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Errors-in-variables (EIV) model is a kind of model with not only noisy output but also noisy input measurements, which can be
used for systemmodeling in many engineering applications. However, the identification for EIVmodel is much complicated due to
the input noises. This paper focuses on the adaptive identification problem of real-time EIV models. Some derivation errors in an
accuracy research of the popular Frisch scheme used for EIV identification have been pointed out in a recent study. To solve the same
modeling problem, a new algorithm is proposed in this paper. A Moving Average (MA) process is used as a substitute for the joint
impact of the mutually independent input and output noises, and then system parameters and the noise properties are estimated
in the view of the time domain and frequency domain separately. A recursive form of the first step calculation is constructed to
improve the calculation efficiency and online computation ability. Another advantage of the proposed algorithm is its applicableness
to different input processes situations. Numerical simulations are given to demonstrate the efficiency and robustness of the new
algorithm.

1. Introduction

In the field of engineering, modeling is an essential issue. In
most cases, the systems are modeled by stochastic models in
which the input signals are assumed to be measured exactly
and all the disturbed noises are added to the output signals;
that is, only the outputmeasurements are noisy.Thesemodels
are called “errors-in-equation models.” However, there are
always signals beyond our control that also affect the input
of the systems; some of them cannot be included in the
output noises. Therefore, it is also necessary to consider
the modeling problem for those systems with noisy input-
output measurements, especially when we concern the actual
physical laws of the process rather than the prediction of
the future behaviour [1]. This kind of model whose input
and output measurements are both containing noise is called
“errors-in-variables (EIV) model [2].”

The identification of EIV models has received a lot of
attention during the past decades. By far, EIV models have

been used in numerous applications, such as the modeling
problems in econometrics, computer vision, biomedicine,
chemical and image reconstruction, spectrum estimation,
speech analysis, noise cancelation, and digital communica-
tions [3–8].

In EIV models, the noise in input measurements cannot
be equivalent to the output error, which makes the identifi-
cation of EIV models much more difficult. The identifiability
of EIV dynamic models was analyzed in [9, 10]. It is pointed
out that EIV dynamic models cannot be uniquely identified
from the second-order properties [9]. Thus specific prior
knowledge is needed to achieve the identifiability. Once the
identifiability is established, estimation algorithms can be
developed [10]. Owing to the noisy input measurements
in the EIV models, the standard least squares method for
errors-in-equation models cannot yield consistent estimates
anymore. To overcome this problem, a bias-compensated
least squares (BCLSs) principle was proposed in [4]. On
the basis of BCLS principle, various algorithms have been
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developed, such as the Frisch scheme-based algorithms [7],
the KL algorithm [8], ECLS [9], BELS [10], and others in [11–
15].

Although there are such a number of approaches for
identifying different EIV models, the convergence of the
algorithms has always been a difficulty. Only a few literatures
have tried to solve this problem [12, 15, 16]. In [16], the accu-
racy of Frisch scheme for EIV identification was analyzed,
in which the estimates of the system parameters as well as
the noise variance were both proved asymptotically Gaussian
distributed by linearizing three primary equations in this
scheme. This conclusion can be perceived as the theoretical
support of the Frisch scheme-based algorithms. Based on
this work, continued extensions and real applications have
sprung up recently [17–20], which reaffirms the value of this
particular analysis result. However, the analysis in [16] needs
a condition that the estimates of the parameters are close to
their true values, which is not clear how to be guaranteed.
A counterexample that could not converge was present in
[21], and in addition, some derivation errors of [16] were
found and discussed at the same time. Furthermore, another
method was provided to identify the EIV model in [21].
But comparing to the model concerned in [16], due to the
difficulty of the identification problem, the one considered in
[21] was a simpler onewith a stronger condition that the input
and output noise processes had the same variance, which has
been hampering its application in some degree.

The purpose of this paper is to consider how to avoid the
restrict condition in [21]; in other words, we are trying to
solve the samemodeling problem as in [16], that is, to propose
an identification algorithm for the modeling of dynamic EIV
systemswith independent input and output noises to estimate
both the unknown system parameters and the noise signals.
In order to achieve this purpose, we used a two-step method:
in Step 1, the original model is rewritten into another form
to get the system parameters in the time domain; in Step 2,
the noise variances are calculated in the frequency domain.
Moreover, the recursive form of the proposed method will be
presented to improve its operational efficiency and enhance
its online applicability.

