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This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial
and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced
dynamic time warping (DTW) algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve
computational performance without reducing accuracy is induced. The main contributions of this study include (1) a joint spatial-
temporal multiresolution optical flow computation method which can keep encoding more informative motion information than
recent proposed methods, (2) an enhanced DTW method to improve temporal consistence of motion in action recognition, and
(3) coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high
recognition accuracy is achieved on different action databases like Weizmann database and KTH database.

1. Introduction

Human action recognition remains a challenge in computer
vision due to different appearances of people, unsteady back-
ground, moving camera, illumination changes, and so on.
Although impressive recognition accuracy has been achieved
recently, computational efficiency of action recognition is
relatively ignored. Especially, while the sample size in action
database increases, numbers of frames-per-action get larger,
and/or resolution gets higher, while the computational com-
plexity will explode in most systems. Therefore, it is desired
to develop a framework tomaximally accelerate action recog-
nition performance without sacrificing recognition accuracy
significantly.

In previous researches, two types of approaches have been
proposed. One is to extract features from video sequence
and compare with preclassified features [1–4]. This category
uses some voting mechanism to obtain better recognition
performance and can adapt more variance by using large
amount of training data. Another approach builds up a class
ofmodels from training set and computes the recognition rate
that testing data related to these models [5–10]. Because these
models have unique features, it may lose some characteristics
of the feature. This approach is computationally efficient but

its accuracy is not as good as the first approach. In practical
application, while recognizing actions, a large set of good
training data is needed to obtain high recognition accuracy.
As the result, we should balance the trade between accuracy
and computational cost.

In this paper, we focus on achieving a higher computa-
tional performance without sacrificing accuracy significantly
and recognizing actions in a real environment. Our approach
is based on the observation of optical flow of human actions
proposed by Efros et al. [2] who used optical flow as motion
features of actions [11]. We extract shape information of
training data for accuracy, and in the final stage, we present an
enhanced dynamic time warping algorithm to calculate the
similarity of two actions. The k-NN voting mechanism and
motion sequence pyramid are combined to achieve a better
computation performance. Finally, spatial enhancement on
k-NN pyramid and a coarse-to-fine DTW constraint are
combined to get a computational efficiency without sacrific-
ing accuracy obviously. The main contributions of this paper
are (1) a joint spatial-temporal multiresolution optical flow
fetching method which can keep more motion information
than [2], (2) an enhanced DTW method to improve tem-
poral consistence of motion in action recognition, and (3)
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coarse-to-fine DTW constraint on motion features pyramids
to speed up recognition performance.

The rest of this paper is organized as follows. The rest of
this section reviews the related works. Section 2 introduces
the framework of our joint spatial-temporal motion feature
extracting and action recognizing algorithm. Sections 3 and
4 describe the approaches in detail, and Section 5 shows
experiment results. Finally, Section 6 concludes the whole
work.

Due to the difficulty of the problem, simplified approach-
es using low-level features are usually applied. A number
of approaches using features which describe motion and/or
shape information to recognize human actionwere proposed.
Gorelick et al. [1] extracted features from human shapes
which are represented as spatial-temporal cubes by solving
Poisson Equation. Cutler and Davis [3] presented period
action recognition. Bradski and Davis [7] developed a fast
and simple action recognition method using a timed motion
history image (tMHI) to represent motions. Efros et al. [2]
developed a generic approach to recognize actions of small
scale figures using features extracted from smoothed optical
flow estimation. Schüldt et al. [12] used SVM classification
schemes on local space-time features for action recognition.

Recently, Ke et al. [13] proposed a novel method to
correlate spatial-temporal shapes to video clips. Thurau and
Hlaváč [14] presented a method for recognition of human
actions based on pose primitives for both video frames
and still images. Fathi and Mori [15] developed a method
constructing mid-level motion features which were built
from low-level optical flow information and used ada-boost
as classifier. Lazebnik et al. [16] gave a simple and compu-
tationally efficient “spatial pyramid” extension to represent
images. Laptev et al. [17] presented a new method of local
space-time features, multichannel nonlinear SVMs, extended
space-time pyramids method, and finally got good result
on KTH dataset. Shechtman and Irani [18] introduced a
behavior-based similaritymeasurementwhichwas also based
on motion features to detect complex behaviors in video
sequences. Rodriguez et al. [19] introduced a template-based
method for recognizing human actions based on aMaximum
Average Correlation Height (MACH) filter. This method
successfully avoided the high computational cost commonly
incurred in template-based approaches. There have been
other interesting topics about action recognition. One is
done by Schindler and Van Gool [20] who discussed how
many frames action recognition requires. Their approach
uses less frames or only one frame of a sequence to obtain
good recognition accuracy. Jhuang et al. [21] presented a
biologically motivated system for the recognition of actions
from video sequences. Their system consists of a hierarchy of
spatial-temporal feature detectors of increasing complexity to
simulate the way human recognizes an action.

