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Based upon the elements of the modern pseudoanalytic function theory, we analyze a new method for numerically solving the
forward Dirichlet boundary value problem corresponding to the two-dimensional electrical impedance equation. The analysis is
performed by introducing interpolating piecewise separable-variables conductivity functions in the unit circle. To warrant the
effectiveness of the posed method, we consider several examples of conductivity functions, whose boundary conditions are exact
solutions of the electrical impedance equation, performing a brief comparison with the finite element method. Finally, we discuss
the possible contributions of these results to the field of the electrical impedance tomography.

1. Introduction

The study of the forward Dirichlet boundary value problem
for the electrical impedance equation in the plane,

div (𝜎 grad 𝑢) = 0, (1)

is fundamental for understanding its inverse problem, com-
monly known as electrical impedance tomography, first
correctly posed inmathematical formbyCalderon [1] in 1980.
It is remarkable that, for more than twenty years after the
problemwas stated, themathematical complexity of (1) could
provoke that many experts considered impossible to obtain
its general solution in analytic form [2], even for the simplest
cases of 𝜎, excluding the constant case.

This perception changed when, independently, Krav-
chenko in 2005 [3] and Astala and Päivärinta [4] in 2006
noticed that the two-dimensional case of (1) was completely
equivalent to a special class of Vekua equation [5].

Many other important results were obtained soon after.
Indeed, Kravchenko et al. published in 2007 what can be
considered the first general solution of (1) in analytic form
[6], when 𝜎 possesses a certain form, employing Taylor
series in formal powers [7]. Moreover, when the conductivity
is separable variables, the real parts of the formal powers
conform a complete set for approaching solutions of the
forward Dirichlet boundary value problem of (1) in the plane
[8].

The main objective of this work is to start a discussion
about the application of the Pseudoanalytic function theory
when 𝜎 is not, in general, a separable-variables function,
which would allow the study of conductivity cases more
interesting in physics and engineering. As a matter of fact,
even it is not clear yet how to extend the proof provided in
[8], about the completeness of the set of formal powers for the
cases when 𝜎 is piecewise separable variables, the numerical
calculations will show that a variation of the technique,
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originally posed for purely mathematical problems, could
well serve for analyzing more general cases, providing quite
acceptable results with compared when classical methods.

In other words, this work states that if the values of the
electrical conductivity are known at every point within a
bounded domain Ω in the plane, it will be always possible to
introduce a piecewise separable-variables function, such that
we can use it to obtain a set of base functions for approaching
solutions of the forward Dirichlet boundary value problem
of (1), employing pseudoanalytic functions. This would be
true for a certain class of bounded domains, but this class
will be wide enough to include many interesting cases for the
applied sciences. Nonetheless, on behalf of briefness, we will
only study the unit circle.The reader will appreciate thatmost
of the results will be valid for more domains.

In order to prove the veracity of the last assessments,
we will consider a set of conductivity examples, separable
variables, and nonseparable variables, for which we can
obtain exact solutions, to be imposed as boundary conditions.
The effectiveness of the approaches will be estimated by
comparing them with the boundary conditions, employing a
standard Lebesgue measure.

Finally, we will discuss how this numerical technique
could contribute to the study of the inverse Dirichlet bound-
ary value problem of (1) in the plane, also known as the
Electrical Impedance Tomography problem.

2. Preliminaries

According to the Pseudoanalytic function theory posed by
Bers [7], let the pair of complex-valued functions 𝐹 and 𝐺
fulfill the condition:

Im (𝐹𝐺) > 0, (2)

where 𝐹 represents the complex conjugation of 𝐹: 𝐹 = Re𝐹−
𝑖 Im𝐹 and 𝑖 denotes the standard imaginary unit 𝑖2 = −1.
This condition implies that the functions 𝐹 and𝐺 are linearly
independent, therefore any complex-valued function𝑊 can
be expressed by their linear combination:

𝑊 = 𝜙𝐹 + 𝜓𝐺, (3)

where 𝜙 and 𝜓 are purely real-valued functions. On the light
of this idea, L. Bers introduced the concept of the (𝐹, 𝐺)-
derivative of𝑊 in the form

𝜕
(𝐹,𝐺)

𝑊 = (𝜕
𝑧
𝜙) 𝐹 + (𝜕

𝑧
𝜓)𝐺. (4)

This derivative will exist if and only if the following equality
is true:

(𝜕
𝑧
𝜙) 𝐹 + (𝜕

𝑧
𝜓)𝐺 = 0. (5)

Hereafter, we will use the notations 𝜕
𝑧
= 𝜕
𝑥
− 𝑖𝜕
𝑦
and 𝜕

𝑧
=

𝜕
𝑥
+𝑖𝜕
𝑦
.These pairs of partial differential operators are usually

introduced with the factor 1/2, but in this work it will be
somehow more convenient to work without it.

Introducing the notations:

𝐴
(𝐹,𝐺)

=
𝐹𝜕
𝑧
𝐺 − 𝐺𝜕

𝑧
𝐹

𝐹𝐺 − 𝐺𝐹
, 𝑎

(𝐹,𝐺)
= −

𝐹𝜕
𝑧
𝐺 − 𝐺𝜕

𝑧
𝐹

𝐹𝐺 − 𝐺𝐹
,

𝐵
(𝐹,𝐺)

=
𝐹𝜕
𝑧
𝐺 − 𝐺𝜕

𝑧
𝐹

𝐹𝐺 − 𝐺𝐹
, 𝑏

(𝐹,𝐺)
= −

𝐺𝜕
𝑧
𝐹 − 𝐹𝜕

𝑧
𝐺

𝐹𝐺 − 𝐺𝐹
,

(6)

the derivative presented in (4), that we will refer to as the
(𝐹, 𝐺)-derivative of𝑊, can be rewritten as

𝜕
(𝐹,𝐺)

𝑊 = 𝜕
𝑧
𝑊− 𝐴

(𝐹,𝐺)
𝑊− 𝐵

(𝐹,𝐺)
𝑊, (7)

whereas condition (5) will become

𝜕
𝑧
𝑊− 𝑎

(𝐹,𝐺)
𝑊− 𝑏

(𝐹,𝐺)
𝑊 = 0. (8)

A pair of complex functions (𝐹, 𝐺) satisfying condition
(2) will be called a generating pair, and the functions
introduced in (6) will be referred to as the characteristic
coefficients of the generating pair (𝐹, 𝐺). As a matter of fact,
the expression (8) is known as the Vekua equation [5], and
every function 𝑊, solution of (8), will be called (𝐹, 𝐺)-
pseudoanalytic.