The structure of the paper is as follows. In Section 2, the
concerned model is described in detail. The new identifica-
tion algorithm is presented in Section 3. Some simulations
are given in Section 4 to illustrate the identification accuracy,
the convergence rate, and the antinoise performance. Finally,
conclusion remarks are given in Section 5.

2. Problem Formulation

A basic dynamic EIV system is shown in Figure 1.
Unlike the normal errors-in-equation model, as men-

tioned before, the EIV model has noise in both input
measurements and output measurements.The immeasurable
true input and output processes 𝑢

0
(𝑡) and𝑦

0
(𝑡) are linked by a

dynamic system, which can be a linear or a nonlinear system
in different applications. So far, most of the related studies
are focused on the linear systems, which is also the focus of
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Figure 1: A basic errors-in-variables system.
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are the polynomials in the backward shift operator 𝑧. The
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}are the unknown system param-
eters to be identified, while the measured variables 𝑢(𝑡) and
𝑦(𝑡) are disturbed by the unknown noises �̃�(𝑡) and 𝑦(𝑡). Thus
the input and output measurements are

𝑢 (𝑡) = 𝑢
0
(𝑡) + �̃� (𝑡) , 𝑦 (𝑡) = 𝑦

0
(𝑡) + 𝑦 (𝑡) . (3)

After introducing the notations
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,

(4)

the EIV system can be described as the following model:

𝑦 (𝑡) = 𝜑 (𝑡)
𝑇
𝜃 + 𝐴 (𝑧) 𝑦 (𝑡) − 𝐵 (𝑧) �̃� (𝑡) . (5)

To ensure the identifiability, we list some assumptions first.

(A1) TheEIV system is asymptotically stable, whichmeans
that there is no zero of 𝐴(𝑧) inside the unit circle.

(A2) The noises �̃�(𝑡) and 𝑦(𝑡) are mutually independent
and also independent of the true input and output
signals 𝑢

0
(𝑡) and 𝑦

0
(𝑡).

(A3) �̃�(𝑡) and 𝑦(𝑡) are white noises with zero mean and
independent variances 𝜆

𝑢
and 𝜆

𝑦
.

The problem we need to solve is to estimate the system
parameter vector 𝜃 with the help of the measured regressor
vector 𝜑(𝑡). Furthermore, considering that a noise process
can be described by the mean and variance, to identify the
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zero-mean input and output noises is simplified to identify
the variances.Therefore, except for the systemparameters, we
also want to estimate the output and input noise variances 𝜆

𝑦

and 𝜆
𝑢
. In the following section, we will give an algorithm

with two independent steps to fulfill the two aspects of the
estimate requirements.

3. Identification Algorithms

As mentioned before, the identification for EIV system is
much more difficult because the input and output noises
are unknown. For the EIV system described in Section 2,
to overcome the influence of the input noise, we will use
anotherMA process {𝑤(𝑡)} as a substitute for the joint impact
of the mutually independent input and output noises, as
twomutually independent sequences of independent random
variables can be represented as an MA process which has
the same spectra with the two jointly sequences [22]. Then
the system can be modified as an ARMAX model, and what
need to do is changed to estimate the system parameters
of the new model and to determine the variances of the
input/output noises in terms of {𝑤(𝑡)}. Thus a two-step
recursive estimation algorithm can be constructed to identify
the system parameters 𝜃 and the noise variances 𝜆

𝑦
and 𝜆

𝑢
,

respectively.
Step 1. for the time 𝑡, we used the obtained estimation of𝑤(𝑡−
1) to estimate the parameters and get the current estimates
𝜃(𝑡) and 𝑤(𝑡).
Step 2. These results are utilized to calculate the estimates of
the noise variance 𝜆

𝑦
(𝑡) and 𝜆

𝑢
(𝑡).

In the following, we will give the algorithm followed by
proof.