2. Framework

The framework for our action recognition algorithm is shown
in Figure 1.

In Step 1, an input video is preprocessed to get cen-
tral aligned space-time volume of each action by human

detection and tracking. In Step 2, optical flow descriptors are
calculated and formed into jointing multiresolution pyramid
features which will be discussed in Section 4.2. In Step 3,
the action to action similarity matrix of features from testing
video motion feature database is computed. Enhanced CFC-
DTW algorithm is applied to calculate the similarity of these
two actions to reduce computation time. Finally, the testing
input video is recognized as one of the actions in training
dataset.

First of all, our method is operated on a figure centric
spatial-temporal volume extracted from an input image
sequence. This figure centric volume can be obtained by
running a tracking or detecting algorithm over the input
sequence. The input of our recognition algorithm should
be stabilized to ensure the center is aligned in space. In
the proposed study, background subtraction to Weizmann
action dataset and object tracking to KTH dataset are used
as preprocessing.

As shown in Figure 2, in order to reduce the influ-
ence of noise, background is subtracted from the original
video sequence, and the frames from result sequence are
sent to optical flow calculation. Generally, it is difficult to
get foreground-background well-separated video. Therefore
background subtraction is not needed on testing data. Only
human tracking algorithm is performed to detect the center
and scale of a person. For benchmarking, we test two
preprocess methods on testing data.

Once the stabilized centric volume has been obtained,
spatial-temporal motion descriptors are used to measure
similarity between different motions.

Firstly, optical flow is employed for each frame𝑓(𝑖, 𝑗, 𝑡) by
Lucas andKanade [22] algorithm.The horizontal and vertical
components of optical flow are split into two vector fields,
𝐹
𝑥
and 𝐹

𝑦
, each of which is half-waved to four nonnegative

channels, 𝐹
𝑥
+ , 𝐹
𝑥
− , 𝐹
𝑦
+ , 𝐹
𝑦
− . To deal with the inaccuracy of

optical flow computation on coarse and noisy data, Efros et al.
[2] smooth and normalize four channels to 𝐹𝑏

𝑥
+ , 𝐹𝑏
𝑥
− , 𝐹𝑏
𝑦
+ ,

𝐹𝑏
𝑦
− . Results are shown in Figure 3.
A similarity measure is proposed to compare the

sequences of actionAandB,which is defined based upon four
normalized motion channels, that is, 𝐹𝑏

𝑥
+ , 𝐹𝑏
𝑥
− , 𝐹𝑏
𝑦
+ , 𝐹𝑏
𝑦
− .

Specially, the 𝑖 frame of sequence A is represented by 𝑎𝑖
1
, 𝑎𝑖
2
,

𝑎𝑖
3
and 𝑎𝑖
4
respectively. Therefore frame to frame similarity of

frame 𝑗 of sequence B to frame 𝑖 of sequence A is

𝑆 (𝑖, 𝑗) =
4

∑
𝑐=1

∑
𝑥,𝑦∈𝐼

𝑎𝑖
𝑐
(𝑥, 𝑦) 𝑏𝑗

𝑐
(𝑥, 𝑦) . (1)

In order to get smoother results of similarity matrix
calculated by (1), convolution is performed with identity
matrix 𝐼, and 𝑇 denotes how many frames to smooth,
which could improve the accuracy in dynamic time warping.
Consider

𝑆𝑇 (𝑖, 𝑗) = 𝑆 (𝑖, 𝑗) ⊗ 𝐼 (𝑇) . (2)

In order to get more accuracy with the continuity feature
of action sequence, an enhanced dynamic time warping
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Figure 1: Main process flow.