The following statements were originally posed in [7].We
present them with certain modifications, in order to better
analyze the special class of Vekua equation corresponding to
the electrical impedance equation (1) in the plane.

Theorem 1. The functions𝐹 and𝐺, constituting the generating
pair of the form (2), are (𝐹, 𝐺)-pseudoanalytic, and their (𝐹, 𝐺)-
derivatives vanish identically:

𝜕
(𝐹,𝐺)

𝐹 ≡ 𝜕
(𝐹,𝐺)

𝐺 ≡ 0. (9)

Theorem 2 (see [7, 9]). Let 𝑝 be a nonvanishing function,
defined within some domain Ω(R2), and let

𝐹 = 𝑝, 𝐺 =
𝑖

𝑝
. (10)

It is easy to verify that 𝐹 and 𝐺 conform a generating pair (2),
whose characteristic coefficients, according to (6), are

𝐴
(𝐹,𝐺)

= 𝑎
(𝐹,𝐺)

= 0,

𝐵
(𝐹,𝐺)

=
𝜕
𝑧
𝑝

𝑝
,

𝑏
(𝐹,𝐺)

=
𝜕
𝑧
𝑝

𝑝
.

(11)

Therefore, for this special class of generating pairs, the corre-
sponding Vekua equations will have the form

𝜕
𝑧
𝑊−

𝜕
𝑧
𝑝

𝑝
𝑊 = 0. (12)

Definition 3. Let (𝐹
0
, 𝐺
0
) and (𝐹

1
, 𝐺
1
) be two generating pairs

of the form (10), and let their characteristic coefficients fulfill
the condition

𝐵
(𝐹0 ,𝐺0)

= −𝑏
(𝐹1 ,𝐺1)

. (13)

Thus the generating pair (𝐹
1
, 𝐺
1
) will be called a successor

pair of (𝐹
0
, 𝐺
0
), as well (𝐹

0
, 𝐺
0
) will be called a predecessor

of (𝐹
1
, 𝐺
1
).
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Definition 4. Let the elements of the set

{(𝐹
𝑚
, 𝐺
𝑚
)} , 𝑚 = 0, ±1, ±2, . . . , (14)

be all generating pairs, and let every (𝐹
𝑚+1

, 𝐺
𝑚+1

) be a
successor of (𝐹

𝑚
, 𝐺
𝑚
). Hence, the set (14) will be called a

generating sequence. If (𝐹, 𝐺) = (𝐹
0
, 𝐺
0
), wewill say that (𝐹, 𝐺)

is embedded into (14). Moreover, if there exists a number
𝑘 such that (𝐹

𝑚+𝑘
, 𝐺
𝑚+𝑘

) = (𝐹
𝑚
, 𝐺
𝑚
), we will say that the

generating sequence (14) is periodic, with period 𝑘.

L. Bers also introduced the concept of the (𝐹, 𝐺)-integral
of a complex function𝑊. The reader can find the conditions
for warranting its existence and a detailed description of its
properties in [7, 9]. Since the functions employed in this work
are, by definition, (𝐹, 𝐺)-integrable, we will only present a
certain set of those properties.

Definition 5. Let (𝐹
0
, 𝐺
0
) be a generating pair with the form

(10). Its adjoin pair (𝐹∗
0
, 𝐺∗
0
) is defined as

𝐹∗
0
= −𝑖𝐹

0
, 𝐺∗

0
= −𝑖𝐺

0
. (15)

Definition 6. The (𝐹
0
, 𝐺
0
)-integral of a complex function 𝑊

(when it exists) is defined according to the expression

∫
Λ

𝑊𝑑
(𝐹0 ,𝐺0)

𝑧 = 𝐹
0
Re∫
Λ

𝐺∗
0
𝑊𝑑𝑧 + 𝐺

0
Re∫
Λ

𝐹∗
0
𝑊𝑑𝑧, (16)

where Λ is a rectifiable curve going from 𝑧
0
up to 𝑧

1
, in the

complex plain. In particular, the (𝐹
0
, 𝐺
0
)-integral of 𝜕

(𝐹0 ,𝐺0)
𝑊

reaches

∫
𝑧

𝑧0

𝜕
(𝐹0 ,𝐺0)

𝑊𝑑
𝐹0 ,𝐺0

𝑧 = 𝑊 − 𝜙 (𝑧
0
) 𝐹
0
− 𝜓 (𝑧

0
) 𝐺
0
. (17)

But according to Theorem 1, the (𝐹
0
, 𝐺
0
)-derivatives of 𝐹

0

and 𝐺
0
vanish identically, hence (17) can be considered the

(𝐹
0
, 𝐺
0
)-antiderivative of 𝜕

(𝐹0 ,𝐺0)
𝑊.

2.1. Formal Powers

Definition 7. The formal power𝑍(0)
𝑚
(𝑎
0
, 𝑧
0
; 𝑧) belonging to the

generating pair (𝐹
𝑚
, 𝐺
𝑚
), with formal exponent 0, complex

coefficient 𝑎
0
, center at 𝑧

0
, and depending upon the complex

variable 𝑧 = 𝑥 + 𝑖𝑦, is defined by the expression

𝑍(0)
𝑚
(𝑎
0
, 𝑧
0
; 𝑧) = 𝜆𝐹

𝑚
+ 𝜇𝐺
𝑚
, (18)

where 𝜆 and 𝜇 are constants that fulfill the condition

𝜆𝐹
𝑚
(𝑧
0
) + 𝜇𝐺

𝑚
(𝑧
0
) = 𝑎
0
. (19)

The formal powers with higher formal exponents are defined
according to the recursive formulas

𝑍(𝑛)
𝑚
(𝑎
𝑛
, 𝑧
0
; 𝑧) = 𝑛∫

𝑧

𝑧0

𝑍(𝑛−1)
𝑚−1

(𝑎
𝑛
, 𝑧
0
; 𝑧) 𝑑
(𝐹𝑚 ,𝐺𝑚)

𝑧. (20)

Notice the integral operators at the right hand side of the last
equality are all (𝐹

𝑚
, 𝐺
𝑚
)-antiderivatives.