Step 1 (estimation for the unkown system parameter 𝜃). For
convenience, denote the last two terms of (5) by V(𝑡), that is,

V (𝑡) = 𝐴 (𝑧) 𝑦 (𝑡) − 𝐵 (𝑧) �̃� (𝑡) , (6)

where �̃�(𝑡) and 𝑦(𝑡) are mutually independent with

𝐸𝑦 (𝑡) = 𝐸�̃� (𝑡) = 0, 𝐸𝑦
2
(𝑡) = 𝜆

𝑦
,

𝐸𝑦
2
(𝑡) = 𝜆

𝑢
.

(7)

Introduce an MA(𝑛
𝑐
) process

𝑤 (𝑡) = 𝑒 (𝑡) + 𝑐1
𝑒 (𝑡 − 1) + ⋅ ⋅ ⋅ + 𝑐𝑛

𝑐

𝑒 (𝑡 − 𝑛
𝑐
) , (8)

where {𝑒(𝑡)} is white noise with

𝐸𝑒 (𝑡) = 0, 𝐸𝑒
2
(𝑡) = 𝜆𝑒

,

𝑛
𝑐
= max {𝑛

𝑎
, 𝑛
𝑏
} .

(9)

It can be shown that we can find a pair of {𝑐
𝑖
, 0 ≤ 𝑖 ≤ 𝑛

𝑐
}

and 𝜆
𝑒
such that {𝑤(𝑡)} and {V(𝑡)} have the same spectra [22],

which means that {V(𝑡)} can be represented by {𝑤(𝑡)} in (8) as

𝑦 (𝑡) = 𝜑 (𝑡)
𝑇
𝜃 + 𝑤 (𝑡) . (10)

The {𝑐
𝑖
, 0 ≤ 𝑖 ≤ 𝑛

𝑐
} and 𝜆

𝑒
are intermediate variables.

For the new model (10), denote a new parameter vector 𝜃
and a new regressor vector 𝜑(𝑡) by

𝜃 = (𝜃
𝑇
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
𝑐

)

𝑇

, (11)

𝜑 (𝑡) = (𝜑 (𝑡)
𝑇
, 𝑒 (𝑡 − 1) , . . . , 𝑒 (𝑡 − 𝑛

𝑐
))

𝑇

, (12)

and then the EIV system (5) can be rewritten as

𝑦 (𝑡) = 𝜑 (𝑡)
𝑇
𝜃 + 𝑒 (𝑡) . (13)

In this step, we will give a recursive algorithm to identify (13).
The covariance matrix of the regressor vector 𝜑(𝑡) and

output variables 𝑦(𝑡) is denoted by

𝑅
𝜑
= 𝐸𝜑 (𝑖) 𝜑 (𝑖)

𝑇
,

𝑟
𝜑𝑦
= 𝐸𝜑 (𝑖) 𝑦 (𝑖) .

(14)

For convenience, introduce

�̂�
𝜑 (
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∑

𝑖=1

𝜑 (𝑖) 𝜑 (𝑖)
𝑇
, (15)

𝑟
𝜑𝑦 (
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𝑡

∑

𝑖=1

𝜑 (𝑖) 𝑦 (𝑖) . (16)

Assume that the input {𝑢(𝑡)} is a stationary process; in the
calculation, we can use the algebrameans �̂�

𝜑
(𝑡)/𝑡 and 𝑟

𝜑𝑦
(𝑡)/𝑡

instead of the mathematical expectations 𝑅
𝜑
and 𝑟
𝜑𝑦

in (14),
as by ergodicity, we have
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𝜑
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→ 𝑅
𝜑
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Lemma 1 (Matrix Inversion Formula [23]). For the matrices
𝐴 ∈ 𝑅

𝑛×𝑛, 𝐶 ∈ 𝑅
𝑛×1, and 𝐷 ∈ 𝑅

𝑛×1, the inverse matrix of
𝐵 = 𝐴 + 𝐶𝐷

𝑇 is

(𝐴 + 𝐶𝐷
𝑇
)

−1

= 𝐴
−1
− 𝑎
−1
𝐴
−1
𝐶𝐷
𝑇
𝐴
−1
, (18)

where 𝑎 = 1 + 𝐷𝑇𝐴−1𝐶.