Figure 2: First row shows original video sequence for testing data (Lena run1 from Weizmann dataset), and second row is background
subtracted video sequence to calculate optical flow for training data.

algorithm is performed to find a matching path of two input
actions in this paper, each point on this path represents a good
matching pair, and all points are continuous in time domain.
Similarity value on this path is summed up for similarity
measurement.

When classifying an action, testing sequence is compared
to preclassified sequence in lower resolution level of the
feature pyramid. The best matching is chosen by action wide
𝑘 nearest neighbor. And then this work is refined in a higher
resolution level of the pyramid to choose the best matching
by 𝑘 nearest neighbor till the highest level of the pyramid has
been compared.

Due to the complexity of action recognition problem,
some actions are periodic while others are not. A single
framework is developed to handle all these kinds of actions.
A similarity measuring method based on DTW [23] and
an enhanced DTW algorithm for action recognition is also
introduced, which will be discussed in Section 3.

Finally, similarity between motion feature of testing
action and preclassified database at the highest resolution
level is calculated and the action with the best similarity score
labeled the testing action.

3. Enhanced DTW for Action Recognition

While getting the similarity matrix of two actions, similarity
matrix is generated from these data and the matrix can rep-
resent how much these two input actions are like each other.

Previous research uses a frame to frame voting mechanism
to get the similarity measure of two actions [2, 20]. For each
frame in action A of testing data, 𝑘 frames with the best
matching score in all frames of training data are selected by
voting. Although this simple selection of the best matching
score in all of the frames should result in a better recognition
rate, noise in some frames will cause a negative matching
in action sequence. And due to the bad space alignment of
action frames, same action gets a low similarity value but
different actions higher. This 𝑘 nearest neighbor algorithm
has lack of a self-corrective mechanism which can keep the
frame match continuity in time domain.

Differing from the frame to frame 𝑘 nearest neighbor
algorithm in [2], action to action similarity measurement
is performed in our approach. This measurement calculates
from frame to frame similarity matrix by summing up simi-
larity values on the DTW path. This similarity measurement
can be adaptive to speed variation of actions. Furthermore it
keeps the continuity of frames in time domain. One frame
can be correctly matched to another even if it does not
have the highest matching score and it just lays on a DTW
path, which will enhance the accuracy in action recognition.
The demonstration of frame to frame similarity and action
to action similarity is shown in Figure 4, and similarity
measurement is defined according to

𝑀DTW = ∑
[𝑖,𝑗]∈path

𝑆𝑇 (𝑖, 𝑗)

length
. (3)
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Figure 3:The optical flowdescriptors of “Lena run1.” (a) Shows optical flow fromoriginal images, and (b) shows optical flow after background
subtraction.

While usingDTW in speech recognition area, constraints
are added to the original algorithm for better recognition
accuracy. Sakoe and Chiba gave their Sakoe-Chiba Band,
and Itakura [24] shows the Itakura Parallelogram, and the
latter is widely used in the speech recognition community.
Since a spoken sentence always has a start position and an
end position, applying these two constraints will get better
alignment result and recognition result. Other approaches
talk about processing of cyclic patterns on text matching or
sequence matching [25]. The DTW algorithm is also widely
used in signal processing area, such as finding waveform
pattern of ECG [25, 26]. Recently, some researches in data
mining use DTW as a sequence matching method and
get inspiring achievement; they show their new bound-
ary constraints and get good experiment result on video
retrieval, image retrieval, handwriting retrieval, and text
mining.

Previous work on DTW shows that better constraints
on DTW get better recognition performance. Unlike general
speech recognition, in action recognition, there are lots of
periodical actions. Therefore, a new constraint should be
found and be performed on the original DTW algorithm to
adapt periodical actions and automatically align the start and
end positions of actions.

While matching two actions, traditional DTW led a
matching path on similaritymatrix as shown in Figure 5(a). It
looks like an actual path segment and two straight lines from
the start point and to the end point. Since these two straight
lines are not needed when calculating similarity value, a new
method shown as Figure 6was developed in the present study
to get an accurate matching path as shown in Figure 5(b).

In our enhanced DTW algorithm, a constraint method
called Coarse-to-Fine Constraint (CFC) is developed. This
constraint can improve recognition speed of the𝑂(𝑛4) action
recognition. Details about this algorithm will be discussed in
the next section.