Remark 8. The formal powers possess the following proper-
ties:

(1) 𝑍(𝑛)
𝑚
(𝑎
𝑛
, 𝑧
0
; 𝑧) → 𝑎

𝑛
(𝑧 − 𝑧

0
)𝑛 when 𝑧 → 𝑧

0
.

(2) Every 𝑍(𝑛)
𝑚
(𝑎
𝑛
, 𝑧
0
; 𝑧) is (𝐹

𝑚
, 𝐺
𝑚
)-pseudoanalytic.

(3) If 𝑎
𝑛
= 𝑎󸀠
𝑛
+ 𝑖𝑎󸀠󸀠
𝑛
, where 𝑎󸀠

𝑛
and 𝑎󸀠󸀠
𝑛
are real constants,

we will have

𝑍(𝑛)
𝑚
(𝑎
𝑛
, 𝑧
0
; 𝑧) = 𝑎󸀠

𝑛
𝑍(𝑛)
𝑚
(1, 𝑧
0
; 𝑧) + 𝑎󸀠󸀠

𝑛
𝑍(𝑛)
𝑚
(𝑖, 𝑧
0
; 𝑧) . (21)

Theorem9. Every complex-valued function𝑊, solution of the
Vekua equation (8), can be expanded in terms of the so-called
Taylor series in formal powers:

𝑊 =
∞

∑
𝑛=0

𝑍(𝑛) (𝑎
𝑛
, 𝑧
0
; 𝑧) , (22)

where the absence of the subindex “𝑚” indicates that all formal
powers belong to the same generating pair.

Remark 10. Since every complex-valued function𝑊, solution
of (8), can be expressed in the form (22), it is possible to assert
that (22) is an analytic representation of the general solution
for the Vekua equation (8).

2.2. The Electrical Impedance Equation in the Plane. As it has
been previously posed in several works (see, e.g., [3, 9, 10]),
when the conductivity function 𝜎 can be expressed in terms
of a separable-variables function

𝜎 = 𝜎
1
(𝑥) 𝜎
2
(𝑦) , (23)

by introducing the notations

𝑊 = √𝜎𝜕
𝑥
𝑢 − 𝑖√𝜎𝜕

𝑦
𝑢,

𝑝 =
√𝜎2
√𝜎1

,
(24)

the two-dimensional electrical impedance equation (1) can
be rewritten precisely as a Vekua equation of the form (12).
Moreover, its corresponding generating pair

𝐹
0
= 𝑝, 𝐺

0
=
𝑖

𝑝
(25)

is embedded into a periodic generating sequence, with period
𝑘 = 2, such that

𝐹
𝑚
=
√𝜎2
√𝜎1

, 𝐺
𝑚
= 𝑖

√𝜎1
√𝜎2

, (26)

when𝑚 is an even number, and

𝐹
𝑚
= √𝜎1𝜎2, 𝐺

𝑚
=

𝑖

√𝜎1𝜎2
, (27)

when𝑚 is odd.
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Therefore, based upon the statements posed in Defini-
tion 7, possessing a generating sequence will allow us to
approach a set of formal powers:

{𝑍(𝑛)
0
(1, 0; 𝑧) , 𝑍(𝑛)

0
(𝑖, 0; 𝑧)}

𝑁

𝑛=0
, (28)

within a bounded domain Ω, and, subsequently by virtue
of Remark 8, we will be able to approach any formal power
𝑍(𝑛)
0
(𝑎
𝑛
, 0; 𝑧), at any point 𝑧 ∈ Ω.

Because the present work intends to contribute to the
construction of a novel theory for the electrical impedance
tomography problem, we will focus our attention into a
classic domain Ω, the unit disk with center at 𝑧

0
= 0.

2.3. A Complete Orthonormal System. In [8] Campos et al.
posed a very important property of the formal powers.

Theorem11 (see [8]). The set of real parts of the formal powers,
with coefficients 1 and 𝑖, valued at the boundary Γ of a bounded
domain Ω

{Re𝑍(𝑛) (1, 0; 𝑧) |
Γ
,Re𝑍(𝑛) (𝑖, 0; 𝑧) |

Γ
}
∞

𝑛=0
, (29)

constitutes a complete system for approaching solutions of the
forward Dirichlet boundary value problem for the electrical
impedance equation (1) in the plane.

That is, any boundary condition 𝑢|
Γ
can be approached

asymptotically by the linear combination of the elements
belonging to (29):

lim
𝑁→∞

𝑢|
Γ
− (
𝑁

∑
𝑛=0

𝑐(1)
𝑛

Re𝑍(𝑛) (1, 0; 𝑧) |
Γ

+𝑐(𝑖)
𝑛

Re𝑍(𝑛) (𝑖, 0; 𝑧) |
Γ
) = 0,

(30)

where the coefficients 𝑐(1)
𝑛

and 𝑐(𝑖)
𝑛

are all real constants.
Since the elements of the set (29) are, by definition,

linearly independent [7], it is possible to perform a stan-
dard Gram-Schmidt orthonormalization process in order to
obtain the set of functions

{𝑢
𝑛
}
2𝑁−1

𝑛=0
, (31)

defined on the boundary Γ, such that when imposing a
boundary condition 𝑢|

Γ
, we will have

𝑢|
Γ
∼
2𝑁−1

∑
𝑛=0

𝛼
𝑛
𝑢
𝑛
. (32)

Because the set {𝑢
𝑘
}2𝑁−1
𝑘=0

is orthonormal, the calculation
of the coefficients 𝛼

𝑛
can be performed by several classical

methods. Particularly, we will employ the scalar product

𝛼
𝑛
= ⟨𝑢
𝑛
, 𝑢|
Γ
⟩ . (33)

2.4. A Basic Numerical Approach. Remembering that Γ coin-
cides with the perimeter of the unit circle, we can employ
the numerical methods detailed in [11] for obtaining a system
of 2𝑁 + 1 formal powers (notice that, according to (25),
Re 𝑍(0)
0
(𝑖, 𝑧
0
; 𝑧) = 0), defined at the boundary Γ:

{Re𝑍(𝑛)
0
(1, 0; 𝑧)|

Γ
,Re𝑍(𝑛)

0
(𝑖, 0; 𝑧)|

Γ
}
𝑁

𝑛=0
. (34)