Theorem 2. For system (13), under the assumptions (A1)–
(A3), the parameter vector 𝜃 can be estimated recursively as
follows with a large 𝑃(0) and arbitrary 𝜃(𝑡):

𝜃 (𝑡) = 𝜃 (𝑡 − 1) + 𝑎
−1
(𝑡) 𝑃 (𝑡 − 1)

̂
𝜑 (𝑡)

× [𝑦 (𝑡) −
̂
𝜑 (𝑡)

𝑇

𝜃 (𝑡 − 1)] ,

𝑃 (𝑡) = 𝑃 (𝑡 − 1) − 𝑎
−1
(𝑡) 𝑃 (𝑡 − 1)

̂
𝜑 (𝑡)

̂
𝜑 (𝑡)

𝑇

𝑃 (𝑡 − 1) ,

𝜀 (𝑡) = 𝑦 (𝑡) −
̂
𝜑 (𝑡)

𝑇

𝜃 (𝑡) ,

̂
𝜑 (𝑡) = (𝜑 (𝑡)

𝑇
, 𝜀 (𝑡 − 1) , . . . , 𝜀 (𝑡 − 𝑛𝑐

))

𝑇

,

(19)

where 𝑎(𝑡) = 1 + ̂𝜑(𝑡)
𝑇

𝑃(𝑡 − 1)
̂
𝜑(𝑡).
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Proof. Like the least squares methods, we use the covariance
matrix for help. By multiplying with 𝜑(𝑡) to the systemmodel
(13), we have

𝐸𝜑 (𝑡) 𝑦 (𝑡) − 𝐸𝜑 (𝑡) 𝜑 (𝑡)
𝑇
𝜃 = 𝐸𝜑 (𝑡) 𝑒 (𝑡) , (20)

with assumptions (A2) and (A3) which can be rewritten as

𝑅
𝜑
𝜃 = 𝑟
𝜑𝑦
. (21)

Replacing 𝑅
𝜑
and 𝑟
𝜑𝑦

with �̂�
𝜑
(𝑡)/𝑡 and 𝑟

𝜑𝑦
(𝑡)/𝑡 in (15) and

(16), respectively, as mentioned before, one has

�̂�
𝜑 (
𝑡) 𝜃 = 𝑟𝜑𝑦 (

𝑡) . (22)

We note that (15) and (16) imply

�̂�
𝜑
(𝑡) = �̂�

𝜑
(𝑡 − 1) + 𝜑 (𝑡) 𝜑 (𝑡)

𝑇
,

𝑟
𝜑𝑦
(𝑡) = 𝑟

𝜑𝑦
(𝑡 − 1) + 𝜑 (𝑡) 𝑦 (𝑡) .

(23)

Then on condition that �̂�
𝜑
(𝑡) is reversible, 𝜃 is estimated as

𝜃 (𝑡) = �̂�
−1

𝜑
(𝑡) 𝑟
𝜑𝑦
(𝑡)

= �̂�
−1

𝜑
(𝑡) (𝑟
𝜑𝑦
(𝑡 − 1) + 𝜑 (𝑡) 𝑦 (𝑡))

= �̂�
−1

𝜑
(𝑡) [(�̂�

𝜑
(𝑡) − 𝜑 (𝑡) 𝜑 (𝑡)

𝑇
) 𝜃 (𝑡 − 1) + 𝜑 (𝑡) 𝑦 (𝑡)]

= 𝜃 (𝑡 − 1) + �̂�
−1

𝜑
(𝑡) 𝜑 (𝑡) (𝑦 (𝑡) − 𝜑 (𝑡)

𝑇
𝜃 (𝑡 − 1)) .

(24)

Using (23), we can calculate the vector 𝜃(𝑡). But we note
that there is an inverse operation of �̂�

𝜑
(𝑡) at each recursive

step, which is a very time-consuming process. To avoid the
inversing, introduce

𝑃 (𝑡) = �̂�
−1

𝜑
(𝑡) , (25)

and apply the Matrix Inversion Formula in Lemma 1 to (24);
taking 𝐴 = �̂�

𝜑
(𝑡), 𝐶 = 𝐷

𝑇
= 𝜑(𝑡), we have

𝑃 (𝑡) = 𝑃 (𝑡 − 1) −

𝑃 (𝑡 − 1) 𝜑 (𝑡) 𝜑 (𝑡)
𝑇
𝑃 (𝑡 − 1)

