝜑), . . . , 𝑥

𝑛
(𝑡, 𝜑), 𝑦

1
(𝑡, 𝜑), 𝑦

2
(𝑡, 𝜑), . . . , 𝑦

𝑚
(𝑡, 𝜑))

𝑇 be an
arbitrary solution of system (1) through (0, 𝜑), where
𝜑 ∈ 𝐶

∗. Define 𝑧(𝑡, 𝜙) = 𝑧(𝑡 + 𝜔, 𝜑), where
𝜙 = 𝑧(𝑠+𝜔, 𝜑), 𝑠 ≤ 0. We can know that 𝜙 ∈ 𝐶

∗ and 𝑧(𝑡, 𝜙) =

(𝑥
1
(𝑡, 𝜙), 𝑥

2
(𝑡, 𝜙), . . . , 𝑥

𝑛
(𝑡, 𝜙), 𝑦

1
(𝑡, 𝜙), 𝑦

2
(𝑡, 𝜙), . . . , 𝑦

𝑚
(𝑡, 𝜙))

𝑇

is also a solution of system (1) through (0, 𝜙). By virtue of
Lemma 6, we have

{

{

{

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡, 𝜙) − 𝑥
𝑖
(𝑡, 𝜑)


𝑟
+

𝑚

∑

𝑗=1

𝑦𝑖 (𝑡, 𝜙) − 𝑦
𝑖
(𝑡, 𝜑)


𝑟
}

}

}

1/𝑟

≤ M𝑒
−𝛼𝑡𝜙 − 𝜑

Δ,

(41)

for 𝑡 ≥ 0. So, we have

{

{

{

𝑛

∑

𝑖=1

𝑥𝑖 (𝑡 + 𝜔, 𝜑) − 𝑥
𝑖
(𝑡, 𝜑)


𝑟

+

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡 + 𝜔, 𝜑) − 𝑦

𝑗
(𝑡, 𝜑)



𝑟}

}

}

1/𝑟

≤ M𝑒
−𝛼𝑡𝜙 − 𝜑

Δ,

(42)

for 𝑡 ≥ 0. It follows from Lemma 5 that
𝑛

∑

𝑖=1

𝑥𝑖 (𝑡 + 𝜔, 𝜑) − 𝑥
𝑖
(𝑡, 𝜑)

 +

𝑚

∑

𝑗=1


𝑦
𝑗
(𝑡 + 𝜔, 𝜑) − 𝑦

𝑗
(𝑡, 𝜑)



≤ (𝑛 + 𝑚)
1−1/𝑟

M𝑒
−𝛼𝑡𝜙 − 𝜑

Δ.

(43)
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Noticing that for 𝑖 = 1, 2, . . . , 𝑛,

𝑥
𝑖
(𝑡 + 𝑘𝜔, 𝜑)

= 𝑥
𝑖
(𝑡, 𝜑) +

𝑘

∑

𝑠=1

[𝑥
𝑖
(𝑡 + 𝑠𝜔, 𝜑) − 𝑥

𝑖
(𝑡 + (𝑠 − 1) 𝜔, 𝜑)] .

(44)

It follows from (43)-(44) that

lim
𝑘→∞

𝑥
𝑖
(𝑡 + 𝑘𝜔, 𝜑)

= 𝑥
𝑖
(𝑡, 𝜑) + lim

𝑘→∞

𝑘

∑

𝑠=1

[𝑥
𝑖
(𝑡 + 𝑠𝜔, 𝜑) − 𝑥

𝑖
(𝑡 + (𝑠 − 1) 𝜔, 𝜑)]

≤ 𝑥
𝑖
(𝑡, 𝜑) + (𝑛 + 𝑚)

(1−1/𝑟)
M

𝜙 − 𝜑
Δ lim

𝑘→∞

𝑘

∑

𝑠=1

𝑒
−𝛼(𝑡+(𝑠−1)𝜔)

≤ 𝑥
𝑖
(𝑡, 𝜑) + (𝑛 + 𝑚)

(1−1/𝑟)
M𝑒

−𝛼𝑡𝜙 − 𝜑
Δ

∞

∑

𝑠=1

𝑒
−𝛼(𝑠−1)𝜔

< ∞,

(45)

which implies that lim
𝑘→∞

𝑥
𝑖
(𝑡+𝑘𝜔, 𝜑) exists. Similar to (44)

and (45), we obtain that lim
𝑘→∞

𝑦
𝑗
(𝑡 + 𝑘𝜔, 𝜑) exists. Let

𝑧
∗
(𝑡, 𝜑

∗
)