4. Multiresolution Coarse-to-Fine Matching

Similarity matrix calculation is a computationally expensive
problem since only one element can be obtained in the

action-action similarity matrix with multiplication frame by
frame whose time complexity is 𝑂(𝑛2). Therefore additional
𝑂(𝑛2) calculating is needed to complete all of the elements
in the similarity matrix. The matching method requires a
total computations of𝑂(𝑛4)multiply operations. At the same
time, when the training set gets bigger, more similarity
calculations are needed. For example, processing all 93
videos in Weizmann dataset, using this similarity calculation
will cost about 30 minutes in a 2.5GHz Pentium E5200
Dual-Core computer. It is about 20 seconds average per
recognition, which is an unacceptable performance while
implementation. New methods should get better perfor-
mance even if the training dataset have large amount of
samples.

As mentioned in Figure 1, the main idea of this paper is
comparing the similarity of two actions usingmultiresolution
motion feature pyramid. Firstly, similarities were measured
in low resolution level, then in a higher resolution level, till
the highest level. In each of these Coarse-to-Fine comparison
steps except for the highest level, actions that are selected
by comparison only in lower resolution level are used as
input of higher resolution level. That is, when comparing
actions in low resolution level, actions that have the highest
matching score in comparison results are selected by 𝑘nearest
neighbor. These selected actions are used as the input for the
higher resolution level in thismultiresolutionmotion features
pyramid.

At lowest resolution level, all of the actions in pre-
classified were compared to the testing action, but the scales
of these actions were very small. Therefore, the required
computational effort is less than which compares the actions
in their original scale. On the other hand, computation cost
was higher in higher resolution level in the pyramid, but only
a few actions in pre-classified database should be compared.
The overall computational cost is decreased. This method
achieved is more than 10 times faster than calculating the
similarities in original resolution.

For performance purpose, a new DTW constraint is
applied to the multiresolution motion feature pyramid. Each
DTW matching path of similarity matrix is saved as a con-
straint for higher level. When calculating similarity matrix in
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Figure 5: DTW matching path of two actions. (a) Original DTW algorithm result. (b) Autoaligned DTW path shows matching start point
and matching end point.

a higher resolution level, the saved path is convoluted with a
kernel of 5 × 5 as

𝐾 = (𝑘
𝑖𝑗
)
5×5

, 𝑘
𝑖𝑗
= 1,

𝑖 = −2, −1, . . . , 2, 𝑗 = −2, −1, . . . , 2.
(4)

The convoluted kernel will be used as a constraint in
DTW algorithm. We name this constrained DTW as CFC-
DTW.

4.1. Introduction of Gaussian Pyramid in Multiscale Images.
In the field of image processing, Gaussian Pyramid [27] is
widely used in image matching, image fusion, segmentation,
and texture synthesis.

When obtaining multiscale images using the Gaussian
Pyramid of each frame, low-pass filtering followed by sub-
sampling for the images in previous levels can generate the
Gaussian Pyramid shown in Figure 7. Each pixel value for
the image at level 𝐿 is computed as a weighted average of
pixels in a 5 × 5 neighborhood at level 𝐿 − 1. Given the initial

image𝑓
0
(𝑖, 𝑗) which has a size of 𝑀 × 𝑁 pixels, the level-to-

level weighted average process is implemented by [27]

𝑓
𝐿
(𝑖, 𝑗) =

2

∑
𝑚=−2

2

∑
𝑛=−2

𝑟 (𝑚, 𝑛) 𝑓
𝐿
(2𝑖 + 𝑚, 2𝑗 + 𝑛) , (5)

where 𝑟(𝑚, 𝑛) is a separable 5×5Gaussian low pass filter given
by [23]

𝑟 (𝑚, 𝑛) = 𝑟 (𝑚) 𝑟 (𝑛) ,

𝑟 (0) = 𝑎,

𝑟 (1) = 𝑟 (−1) =
1

4
,

𝑟 (2) = 𝑟 (−2) =
1

4
−
2

𝑎
.

(6)

Parameter 𝑎 is set from 0.3 to 0.6 based on experiment
results. The separation of 𝑟(𝑚, 𝑛) will reduce the computa-
tional complexity in generating multi-scale images.
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Figure 6: Flowchart of auto-aligned DTW.