1 + 𝜑 (𝑡)
𝑇
𝑃 (𝑡 − 1) 𝜑 (𝑡)

. (26)

Moreover, by (26) it is clear that

�̂�
−1

𝜑
(𝑡) 𝜑 (𝑡) =

𝑃 (𝑡 − 1) 𝜑 (𝑡)

1 + 𝜑 (𝑡)
𝑇
𝑃 (𝑡 − 1) 𝜑 (𝑡)

. (27)

Taking (27) into (23), we have

𝜃 (𝑡) = 𝜃 (𝑡 − 1) +

𝑃 (𝑡 − 1) 𝜑 (𝑡)

1 + 𝜑 (𝑡)
𝑇
𝑃 (𝑡 − 1) 𝜑 (𝑡)

⋅ (𝑦 (𝑡) − 𝜑 (𝑡)
𝑇
𝜃 (𝑡 − 1)) .

(28)

Noting that {𝑒(𝑡 − 1)} in (12) is unknown, 𝜑(𝑡) cannot
be constructed directly. This problem can be solved in the

similar way as for RPLR (recursive pseudolinear regression)
algorithm [22], that is, to form a substitute for 𝜑(𝑡) as

̂
𝜑 (𝑡) = (𝜑 (𝑡)

𝑇
, 𝜀 (𝑡 − 1) , . . . , 𝜀 (𝑡 − 𝑛

𝑐
))

𝑇

, (29)

where 𝜀(𝑡 − 𝑖) = 𝑦(𝑖) −
̂
𝜑(𝑖)

𝑇

𝜃(𝑖), 𝑖 ≥ 1. The proof of the
substitution’s correctness is omitted (see details in [22]).

Then using ̂𝜑(𝑡) defined by (29) to replace the 𝜑(𝑡) in (26)
and (28), we get Theorem 2 easily.

Theorem 2 gives a recursive algorithm to get the estimate
of 𝜃: At time 𝑡 − 1, we store only the finite-dimensional
information {𝜃(𝑡−1), 𝑃(𝑡−1), ̂𝜑(𝑡−1)}. At time 𝑡, it is updated
using (23), (27), and (29), which is done with a given fixed
amount of operations, making it a high operational efficiency
and suitable for online applications. Since 𝜃(𝑡) is obtained,
obviously 𝜃(𝑡) can be easily got by (11).

Next we go to estimate the noise properties, which will
be helpful in real applications such as the cascade system
modeling.

Step 2 (estimation for the noise variances 𝜆
𝑦
(𝑡) and 𝜆

𝑢
(𝑡)).

To estimate the noise variances 𝜆
𝑦
, 𝜆
𝑢
, we need to find the

relationship between {V(𝑡)} in (6) and {𝑤(𝑡)} in (8).
We know that the spectrumΦ

𝑠
(𝜔) of a signal {𝑠(𝑡)} is the

Fourier transform of its covariance function 𝑅
𝑠
(𝜏) as

Φ
𝑠 (
𝜔) =

∞

∑

𝜏=−∞

𝑅
𝑠 (
𝜏) 𝑒
−𝑖𝜏𝜔

, (30)

where

𝑅
𝑠 (
𝜏) = 𝐸𝑠 (𝑡) 𝑠 (𝑡 − 𝜏) = lim

𝑁→∞

1

𝑁

𝑁

∑

𝑡=1

𝑠 (𝑡) 𝑠 (𝑡 − 𝜏) . (31)

Since {𝑤(𝑡)} and {V(𝑡)} have the same spectra, that is,

Φ
𝑤
(𝜔) ≡ ΦV (𝜔) , (32)

this means that for all 𝜏 = 0, 1, 2, . . . , 𝑛
𝑐
,

𝑅V (𝜏) = 𝑅𝑤 (𝜏) . (33)

Thus we can find the relationship between 𝜆
𝑦
, 𝜆
𝑢
, and 𝜆

𝑒
by

using the covariance functions 𝑅V(𝜏) and 𝑅𝑤(𝜏).
At step 𝑡, an estimate of 𝑅

𝑠
(𝜏) can be used as

𝑅
𝜏

𝑠
(𝑡) =

1

𝑡

𝑡

∑

𝑘=1

𝑠 (𝑘) 𝑠 (𝑘 − 𝜏) . (34)