More precisely, let us consider the formal powers
𝑍(𝑛)
0
(1, 0; 𝑧). Taking into account that the integral expressions

introduced in (17) are path independent [7], we can choose
the rectifiable curve Λ to be a straight line segment, going
from 𝑧

0
= 0 until some point of the unit circle. Thus, we

can allocate 𝑃 points equidistantly distributed on such line,
obtaining the set of complex numbers

{𝑧 [𝑝] =
𝑝

𝑃
cos 𝜃 [𝑟] + 𝑖

𝑝

𝑃
sin 𝜃 [𝑟]}

𝑃−1

𝑝=0

, (35)

where 𝜃[𝑟] is some angle associated to the radius. Given this
set of points, and considering that the generating sequence
corresponding to the pair (25) is periodic with period 𝑘 = 2,
we can numerically approach the formal powers employing,
for example, a variation of the trapezoidal integrationmethod
according to the expressions

𝑍(𝑛)
0
(𝑧 [𝑝])

= (𝑛 − 1) 𝐹
0
(𝑧 [𝑝])

× Re
𝑝−1

∑
𝑞=0

(𝑍(𝑛−1)
1

(𝑧 [𝑞 + 1]) 𝐺∗
0
(𝑧 [𝑞 + 1])) 𝑑𝑧 [𝑞]

+ (𝑛 − 1) 𝐹
0
(𝑧 [𝑝])

× Re
𝑝

∑
𝑞=0

(𝑍(𝑛−1)
1

(𝑧 [𝑞]) 𝐺∗
0
(𝑧 [𝑞])) 𝑑𝑧 [𝑞]

+ (𝑛 − 1) 𝐺
0
(𝑧 [𝑝])

× Re
𝑝−1

∑
𝑞=0

(𝑍(𝑛−1)
1

(𝑧 [𝑞 + 1]) 𝐹∗
0
(𝑧 [𝑞 + 1])) 𝑑𝑧 [𝑞]

+ (𝑛 − 1) 𝐺
0
(𝑧 [𝑝])

× Re
𝑝

∑
𝑞=0

(𝑍(𝑛−1)
1

(𝑧 [𝑞]) 𝐹∗
0
(𝑧 [𝑞])) 𝑑𝑧 [𝑞] ,

(36)

where 𝑝, 𝑞 = 0, 1, . . . , 𝑃 − 1, and

𝑑𝑧 [𝑝] = 𝑧 [𝑝 + 1] − 𝑧 [𝑝] . (37)

Besides, we can introduce a set of 𝑅 angles 𝜃[𝑟], to be
employed in (35), according to the formula

{𝜃 [𝑟] =
2𝜋𝑟

𝑅
}
𝑅−1

𝑟=0

(38)
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Figure 1: Example of a separable-variables exponential conductivity
function 𝜎 = 𝑒𝑥+𝑦.

Table 1: Relation between the error E and the number of formal
powers, for the case when 𝜎 possesses an exponential form.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁 E

500 500 45 1.4370 × 10−15

100 100 45 1.9996 × 10−15

100 100 35 2.0001 × 10−15

100 100 25 2.0094 × 10−15

100 100 15 2.0524 × 10−15

100 100 5 3.1333 × 10−14

for the iterative expressions (36) that can be performed at
each angle 𝜃[𝑟]. When the full procedure is complete, we will
possess a set of𝑁+1 formal powers𝑍(𝑛)(1, 0; 𝑧), approached
for 𝑅 radii, and with 𝑃 points per radius. Thus, by collecting
the real parts of 𝑍(𝑛)(1, 0; 𝑧) valued at the points 𝑧[𝑃 − 1],
which are precisely those located at the boundary Γ, we will
obtain a numerical approximation of the set

{Re𝑍(𝑛)(1, 0; 𝑧)|
Γ
}
𝑁

𝑛=0
. (39)

An identical procedure can be performed for obtaining the
elements of

{Re𝑍(𝑛)(𝑖, 0; 𝑧)|
Γ
}
𝑁

𝑛=0
. (40)

Since the numerical approaching of the set (34) is complete, a
standard Gram-Schmidt method will reach the orthonormal
system (31) for approaching the boundary condition 𝑢|

Γ
.

The effectiveness of this numerical approach has been
analyzed in several works (see [8, 10]). Here we will only
analyze two particular examples of separable-variables con-
ductivity functions 𝜎, before studying those that are not
separable variables.

Table 2: Relation between the error E and the number of formal
powers, for the case when 𝜎 has a Lorentzian form.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁 E

500 500 45 2.2968 × 10−8

100 100 45 2.3753 × 10−8

100 100 35 5.8069 × 10−7

100 100 25 1.9710 × 10−5

100 100 15 7.2801 × 10−4

100 100 5 4.8875 × 10−2

3. The Cases When the Conductivity 𝜎
Possesses a Separable-Variables Form

3.1. Example When 𝜎 Is an Exponential Function

Proposition 12. Let 𝜎 = 𝑒𝑥+𝑦. Then the function 𝑢 = 𝑒−𝑥−𝑦

will be a particular solution of (1).

Figure 1 plots an illustration of the exponential conduc-
tivity.

The numerical procedure described in Section 2.4 will be
employed for approaching the forward Dirichlet boundary
value problem when 𝜎 possesses the form of the proposition
above, imposing as the boundary condition the exact solution

𝑢|
Γ
= 𝑒−𝑥−𝑦. (41)

The error E will be defined according to the Lebesgue
measure

E = (∫
Γ

(𝑢|
Γ
−
2𝑁+1

∑
𝑛=0

𝛼
𝑛
𝑢
𝑛
)

2

𝑑𝑙)

1/2

, (42)

where the addition within the integral expression corre-
sponds to the approached solution (32).

Table 1 contains the relation between the error E and the
number of formal powers 𝑁. The parameters 𝑅 and 𝑃 have
been fixed at the value 100, since for this particular case, as
displayed in the table, they do not significantly influence the
diminution of the error when increasing.

3.2. The Case When 𝜎 Has a Lorentzian Form

Proposition 13. Let

𝜎 = (
1

𝑥2 + 0.1
) (

1

𝑦2 + 0.1
) . (43)

Then the function

𝑢 =
𝑥3 + 𝑦3

3
+ 0.1 (𝑥 + 𝑦) (44)

will be a particular solution of (1).

An illustration of the conductivity function (43) is dis-
played in Figure 2.
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Figure 2: Example of a separable-variables Lorentzian conductivity
function 𝜎 = (𝑥2 + 0.1)−1 ⋅ (𝑦2 + 0.1)−1.