= (𝑥
∗

1
(𝑡, 𝜑

∗
) , 𝑥

∗

2
(𝑡, 𝜑

∗
) , . . . , 𝑥

∗

𝑛
(𝑡, 𝜑

∗
) ,

𝑦
∗

1
(𝑡, 𝜑

∗
) , 𝑦

∗

2
(𝑡, 𝜑

∗
) , . . . , 𝑦

∗

𝑚
(𝑡, 𝜑

∗
))

𝑇
,

(46)

where lim
𝑘→∞

𝑥
𝑖
(𝑡 + 𝑘𝜔, 𝜑) = 𝑥

∗

𝑖
(𝑡, 𝜑

∗
), lim

𝑘→∞
𝑦
𝑗
(𝑡 +

𝑘𝜔, 𝜑) = 𝑦
∗

𝑗
(𝑡, 𝜑

∗
) for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. Then

𝑧
∗
(𝑡, 𝜑

∗
) is an 𝜔-periodic solution for system (1).

Secondly, we prove the uniqueness of periodic solu-
tion of system (1). Assume that 𝑧(𝑡, 𝜁) = (𝑥

1
(𝑡, 𝜁),

𝑥
2
(𝑡, 𝜁), . . . , 𝑥

𝑛
(𝑡, 𝜁), 𝑦

1
(𝑡, 𝜁), 𝑦

2
(𝑡, 𝜁), . . . , 𝑦

𝑚
(𝑡, 𝜁))

𝑇 is another
𝜔-periodic solution of system (1) through (0, 𝜁), where 𝜁 ∈

𝐶
∗. By a minor modification of the proof of (43), we have

𝑛

∑

𝑖=1

𝑥
∗

𝑖
(𝑡, 𝜑

∗
) − 𝑥

𝑖 (𝑡, 𝜁)
 +

𝑚

∑

𝑗=1


𝑦
∗

𝑗
(𝑡, 𝜑

∗
) − 𝑦

𝑗 (𝑡, 𝜁)


=

𝑛

∑

𝑖=1

𝑥
∗

𝑖
(𝑡 + 𝑘𝜔, 𝜑

∗
) − 𝑥

𝑖 (𝑡, 𝜁)


+

𝑚

∑

𝑗=1


𝑦
∗

𝑗
(𝑡 + 𝑘𝜔, 𝜑

∗
) − 𝑦

𝑗 (𝑡, 𝜁)


≤ (𝑛 + 𝑚)
1−1/𝑟

M𝑒
−𝛼(𝑡+𝑘𝜔)𝜑

∗
− 𝜁

Δ, 𝑡 ≥ 0.

(47)

Taking 𝑘 → ∞, we have

𝑥
∗

𝑖
(𝑡, 𝜑

∗
) = 𝑥

𝑖 (𝑡, 𝜁) , 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

𝑦
∗

𝑗
(𝑡, 𝜑

∗
) = 𝑦

𝑗 (𝑡, 𝜁) , 𝑡 ≥ 0, 𝑗 = 1, 2, . . . , 𝑚,

(48)

which implies that system (1) has a unique 𝜔-periodic
solution.

Finally, since 𝑧
∗
(𝑡, 𝜑

∗
) is a unique 𝜔-periodic solution

of system (1), let 𝑧(𝑡, 𝜓) be any other solution of system (1)
through (0, 𝜓). From Lemma 6, we obtained that

𝑧 (𝑡, 𝜓) − 𝑧
∗
(𝑡, 𝜑

∗
)
𝑟 ≤ M𝑒

−𝛼𝑡𝜓 − 𝜑
∗Δ, 𝑡 ≥ 0,

(49)

where 𝜓, 𝜑
∗

∈ 𝐶
∗ and 𝛼,M are the same as defined in

Lemma 6. It follows from Definition 2 that the 𝜔-periodic
solution 𝑧

∗
(𝑡, 𝜑

∗
) is globally exponentially stable. Up to

now, we conclude that system (1) has a unique 𝜔-periodic
solution 𝑧

∗
(𝑡, 𝜑

∗
), which is globally exponentially stable.This

completes the proof.