We switched to the notation 𝑅𝜏V , 𝑅
𝜏

𝑤
rather than 𝑅V(𝜏), 𝑅𝑤(𝜏)

to account for certain differences due to recursive step 𝑡.
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Introduce

𝜃
𝜏

𝑎
(𝑡) = (𝑎

𝜏
(𝑡) , 𝑎
𝜏+1

(𝑡) , . . . , 𝑎
𝜏+𝑛
𝑎

(𝑡))

𝑇

,

𝜃
𝜏

𝑏
(𝑡) = (𝑏

𝜏+1
(𝑡) , 𝑏
𝜏+2

(𝑡) , . . . , 𝑏
𝜏+𝑛
𝑏

(𝑡))

𝑇

,

𝜃
𝜏

𝑐
(𝑡) = (𝑐𝜏 (

𝑡) , 𝑐
𝜏+1

(𝑡) , . . . , 𝑐𝜏+𝑛
𝑐

(𝑡))

𝑇

,

𝜑
𝑦 (
𝑡) = (−𝑦 (𝑡) , −𝑦 (𝑡 − 1) , . . . , −𝑦 (𝑡 − 𝑛𝑎

))
𝑇
,

𝜑
�̃�
(𝑡) = (�̃� (𝑡 − 1) , . . . , �̃� (𝑡 − 𝑛

𝑏
))
𝑇
,

𝜑
𝑒 (
𝑡) = (𝑒 (𝑡) , 𝑒 (𝑡 − 1) , . . . , 𝑒 (𝑡 − 𝑛𝑐

))
𝑇
,

(35)

where

𝑎
𝑘
(𝑡) =

{
{

{
{

{

1, 𝑘 = 0,

𝑎
𝑘
(𝑡) , 0 < 𝑘 ≤ 𝑛

𝑎
,

0, 𝑘 > 𝑛
𝑎
or 𝑘 < 0,

𝑏
𝑘 (
𝑡) = {

𝑏
𝑘 (
𝑡) , 0 < 𝑘 ≤ 𝑛

𝑏
,

0, 𝑘 > 𝑛
𝑏
or 𝑘 ≤ 0,

𝑐
𝑘
(𝑡) =

{
{

{
{

{

1, 𝑘 = 0,

𝑐
𝑘
(𝑡) , 0 < 𝑘 ≤ 𝑛

𝑐
,

0, 𝑘 > 𝑛
𝑐
or 𝑘 < 0,

(36)

are the transformation of the parameters in 𝜃(𝑡).
Then according to (A2), (A3), (6), (8), and (34), we have

𝑅
𝜏

𝑤
(𝑡) =

1

𝑡

𝑡

∑

𝑘=1

𝑤 (𝑘)𝑤 (𝑘 − 𝜏)

=

1

𝑡

𝑡

∑

𝑘=1

𝜃
0

𝑐
(𝑡)

𝑇

𝜑
𝑒
(𝑘) 𝜃
0

𝑐
(𝑡)
𝑇
𝜑
𝑒
(𝑘 − 𝜏)

=

1

𝑡

𝑡

∑

𝑘=1

𝜃
0

𝑐
(𝑡)

𝑇

𝜑
𝑒
(𝑘) 𝜑
𝑒
(𝑘)
𝑇
𝜃

𝜏

𝑐
(𝑡)

= 𝜃
0

𝑐
(𝑡)

𝑇

𝜃
𝜏

𝑐
(𝑡) 𝜆
𝑒
.