Once more, the exact solution (44) will be imposed as
the boundary condition. The numerical results are shown in
Table 2. This, indeed, is a more interesting case, since the
number𝑁 of formal powers strongly influences the accuracy
of the approach. The increment of the number of points per
radius 𝑃 and the number of radii 𝑅, as in the previous case,
do not significantly increase the accuracy.

3.3. Construction of a Piecewise Separable-Variables Conduc-
tivity Function. Consider a bounded domain Ω(R2) (in this
case the unit circle) and divide it into a finite number of
subsections 𝑆, taking care that the point to be considered the
center of the formal powers 𝑧

0
(see Definition 7) does not

reside onto the boundary of two subsections. For simplicity,
let us make the division by employing a finite set of parallel
lines to the𝑥-axis, equidistant to one another, and let us locate
𝑧
0
= 0.
Supposing that the values of the electrical conductivity

are defined for every point within the domain Ω(R2), let
us locate a straight line crossing every subsection, that does
not intersect the bounding parallel lines of its corresponding
subsection. Indeed, such lines can be simply parallel to the
bounding ones.

The following step is to collect finite sets of conductivity
values, corresponding to a number 𝐶 of points located at
the crossing lines. For every line, the quantity of collected
values 𝐶must be big enough to warrant that an interpolating
process, in this case performed with straight lines, will
adequately approach all the remaining conductivity values
defined over the line points.

Since we have already assumed that every crossing line
will be parallel to the subsection-bounding lines, and in
consequence to the 𝑥-axis, all collected points corresponding
to the same crossing line will possess the same 𝑦-coordinate.
Let us propose that the conductivity within every subsection
can be represented according to the expression

𝜎 =
𝑦 + 𝐾

Υ + 𝐾
⋅ 𝑓 (𝑥) , (45)

where Υ denotes the 𝑦-coordinate that is common to all
points along the crossing line, 𝑓(𝑥) is an interpolating
function that approaches the collected conductivity values,
and 𝐾 is a real positive constant such that 𝑦 + 𝐾 ̸= 0, for all
𝑦 ∈ Ω.

Applying this idea in every subsection, the conductivity 𝜎
within the bounded domain Ω can be approached by means
of the piecewise-defined function:

𝜎 (𝑥, 𝑦) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

𝑦 + 𝐾

Υ
1
+ 𝐾

⋅ 𝑓
1
(𝑥) : 𝑦 ∈ [𝑦

(1)
, 𝑦
(2)
) ;

𝑦 + 𝐾

Υ
2
+ 𝐾

⋅ 𝑓
2
(𝑥) : 𝑦 ∈ [𝑦

(2)
, 𝑦
(3)
) ;

...

𝑦 + 𝐾

Υ
𝑆
+ 𝐾

⋅ 𝑓
𝑆
(𝑥) : 𝑦 ∈ [𝑦

(𝑆)
, 𝑦
(𝑆+1)

] .

(46)

Here 𝑦
(1)

represents the first 𝑦-coordinate found within the
domain Ω when broaching the 𝑦-axis from ∞ up to −∞,
whereas 𝑦

(𝑆)
represents the last one. The pairs of 𝑦-axis

parallel lines (𝑦
(𝑗)
, 𝑦
(𝑗+1)

), where 𝑗 = 1, . . . , 𝑆 + 1, are given by
the common 𝑦-coordinates belonging to every pair of lines
delimiting the subsections. Notice the piecewise function
(46) is separable variables.

Thus, according to Section 2.2, it immediately follows that

𝐹
0
=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

(
𝑦 + 𝐾

Υ
1
+ 𝐾

⋅ 𝑓−1
1
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(1)
, 𝑦
(2)
) ,

(
𝑦 + 𝐾

Υ
2
+ 𝐾

⋅ 𝑓−1
2
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(2)
, 𝑦
(3)
) ,

...

(
𝑦 + 𝐾

Υ
𝑆
+ 𝐾

⋅ 𝑓−1
𝑆
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(𝑆)
, 𝑦
(𝑆+1)

] ,

(47)

whereas

𝐺
0
=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

𝑖(
Υ
1
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓
1
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(1)
, 𝑦
(2)
) ,

𝑖(
Υ
2
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓
2
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(2)
, 𝑦
(3)
) ,

...

𝑖(
Υ
𝑆
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓
𝑆
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(𝑆)
, 𝑦
(𝑆+1)

] .

(48)
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Table 3: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = 𝑒𝑥+𝑦.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 4.4935 × 10−5

100 100 45 10001 10001 6.9358 × 10−5

100 100 45 5001 5001 6.8149 × 10−4

100 100 45 2501 2501 5.7113 × 10−4

100 100 45 1001 1001 3.3381 × 10−3

100 100 45 501 501 1.5105 × 10−3

100 100 45 101 101 5.3048 × 10−3

For the generating pair (𝐹
1
, 𝐺
1
) we will have

𝐹
1
=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

(
𝑦 + 𝐾

Υ
1
+ 𝐾

⋅ 𝑓
1
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(1)
, 𝑦
(2)
) ,

(
𝑦 + 𝐾

Υ
2
+ 𝐾

⋅ 𝑓
2
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(2)
, 𝑦
(3)
) ,

...

(
𝑦 + 𝐾

Υ
𝑆
+ 𝐾

⋅ 𝑓
𝑆
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(𝑆)
, 𝑦
(𝑆+1)

] ,

𝐺
1
=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

𝑖(
Υ
1
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓−1
1
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(1)
, 𝑦
(2)
) ,

𝑖(
Υ
2
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓−1
2
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(2)
, 𝑦
(3)
) ,

...

𝑖(
Υ
𝑆
+ 𝐾

𝑦 + 𝐾
⋅ 𝑓−1
𝑆
(𝑥))
1/2

: 𝑦 ∈ [𝑦
(𝑆)
, 𝑦
(𝑆+1)

] .