Remark 8. In assumption (S
5
), we only assume that the

impulsive operators 𝐻
𝑖𝑘
(⋅) and 𝐸

𝑗𝑘
(⋅) are Lipschitz continu-

ous, which remove the usual assumptions that the bound-
edness and linearity of the impulsive operators are required
in [18, 19, 21, 29–31]. Thus, our results have wider adaptive
range. Particularly, if we take the linear operators Δ𝑥

𝑖
(𝑡
𝑘
) =

−𝛾
𝑖𝑘
𝑥
𝑖
(𝑡
−

𝑘
) and Δ𝑦

𝑗
(𝑡
𝑘
) = −𝛼

𝑗𝑘
𝑦
𝑗
(𝑡
−

𝑘
) as considered in [18, 19,

21, 29–31], that is,

(S
7
) { 𝐻𝑖𝑘(𝑥𝑖(𝑡

−

𝑘
)) = (1−𝛾𝑖𝑘)𝑥𝑖(𝑡

−

𝑘
), 𝛾𝑖𝑘 ∈ (0,2), 𝑖 = 1,2,...,𝑛, 𝑘 = 1,2,...,

𝐸𝑗𝑘(𝑦𝑗(𝑡
−

𝑘
)) = (1−𝛼𝑗𝑘)𝑦𝑗(𝑡

−

𝑘
), 𝛼𝑗𝑘 ∈ (0,2), 𝑗 = 1,2,...𝑚, 𝑘 = 1,2,...,

then we have 𝐻
𝑖𝑘

= |1 − 𝛾
𝑖𝑘
| < 1, 𝐸

𝑗𝑘
= |1 − 𝛼

𝑗𝑘
| < 1. So we

can choose 𝜂
𝑘
= 1 and 𝜃 = 0 to satisfy assumption (S

6
). In

this case, we have the following interesting corollary.

Corollary 9. Assume that assumptions ((S
1
)–(S

4
)) and (S

7
)

hold; then system (1) has a unique 𝜔-periodic solution, which
is globally exponentially stable.

Remark 10. Note that when 𝑡
𝑘
− 𝑡

𝑘−1
= ∞, 𝑘 = 1, 2, . . . in

assumption (S
6
), which implies that there are no impulsive

effects on system (1). Correspondingly, we call system (1) an
impulse-free. In this case, we have the following corollary.

Corollary 11. Assume that assumptions ((S
1
)–(S

4
)) hold; then

the impulse-free system (1) has a unique 𝜔-periodic solution,
which is globally exponentially stable.

Remark 12. Clearly, based on the general ‖ ⋅ ‖
𝑟
and Lemma 5,

a general criterion ensuring the existence of periodic solu-
tion and its global exponential stability of system (1) with
and without impulses has been established. Compared with
results in [6, 7, 15–17], it is easy to see that our results are
extended and improved because their results can be viewed as
the special case of 𝑟 = 1 in assumption (S

4
). In addition, since

the nonnetwork parameter 𝑟 is introduced in the condition
(S

4
), it can allowmuch broader applications for designing the

circuit of a convergent impulsive network.

Remark 13. In assumption (S
3
), if the kernel is a delta

function of the form:
𝐾
𝑖𝑗 (𝑠) = 𝑅

𝑖𝑗𝑞 (𝑠) = 𝛿 (𝑠 − 𝜏) ,

�̃�
𝑗𝑖 (𝑠) = �̃�

𝑗𝑖𝑝 (𝑠) = 𝛿 (𝑠 − 𝜎) ,

(50)
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where 𝜏 ≥ 0 and 𝜎 ≥ 0, then system (1) with continuously
distributed delays reduces to the model with discrete delays
in [29]. According to Lemma 3, we know that the condition
(H

5
) of Theorem 3.1 in [29] implies that Ω with 𝑟 = 1 is an

𝑀-matrix but not vice versa. Thus, our results are new and
complementary to their results.

4. An Example

In this section, an example and its numerical simulation are
given to illustrate the correctness of the obtained theoretical
results.
An Example. Consider the following high-order BAM neural
networks with infinite distributed delays and impulses:

𝑑𝑥
1 (𝑡)

𝑑𝑡

= − (8 + sin 2𝑡) 𝑥1 (𝑡)

+ (2 + cos 2𝑡) ∫
∞

0

𝑒
−𝑠
𝑓
1
(𝑦

1 (𝑡 − 𝑠)) 𝑑𝑠

+ 2 sin 2𝑡 ∫

∞

0

𝑠𝑒
−𝑠
𝑓
1
(𝑦

1 (𝑡 − 𝑠)) 𝑓1 (𝑦1 (𝑡 − 𝑠)) 𝑑𝑠

+ cos 2𝑡, 𝑡 ̸= 𝑡
𝑘
,

𝑥
1
(𝑡

+

𝑘
)