(37)

Similarly we have

𝑅
𝜏

V (𝑡) = 𝜃
0

𝑎
(𝑡)

𝑇

𝜃
𝜏

𝑎
(𝑡) 𝜆
𝑦
+ 𝜃
0

𝑏
(𝑡)

𝑇

𝜃
𝜏

𝑏
(𝑡) 𝜆
𝑢
. (38)

Then it is clear that for 𝜏 = 0, 1, 2, . . . , 𝑛
𝑐
,

𝑅
𝜏

V (𝑡) = 𝑅
𝜏

𝑤
(𝑡) (39)

is a set of linear equations about the unknown 𝜆
𝑦
and 𝜆

𝑢
, in

which {𝜃𝜏
𝑎
(𝑡), 𝜃
𝜏

𝑏
(𝑡), 𝜃
𝜏

𝑐
(𝑡)} is known at time 𝑡, and 𝜆

𝑒
can be

estimated by:

𝜆
𝑒
(𝑡) = 𝑅

0

𝜀
(𝑡) =

1

𝑡

𝑡

∑

𝑘=1

𝜀
2
(𝑘) (40)

by taking 𝜀(𝑡) in Theorem 2 as the estimate of 𝑒(𝑡).
Then the estimates 𝜆

𝑦
(𝑡) and 𝜆

𝑢
(𝑡) for the output/input

noise variances 𝜆
𝑦
and 𝜆

𝑢
can be calculated by (37)–(40).

Table 1: Estimation results of System 1.

Parameter True value Estimation
𝑎
1

−0.20 −0.1975 ± 0.0025

𝑎
2

−0.15 −0.1483 ± 6.9910𝑒
−4

𝑏
1

0.30 0.2842 ± 2.3776𝑒
−4

𝑏
2

−0.27 −0.2574 ± 7.5975𝑒
−4

𝜆
𝑦

0.20 0.1922 ± 4.5330𝑒
−4

𝜆
𝑢

0.50 0.5125 ± 0.0024

4. Simulation Examples

This section addresses some numerical evaluation of the
identification algorithm presented in this paper. Matlab 7.7
is used to do the simulations. To demonstrate its validness
to various EIV systems, we have chosen different signal
processes as the true input variables {𝑢

0
(𝑡)} in each case:

in Case A, a zero-mean Gaussian process is used; in Case
B, a sawtooth signal is applied; in Case C, it is an ARMA
process. The noise processes {�̃�(𝑡)} and {𝑦(𝑡)} in these cases
are mutually uncorrelated white noise signals with zero-
mean. The robustness of the algorithm is also tested, which
is shown in Case C.

Case A. First we examine how well the algorithm works
for systems with Gaussian input. Consider an EIV dynamic
system with 𝑛

𝑎
= 𝑛
𝑏
= 2 and

𝜃 = (𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
)
𝑇
= (−0.2, −0.15, 0.3, −0.27)

𝑇
. (41)

It is easy to get the system as follows, which is denoted by
System 1:

System 1: 𝑦
0
(𝑡) − 0.2𝑦0 (

𝑡 − 1) − 0.15𝑦0 (
𝑡 − 2)

= 0.3𝑢
0
(𝑡 − 1) − 0.27𝑢

0
(𝑡 − 2) .

(42)

Let the input signal {𝑢
0
(𝑡)} be a zero-mean Gaussian

process whose variance equals 1. Let the noise signals {�̃�(𝑡)}
and {𝑦(𝑡)} be mutually uncorrelated white noise signals with
𝜆
𝑦
= 0.2, 𝜆

𝑢
= 0.5, which means a strong noise environment

for the system.
The system is simulated for 𝑁 = 8000 steps. Calculation

results are listed in Table 1, where the calculation error is
defined by the standard deviation. Figures 2 and 3 show
the system parameter and the noise variances estimates
separately. Solid lines indicate the true values and dashed
lines denote the corresponding estimates. Noting that the
vertical coordinate scopes are very small in both figures, it
can be seen easily that the estimates are converging fast to the
true parameters.

Case B. Consider another system, System 2, with sawtooth
input:

System 2: 𝑦
0
(𝑡) =

𝑧 − 2𝑧
2

(1 − 0.9𝑧) (1 − 0.8𝑧)

𝑢
0 (
𝑡) , (43)
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Figure 2: Estimation result of 𝜃 in System 1.
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Figure 3: Estimation result of 𝜆
𝑦
and 𝜆

𝑢
in System 1.

in which 𝑛
𝑎
= 𝑛
𝑏
= 𝑛
𝑐
= 2, and

𝜃 = (𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
)
𝑇
= (−1.7, 0.72, 1, −2)

𝑇
. (44)

This is the counterexample which was presented in [21]
to show the unconvergency of the Frisch-based method
analyzed in [16]. We use our proposed algorithm to identify
this system under the same conditions; that is, the input
sawtooth signal’s amplitude equals 1 and its frequency is
10Hz; the noises’ variances are

𝜆
𝑦
= 𝜆
𝑢
= 0.5. (45)

The simulation results of the system parameters and the
noise variances are all displayed in Figure 4. The true values
and estimates are also denoted by solid lines, and dotted lines
respectively. We can see that the algorithm has an even better
performance for this kind of EIV system. All the estimates
converge to their corresponding true values consummately.
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Figure 4: Estimates of System 2 by the new recursive method.