(49)

We will use these piecewise-defined functions to perform
the numerical procedure described in Section 2.4. The first
case to analyze will be the exponential conductivity 𝜎 = 𝑒𝑥+𝑦

studied in Section 3.1, imposing as the boundary condition
𝑢|
Γ
= 𝑒−𝑥−𝑦 the exact solution presented in Proposition 12.
The second case will be the Lorentzian conductivity

treated in Section 3.2, whose boundary condition will be the
exact solution 𝑢|

Γ
shown in Proposition 13. The results of

these cases are exposed in Tables 3 and 4. For both, we can
observe that the accuracy is strongly related with the number
of sections 𝑆 and the number of collected values per section𝐶,
as well as with the number 𝑁 of formal powers. Once more,
the increment of the number of points per radius 𝑃 and the
number of radii 𝑅 do not significantly improve the accuracy.

Beside, since the tables presented in the previous sub-
section have shown that the accuracy of the method is not
considerably improved when neither the number of points
per radius 𝑃 nor the number of radii 𝑅 increase, we will fix
both values 𝑃 = 𝑅 = 100 hereafter.

Tables 3 and 4 show that the piecewise separable-variables
conductivity function (46) can be positively employed for
numerically approaching solutions of this boundary value

problem, because even the magnitudes of the errors E are
considerable bigger than those obtained when employing
the original 𝜎, their magnitudes are still acceptable when
compared with other classical numerical methods.

More precisely, employing a standard finite element
method technique for solving forward Dirichlet boundary
value problems of elliptic partial differential equations in the
plane, when considering the exponential conductivity 𝜎 =
𝑒𝑥+𝑦 and imposing the boundary condition 𝑢|

Γ
= 𝑒−𝑥−𝑦, the

error was E = 6.1638 × 10−4, utilizing 8257 nodes in the
mesh, corresponding to 16256 triangular elements. For the
Lorentzian conductivity 𝜎 = (𝑥2 + 0.1)

−1

(𝑦2 + 0.1)
−1, with

the boundary condition 𝑢|
Γ
= (1/3)(𝑥3 + 𝑦3) + 0.1(𝑥 +

𝑦), employing identical number of nodes in the mesh, the
resulting error was E = 2.6424 × 10−4.

Amore detailed description of the behavior of themethod
is provided in Tables 5, 6, and 7.

Notice that the comparison with the finite element
method is given as a basic reference. Indeed, the number of
nodes in the mesh was taken at 8257, because it is the closest
value to the number of points located inΩ obtained when we
multiply 𝑃 ⋅ 𝑅 = 10000.

4. Analysis of Conductivity Functions That Are
Not Separable Variables

This section is fully dedicated to study conductivity functions
that do not possess a separable-variables form, but for which
we are able to obtain exact solutions of (1), in order to impose
them as boundary conditions.

4.1. The Nonseparable-Variables Exponential Case

Proposition 14. Let the conductivity function

𝜎 = 𝑒𝑥𝑦. (50)

Then, a particular solution of (1) will be

𝑢 = 𝑒−𝑥𝑦. (51)

Figure 3 illustrates the conductivity funcion of (50).
Tables 7 and 8 contain the information about the behavior

of the error E when changing the values of 𝑆, 𝐶, and 𝑁.
In this case the diminution of the number of sections 𝑆
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Table 4: Relation between the error E and the number of formal powers𝑁, when 𝜎 = 𝑒𝑥+𝑦.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 6.9358 × 10−5

100 100 35 10001 10001 4.0388 × 10−4

100 100 25 10001 10001 5.3651 × 10−4

100 100 15 10001 10001 3.4733 × 10−3

100 100 5 10001 10001 4.5714 × 10−2

Table 5: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = (𝑥2 + 0.1)−1(𝑦2 + 0.1)−1.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 6.1214 × 10−6

100 100 45 10001 10001 1.1241 × 10−5

100 100 45 5001 5001 1.3062 × 10−5

100 100 45 2501 2501 7.2332 × 10−5

100 100 45 1001 1001 1.7079 × 10−4

100 100 45 501 501 3.5471 × 10−4

100 100 45 101 101 1.0553 × 10−3

Table 6: Relation between the error E and the number of formal powers𝑁, when 𝜎 = (𝑥2 + 0.1)−1(𝑦2 + 0.1)−1.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 1.1241 × 10−5

100 100 35 10001 10001 9.1964 × 10−5

100 100 25 10001 10001 5.0855 × 10−4

100 100 15 10001 10001 4.2633 × 10−3

100 100 5 10001 10001 2.9065 × 10−2

Table 7: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = 𝑒𝑥𝑦.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 3.8759 × 10−6

100 100 45 10001 10001 5.4177 × 10−6

100 100 45 5001 5001 2.1470 × 10−5

100 100 45 2501 2501 1.5406 × 10−5

100 100 45 1001 1001 6.6917 × 10−5

100 100 45 501 501 1.5059 × 10−4

100 100 45 101 101 8.7576 × 10−4

Table 8: Relation between the error E and the number of formal powers𝑁, when 𝜎 = 𝑒𝑥𝑦.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 5.4177 × 10−6

100 100 35 10001 10001 2.6425 × 10−5

100 100 25 10001 10001 3.2504 × 10−5

100 100 15 10001 10001 3.4497 × 10−5

100 100 5 10001 10001 1.0798 × 10−2



Journal of Applied Mathematics 9

Table 9: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = ((𝑥 + 𝑦)2 + 1)−1.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 8.8364 × 10−3

100 100 45 10001 10001 8.9246 × 10−3

100 100 45 5001 5001 9.4573 × 10−3

100 100 45 2501 2501 9.9164 × 10−3

100 100 45 1001 1001 1.0330 × 10−2

100 100 45 501 501 8.6507 × 10−3

100 100 45 101 101 9.5800 × 10−3

Table 10: Relation between the error E and the number of formal powers𝑁, when 𝜎 = ((𝑥 + 𝑦)2 + 1)−1.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 8.9246 × 10−3

100 100 35 10001 10001 4.3227 × 10−2

100 100 25 10001 10001 5.9625 × 10−2

100 100 15 10001 10001 8.2125 × 10−2

100 100 5 10001 10001 1.4064 × 10−1
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Figure 3: Example of nonseparable-variables conductivity function
𝜎 = 𝑒𝑥𝑦.

and diminution of the samples per section 𝐶 do influence
the accuracy, but their influence is not so significant as the
diminution of the formal powers𝑁.

The error obtained when employing the finite element
method approach was E = 2.3966 × 10−4, employing 8257
points in the mesh.

4.2. The Nonseparable-Variables Lorentzian Case

Proposition 15. Let the conductivity function have the form

𝜎 =
1

(𝑥 + 𝑦)
2

+ 1
. (52)
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Figure 4: Example of nonseparable-variables Lorentzian conductiv-
ity function 𝜎 = ((𝑥 + 𝑦)2 + 1)−1.