= 𝑥
1
(𝑡

−

𝑘
) + Δ𝑥

1
(𝑡
𝑘
) = 𝐻

1𝑘
(𝑥

1
(𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . ,

𝑑𝑦
1 (𝑡)

𝑑𝑡

= − (10 − 3 cos 2𝑡) 𝑦1 (𝑡)

+ (1 + sin 2𝑡) ∫

∞

0

𝑒
−𝑠
𝑔
1
(𝑥

1 (𝑡 − 𝑠)) 𝑑𝑠

+ 2 cos 2𝑡 ∫
∞

0

𝑠𝑒
−𝑠
𝑔
1
(𝑥

1 (𝑡 − 𝑠)) 𝑔1 (𝑥1 (𝑡 − 𝑠)) 𝑑𝑠

+ sin 2𝑡, 𝑡 ̸= 𝑡
𝑘
,

𝑦
1
(𝑡

+

𝑘
)

= 𝑦
1
(𝑡

−

𝑘
) + Δ𝑦

1
(𝑡
𝑘
) = 𝐸

1𝑘
(𝑦

1
(𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . ,

(51)

where 𝑓
1
(𝑢) = 𝑔

1
(𝑢) = tanh(𝑢). By simple calculation, we

obtain that 𝐿𝑔
1
= 𝐿

𝑓

1
= 𝑀

𝑓

1
= 𝑀

𝑔

1
= 1 and

Σ = (
7 −7

−6 6 + 𝑟
) . (52)

If the integer 𝑟 ≥ 1, thenΣ is an𝑀-matrix.Thus, assumptions
((S

1
)–(S

4
)) are satisfied for system (51). For the impulsive

part, the following two cases are considered.

Case 1. When 𝑡
𝑘
− 𝑡

𝑘−1
= ∞, 𝑘 = 1, 2, . . ., by Corollary 11,

we conclude that the impulse-free system (51) has a unique
𝜋-periodic solution, which is globally exponentially stable.

Case 2. When the impulsive parts are taken as the nonlinear
operators such that Δ𝑥

1
(𝑡
𝑘
) = 𝛾 tan (𝑥

1
(𝑡
−

𝑘
)), 𝛾 ∈ (0, 2) and

Δ𝑦
1
(𝑡
𝑘
) = 𝛾 tan (𝑦

1
(𝑡
−

𝑘
)), 𝛾 ∈ (0, 2), that is,

𝐻
1𝑘

(𝑥
𝑖
(𝑡

−

𝑘
)) = 𝑥

1
(𝑡

−

𝑘
) − 𝛾 tan (𝑥

1
(𝑡

−

𝑘
)) ,

𝛾 ∈ (0, 2) , 𝑘 = 1, 2, . . . ,

𝐸
1𝑘

(𝑦
𝑗
(𝑡

−

𝑘
)) = 𝑦

1
(𝑡

−

𝑘
) − 𝛾 tan (𝑦

1
(𝑡

−

𝑘
)) ,

𝛾 ∈ (0, 2) , 𝑘 = 1, 2, . . . ,

(53)

which satisfy the assumption (S
5
) with Lipschitz constants

𝐻
1𝑘

= 𝐸
1𝑘

≤ |1 − 𝛾| < 1, 𝑘 = 1, 2, . . .. So we can choose
𝜂
𝑘
= 1 and 𝜃 = 0 to satisfy the assumption (S

6
). According

toTheorem 7, we conclude that the impulsive system (51) has
a unique 𝜋-periodic solution, which is globally exponentially
stable. However, in this case, results in [18, 19, 21, 29–31] are
ineffective because the function tan (⋅) is nonlinear.Moreover,
the condition (H

5
) of Theorem 3.1 in [29] cannot be applied

to system (51), since 𝑏−
1
− 𝑐

+

11
𝐿
𝑓

1
− 2𝑠

+

111
𝑀

𝑓

1
𝐿
𝑓

1
= 0 ̸> 0.

5. Conclusions

In this paper, we have studied the existence, uniqueness,
and global exponential stability of periodic solution for a
kind of high-order BAM neural networks with continuously
distributed delays and general impulses. It should be noted
that some extended and improved criteria have been derived
by exploiting the general ‖ ⋅ ‖

𝑟
, Lemma 5, and the Lyapunov

functional method. In addition, these criteria are in terms of
𝑀-matrix, which can be easily checked by many equivalent
conditions listed in [32]. Finally, an example and its numerical
simulation are given to show the feasibility and correctness of
the obtained results.
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