Case C. The proposed algorithm in this paper is valid not
only for EIV models with iid random input process but also
for those whose input signals are more general such as the
ARMA process. In order to examine it, we have considered
the following system:

System 3: 𝑦
0 (
𝑡) =

2 (1 − 0.5𝑧) 𝑧

1 + 0.2𝑧 − 0.48𝑧
2
𝑢
0 (
𝑡) , (46)

where

𝜃 = (𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
)
𝑇
= (0.2, −0.48, 2, −1)

𝑇
. (47)

In this system, the input process {𝑢
0
(𝑡)} is an ARMA

process:

(1 − 5𝑧) 𝑢
0
(𝑡) = (1 − 0.3𝑧) 𝜉 (𝑡) (48)

with 𝜉(𝑡) being a zero-mean iid Gaussian process whose
variance is

𝜆
𝜉
= 1. (49)

The noise signals {�̃�(𝑡)} and {𝑦(𝑡)} are mutually uncorrelated
white noise signals with

𝜆
𝑦
= 0.2, 𝜆

𝑢
= 0.5. (50)

The estimation results are shown in Figures 5 and 6.
Similarly, the true values are marked by solid lines and the
estimates of parameters are marked by dotted lines. We can
see that for ARMA input process, the estimation can still
converge to the true parameters quickly.

In order to verify the robustness against noise, we fur-
ther did several experiments with different signal-to-noise
ratios (SNRs) in System 3. The noise processes used in the
experiments are shown by the first three columns in Table 2.
Column 1 is the signal variables used to generate the input
signals; columns 2 and 3 are the variables of input noise and
output noise.

The average estimation error of System 3 (including the
system parameter estimation and the noises estimation) is
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Figure 5: Estimation result of 𝜃 in System 3 with ARMA input
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Figure 6: Estimation of 𝜆
𝑦
and 𝜆

𝑢
in System 3 with ARMA input

process.

listed in column 4. It is clear that the performance of the
proposed algorithm is keeping goodwhen the noises increase
(even when the noises are equal or larger than the input
signals).

5. Conclusions

This paper discussed the identification problem of dynamic
errors-in-variables (EIV) systems. EIV model is very useful
and has a wide engineering application range such as the
modeling of cascade system, and camera calibration. In
comparison with the usual errors-in-equation models, EIV
model has a more troublesome noise problem with the
input measurements being disturbed. Since several severe
errors in the previous analysis of the attractive Frisch scheme
identification approaches have been presented in the recent
studies, we developed an adaptive algorithm to solve the
same modeling problem. For the dynamic EIV model with

Table 2: Comparison of the estimations for different SNRs.

𝜆
𝜉

𝜆
𝑢

𝜆
𝑦

Average error
1 0.05 0.05 0.0025
1 0.2 0.2 0.0039
1 0.2 0.5 0.0040
1 0.5 0.2 0.0049
1 0.5 0.5 0.0052
1 1 1 0.0086
1 1 2 0.0064

mutually independent input and output noises, this two-
step algorithm can not only estimate the system parameter
vector as well as the noise variances with greater accuracy but
also reduce the computational complexity significantly due to
its recursive form. It has been shown by several simulation
results that the presented algorithm demonstrates, as shown
in the numerical simulations, a great accuracy, fast conver-
gence speed, and good antinoise performance. Theoretical
analysis of the proposed algorithm and the identification of
somemore complicatedmodel such as EIV nonlinearmodels
will be considered in future work.

Acknowledgments

This work is supported by the funds NSFC61171121 and
NSFC60973049, the Science Foundation of ChineseMinistry
of Education, and China Mobile 2012.

References
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