An exact solution for (1) is

𝑢 =
(𝑥 + 𝑦)

3

3
+ 𝑥 + 𝑦. (53)

The conductivity functionwith the form (52) is illustrated
in Figure 4.

Table 9 shows an abnormal behavior of the errorE when
decreasing the number of sections 𝑆 and samples 𝐶. That
is, it does not follow a clear pattern. But more important is
to remark that the finite element method reported an error
E = 5.4311 × 10−4, which implies that is better situated
for analyzing this class of conductivity functions. Table 10
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Figure 5: Examples of nonseparable-variables polynomial conduc-
tivity function 𝜎 = 𝑥 + 𝑦 + 10.

states that the diminution of the number of formal powers
𝑁 decreases the accuracy.

4.3. The Nonseparable-Variables Polynomial Case

Proposition 16. Let one assume that the conductivity function
has the form

𝜎 = 𝑥 + 𝑦 + 10, (54)

thus the function

𝑢 = ln (𝑥 + 𝑦 + 10) (55)

will be a solution of (1).

In Figure 5 it is illustrated the polynomial conductivity
function of (54).

Tables 11 and 12 show a regular behavior of the error
E, because it decreases when the values 𝑆 and 𝐶 do. This
case possesses a singular characteristic when compared to the
cases above: The diminution of the number of formal powers
𝑁 does not provoke a considerable loss of the accuracy. This
exception will be remarked since it has not been detected in
other class of conductivity functions.

On the other hand, the finite element method proved
to provide a very similar accuracy for analyzing this case,
because the obtained error was E = 2.8958 × 10−6.

4.4. The Nonseparable-Variables Sinusoidal Case

Proposition 17. Let one consider the sinusoidal conductivity

𝜎 = 2 + sin (𝑥 + 𝑦) . (56)

One can verify by direct substitution that the function

𝑢 =
2

√3
arctan(

2 tan ((𝑥 + 𝑦) /2) + 1

√3
) (57)

is a solution of (1).

The Figure 6(a) illustrates the conductivity (56), whereas
the Figure 6(b) illustrates the case (58).

Tables 13 and 14 show that the behavior of E is not fully
regular, because a diminution of the number 𝑆 and 𝐶 does
not necessarily imply a reduction of the accuracy, whereas
the diminution of the formal powers 𝑁 provokes significant
changes of the error E. For this case, the finite element
method reported an error E = 0.0192.

Notice that the exact solution (57) that was imposed as the
boundary condition 𝑢|

Γ
cannot be employed when a constant

factor multiplies the argument of the trigonometric function,
because the tangent would not be defined at certain points.
Nevertheless, one last experiment is worth of research.

Let us suppose that the conductivity function possesses
the form

𝜎 = 2 + sin 5 (𝑥 + 𝑦) , (58)

and let us approach the solution to the forward problem
keeping as the boundary condition the expression (57). Tables
15 and 16 display the biggest error E found in the present
work, even the behavior of E could be considered regular,
because it decreases while 𝑆, 𝐶, and 𝑁 do. The reader will
appreciate that the accuracy is, in general, unsatisfactory
for applications. Indeed, the finite element method obtained
an error E = 0.0043, hence it is quite better situated for
analyzing this kind of conductivity functions.

5. Conclusions

The comparison of the numerical method posed in this work
and the finite element method is far to be complete. Thus
the selected examples will be considered a basic reference
fromwhich many other trials must be adequately performed,
since they could not be included in these pages because
they constitute independent research topics. For instance, a
detailed description of the computational complexity [12] of
both methods would provide a point of view less dependent
on the platform onwhich themethods are programmed; thus
we could focus our attention into the basic properties.

Still, we will remark an important characteristic of the
pseudoanalytic functions-based method. It provides infor-
mation about the solutions of the forwardDirichlet boundary
value problem for (1), that is not clear how to obtain when
utilizing the finite element method.

More precisely, the numerical approach based upon the
pseudoanalytic analysis reaches a full set of functions defined
at the boundary, that might contain relevant data if we desire
to examine the electrical impedance tomography problem.

For instance, let us consider the base functions {𝑢
𝑛
}2𝑁+1
𝑛=0

approached for the case when 𝜎 = 𝑒𝑥𝑦, as examined in
(50). The absolute values of the coefficients 𝛼

𝑛
, employed

for approaching the boundary condition 𝑢|
Γ

= 𝑒−𝑥𝑦, are
displayed in the semilogarithmic graphic of Figure 7. This
calculation was performed considering 𝑆 = 20001 sections,
𝐶 = 10001 samples per section, 𝑅 = 100 radii, 𝑃 = 101
points per radii, and𝑁 = 45 formal powers; thus we will have
2𝑁 + 1 = 91 base functions 𝑢

𝑛
, defined at the boundary Γ.
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(b) 𝜎 = 2 + sin 5(𝑥 + 𝑦)

Figure 6: Examples of sinusoidal conductivity functions.

Table 11: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = 𝑥 + 𝑦 + 10.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 3.0640 × 10−6

100 100 45 10001 10001 2.3420 × 10−6

100 100 45 5001 5001 8.1962 × 10−6

100 100 45 2501 2501 1.9286 × 10−5

100 100 45 1001 1001 6.4916 × 10−5

100 100 45 501 501 1.5166 × 10−4

100 100 45 101 101 4.5938 × 10−4

Table 12: Relation between the error E and the number of formal powers𝑁, when 𝜎 = 𝑥 + 𝑦 + 10.

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 2.3420 × 10−6

100 100 35 10001 10001 1.0616 × 10−5

100 100 25 10001 10001 1.6275 × 10−5

100 100 15 10001 10001 1.8396 × 10−5

100 100 5 10001 10001 1.9909 × 10−5

Table 13: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = 2 + sin(𝑥 + 𝑦).

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 7.5333 × 10−2

100 100 45 10001 10001 7.6129 × 10−2

100 100 45 5001 5001 7.4343 × 10−2

100 100 45 2501 2501 6.9999 × 10−2

100 100 45 1001 1001 8.4363 × 10−2

100 100 45 501 501 6.4758 × 10−2

100 100 45 101 101 9.0737 × 10−2
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Table 14: Relation between the error E and the number of formal powers𝑁, when 𝜎 = 2 + sin(𝑥 + 𝑦).