4.2. Motion Sequence Pyramid. By extending Gaussian Pyra-
mid, multiresolution coarse-to-fine similarity computing
algorithm is introduced in the current study to reduce
computation complexity.

Each pyramid has 𝐿 level and every level relates to a
scaling of original frame. The lowest level in this motion
sequence pyramid has motion feature images with original
sizewhile the higher level images have smaller scales than that
of originals.

In training, all 𝐿 level pyramids of motion sequence
descriptor in training database are stored as pre-classified
actions database for similarity calculation. Consider

𝑓
𝐿
(𝑖, 𝑗, 𝑡) =

2

∑
𝑚=−2

2

∑
𝑛=−2

𝑟 (𝑚, 𝑛) 𝑓
𝐿−1

(2𝑖 + 𝑚, 2𝑗 + 𝑛, 𝑡) , (7)

where 𝑓
𝐿
(𝑖, 𝑗, 𝑡) denotes the image 𝑓(𝑖, 𝑗) on level 𝐿 at frame

𝑡, as Figure 8.

It is obvious that computing similarity between two
motion sequence pyramids at every level is not needed
because 𝐿

0
has the most feature information. Performing

equation (3) on level 𝐿
0
can get good recognition rate. But the

frame size is so big that the computational cost is very high.
For performance purpose, multilayer classification starts

from the lowest resolution level 𝐿
𝑛
.This resolution decreased

motion sequence recognition can get acceptable classification
result that actions with big difference are separated apart
like walk and waving hand, run and bend, jogging, and
boxing. This result can be used as the input for a higher
resolution level. After getting the classification result in a
lower resolution level 𝐿

𝑠
, select 𝑘 actions with from high

𝑀DTW to low and use this selected actions as the input of a
higher resolution level 𝐿

𝑠−1
classification. This refinement is

repeated until the highest resolution level 𝐿
0
is reached. Value

of 𝑠 can be chosen as 𝑠 = 1/(𝐿 + 1)2; this value can also be
found in a cross-validation.
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Figure 7: The Gaussian Pyramid.

Our results show that for the balance of computational
performance and recognition accuracy, two levels of pyramid
can get satisfied result, and the reason will be further
discussed in experimental results section.

4.3. Coarse-to-FineDTW. When searching for the best action
matching in coarse-to-fine motion sequence pyramid, CFC-
DTW is performed to accelerate calculation performance.
First, in CFC-DTW, similarity matrix 𝑆𝑇

𝐿
𝑛

of two actions
is calculated using (2) on lowest resolution level. When
performing algorithm 1 on 𝑆𝑇

𝐿
𝑛

, a 2D array denoting a DTW
path with all elements on path equaling 1 is given as

𝑇
𝐿
𝑛

(𝑖, 𝑗) = {
1 𝑆𝑇
𝐿
𝑛

(𝑖, 𝑗) ∈ path,
0 𝑆𝑇
𝐿
𝑛

(𝑖, 𝑗) ∉ path.
(8)

Secondly, as shown in Figure 9, convoluting 𝑇
𝐿
𝑛

(𝑖, 𝑗)with
kernel 𝐾 leads to a coarse-to-fine constraint for the higher
resolution level 𝐿

𝑛−1
, and a 5 × 5 convolution kernel of

rectangle has been used in our work. Consider

constraint
𝐿
𝑛−1

(𝑖, 𝑗) = 𝑇
𝐿
𝑛

(𝑖, 𝑗) ⊗ 𝐾. (9)

Due to constraint
𝐿
𝑛−1

(𝑖, 𝑗), the computation complexity of
𝑆𝑇
𝐿
𝑛−1

decreased. This coarse-to-fine constraint saves compu-
tation time from frames by frames multiplication.

5. Experimental Results

5.1. Dataset. We evaluated our approach on public bench-
mark datasets,Weizmann human action dataset [1], andKTH
action dataset [12].

TheWeizmann dataset contains 93 low-resolution (188 ×
144 pixels, 25 fps) video sequences showing 9 persons per-
forming a set of 10 different actions: bending down, jumping
jack, waving one hand, waving two hands, in place jumping,
jumping, siding, running, and walking. Background subtrac-
tion is used to get shape information and optical flow features
of actions.

Table 1: Experiment on Weizmann dataset.