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 7.6129 × 10−2

100 100 35 10001 10001 1.3551 × 10−1

100 100 25 10001 10001 2.0886 × 10−1

100 100 15 10001 10001 3.3854 × 10−1

100 100 5 10001 10001 5.3026 × 10−1

Table 15: Relation between the error E and the number of sections 𝑆 and samples per section 𝐶, when 𝜎 = 2 + sin 5(𝑥 + 𝑦).

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 20001 20001 7.5333 × 10−2

100 100 45 10001 10001 7.6129 × 10−2

100 100 45 5001 5001 7.4343 × 10−2

100 100 45 2501 2501 6.9999 × 10−2

100 100 45 1001 1001 8.4363 × 10−2

100 100 45 501 501 6.4758 × 10−2

100 100 45 101 101 9.0737 × 10−2
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Figure 7: Absolute values of the coefficients 𝛼
𝑛
employed for

approaching the boundary condition 𝑢|
Γ
= 𝑒−𝑥𝑦, utilizing the base

elements {𝑢
𝑛
} corresponding to the conductivity function 𝜎 = 𝑒𝑥𝑦.

Notice that in Figure 7 the values of the coefficients 𝛼
𝑛

possess a particular distribution, even we will not point an
evident pattern. But since the set {𝑢

𝑛
}2𝑁+1
𝑛=0

is an orthonormal
base, it can be used to approach any other boundary con-
dition. In particular, if we use this base for approaching the
condition

𝑢|
Γ
=
1

3
(𝑥 + 𝑦)

3

+ 0.1 (𝑥 + 𝑦) , (59)

that indeed corresponds to the conductivity 𝜎 = ((𝑥 + 𝑦)2+
0.1)−1, we will observe that the values of the coefficients 𝛼

𝑛
,

plotted in Figure 8, behave in a very different way.
As a complementary example, let us consider the base

functions {𝑢
𝑛
} corresponding to a Lorentzian conductivity

𝜎 = ((𝑥 + 𝑦)2 + 0.1)
−1 studied in Section 4.2. Figure 9

displays the absolute values of the coefficients 𝛼
𝑛
when we

impose the boundary condition 𝑢|
Γ
= (1/3)(𝑥 + 𝑦)3 +0.1(𝑥+

𝑦), as posed in (53).
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Figure 8: Absolute values of the coefficients 𝛼
𝑛
employed for

approaching the boundary condition 𝑢|
Γ
= (1/3)(𝑥 + 𝑦)3 + 0.1(𝑥 +

𝑦), utilizing the base elements {𝑢
𝑛
} corresponding to the conductiv-

ity function 𝜎 = 𝑒𝑥𝑦.

But if we impose a boundary condition of the form

𝑢|
Γ
= 𝑒−𝑥𝑦, (60)

upcoming from (51), we can appreciate, as plotted in Fig-
ure 10, that the absolute values of the obtained coefficients 𝛼

𝑛

are, once more, very different to those of Figure 9.
This implies that the behavior of the values of the coef-

ficients 𝛼
𝑛
could well serve as a criterion for understanding

if some conductivity function 𝜎 can effectively provoke a
certain electric potential distribution at the boundary Γ of
same domain Ω(R2), when physical measurements provide
the boundary condition.

Taking into account thatmost of the algorithms dedicated
to approach solutions of the electrical impedance tomogra-
phy problem recursively solve the forward problem [2], this
novel informationwill be used to introduce changes in𝜎; thus
the boundary condition is fulfilled with a better convergence,
and with less computational time.
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Table 16: Relation between the error E and the number of formal powers𝑁, when 𝜎 = 2 + sin 5(𝑥 + 𝑦).

Number of
radii 𝑅

Points per
radius 𝑃

Number of formal
powers𝑁

Number of
sections 𝑆

Collected values per
section 𝐶 E

100 100 45 10001 10001 7.6129 × 10−2

100 100 35 10001 10001 1.3551 × 10−1

100 100 25 10001 10001 2.0886 × 10−1

100 100 15 10001 10001 3.3854 × 10−1

100 100 5 10001 10001 5.3026 × 10−1
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Figure 9: Absolute values of the coefficients 𝛼
𝑛
employed for

approaching the boundary condition 𝑢|
Γ
= (1/3)(𝑥 + 𝑦)3 + 0.1(𝑥 +

𝑦), utilizing the base elements {𝑢
𝑛
} corresponding to the conductiv-

ity function 𝜎 = ((𝑥 + 𝑦)2 + 0.1)−1.
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Figure 10: Absolute values of the coefficients 𝛼
𝑛
employed for

approaching the boundary condition 𝑢|
Γ
= 𝑒−𝑥𝑦, utilizing the base

elements {𝑢
𝑛
} corresponding to the conductivity function 𝜎 =

((𝑥 + 𝑦)2 + 0.1)
−1.

Even it is not possible yet to estimate when this new
method will be employed to approach solutions for the
electrical impedance tomography problem, we will remark
that the main contribution of this work is to provide a new
technique for fully applying the elements of themodern Pseu-
doanalytic function theory into the analysis of conductivity
functions that originated fromphysical experimentalmodels,
which will certainly provide additional information for better
understanding the inverse Dirichlet boundary value problem
of (1) in the plane.

In other words, before this proposal, the mathematical
advances were exclusively improving the study of separable-
variables conductivity functions, rarely useful for represent-
ing physical cases.These pages have shown that, under certain
limits, any conductivity function is susceptible to be analyzed
employing pseudoanalytic functions, whether they possess
an exact mathematical form or not. As a matter of fact, it is
enough that the conductivity values are fully defined over the
points within a bounded domain Ω, with a smooth enough
boundary Γ. The research will continue to better understand
the limiting cases and the certain conditions of smoothness
of the boundary; thus the posed ideas can be adequately
employed in the applied sciences.

Disclosure

The numerical methods used along this work were fully
developed inGNUC/C++Compiler, employing a CPU64B@
2.4GHz, on SLACKWARE 13.37 LINUX operating system.
The experimental procedures showed that the numerical
results can vary when using different platforms based on 32B
and 64B processor architecture, or compilers between other
operating systems, including different LINUX distributions
or Registered Trade Mark operating systems. If the reader
wishes to performhis own numerical trials, please contact the
authors to obtain the resource codes.
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