Method Recognition
rate

Recognition
time

Enhanced DTW Original image size 100% 5.33 s

CFC-DTW

Level 1: 30% size
Level 2: 100% size

𝐾 = 3
97.8% 1.17 s

Level 1: 30% size
Level 2: 100% size

𝐾 = 5
98.9% 1.30 s

Level 1: 20% size
Level 2: 50% size

𝐾 = 10
98.9% 0.55 s

The KTH dataset contains 25 persons acting 6 different
actions: boxing, hand-clapping, jogging, running, walking,
and hand-waving. These actions are recorded under 4 differ-
ent scenarios: outdoors (s1), outdoors with scale-variations
(s2), outdoors with different appearance (s3), and indoors
(s4). Each video sequence can be divided into 3 or 4
subsequence for different direction of jogging, running, and
walking. Human tracking method was used to get centric
volume of these actions as pre-process. Background subtrac-
tion was not applied in this case. Results were compared with
previous works.

Leave-one-out mechanism was used in the experiments.
Each testing action had been compared to other 92 actions
in the dataset. A total recognition rate and an average recog-
nition time of each algorithm were evaluated. All methods
mentioned in this paper were combined to the joint spatial-
temporal feature to perform recognition.

The hardware environment is composed of a Windows
7 PC with 2.5GHz Pentium E5200 Dual-Core CPU and 2G
Bytes system memory.

5.2. Results. Results of multiresolution coarse-to-fine pyra-
mid method on Weizmann dataset are shown in Table 1.
For computation efficiency, a two-level pyramid was built
and different resolution reductions of each level were used.
Recognition rate and average recognition time per action are
shown in Table 1. 𝐾 means numbers of input actions from
lower resolution level to higher resolution level. CFC-DTW
was used in this experiment at the same time.

Experiment result in Table 2 shows that our enhanced
DTWalgorithm can get 100% recognition rate with all frames
calculated. By CFC-DTW acceleration, the recognition is 10
times faster than enhanced DTW and still gets acceptable
recognition rate. In Table 1, 0.55-second period means that
the CFC-DTW algorithm can be used in practical applica-
tions.

On KTH dataset, our approach obtained the best result in
s2 comparing to [20, 21] (see Table 3). Videos in this scenario
were captured from outdoors environments and with camera
zoom-in and zoom-out, because the CFC-DTW kept the
continuity of each frame in action sequence while matching.
If one frame is not matched, it had always been corrected
by nearly frames. The average recognition time was near 3 s
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Figure 8: Motion sequence pyramid 𝑓(𝑖, 𝑗, 𝑡).

(a) DTW path of lower level

⊗𝐾 =

(b) DTW constraint on higher level

Figure 9: Coarse-to-fine DTW.

Table 2: Compared with other approaches on Weizmann dataset.

Method Recognition rate No. of
frames

Gorelick et al.
PAMI’07 [1]

93.5%
96.6%
99.6%

2
3
10

Schindler and Van Gool
CVPR’08 [20]

93.5%
96.6%
99.6%

2
3
10

Jhuang et al.
ICCV’07 [21] 97.8% All

Fathi and Mori
CVPR’08 [15] 100.0% All

Our approach 100.0% All

in our testing platform. This performance can be improved
by multicore technology and GPU computation for real-time
purpose.

6. Conclusion

Wepresent a fast action recognition algorithmwith enhanced
CFC-DTW. Although DTW is a time-consuming method,
the proposed CFC-DTW and motion pyramid significantly
speed up the traditional DTW method. Therefore, real-time

Table 3: Experiment on KTH dataset.

Schindler and Van Gool CVPR’08
[20]

SNIPPET 1/SNIPPET 7

Jhuang et al.
ICCV’07 [21]

Our
approach

s1 90.9%/93.0% 96.0% 94.0%
s2 78.1%/81.1% 86.1% 88.3%
s3 88.5%/92.1% 89.8% 91.4%
s4 92.2%/96.7% 94.8% 93.8%

recognition becomes possible in practice. Because the DTW
can align the continuity of action, even low resolution videos
can get an acceptable recognition rate. Furthermore, the
algorithmdeveloped in this study can be applied to thin client
communication environment, since the coarse-to-fine feature
of CFC-DTWcan fit the requirement of action recognition in
the environment [28–30], and modal data can be transferred
in different level based on requirements.
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