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This paper employs the variational iteration method to obtain analytical solutions of second-order delay differential equations.
The corresponding convergence results are obtained, and an effective technique for choosing a reasonable Lagrange multiplier is
designed in the solving process. Moreover, some illustrative examples are given to show the efficiency of this method.

1. Introduction

The second-order delay differential equations often appear
in the dynamical system, celestial mechanics, kinematics,
and so forth. Some numerical methods for solving second-
order delay differential equations have been discussed, which
include 0-method [1], trapezoidal method [2], and Runge-
Kutta-Nystrom method [3]. The variational iteration method
(VIM) was first proposed by He [4, 5] and has been exten-
sively applied due to its flexibility, convenience, and efficiency.
So far, the VIM is applied to autonomous ordinary differential
systems [6], pantograph equations [7], integral equations
[8], delay differential equations [9], fractional differential
equations [10], the singular perturbation problems [11], and
delay differential-algebraic equations [12]. Rafei et al. [13] and
Marinca et al. [14] applied the VIM to oscillations. Tatari
and Dehghan [15] consider the VIM for solving second-order
initial value problems. For a more comprehensive survey on
this method and its applications, the readers refer to the
review articles [16-19] and the references therein. But the
VIM for second-order delay differential equations has not
been considered.

The article apply the VIM to second-order delay differ-
ential equations to obtain the analytical or approximate ana-
Iytical solutions. The corresponding convergence results are
obtained. Some illustrative examples confirm the theoretical
results.

2. Convergence

2.1. The First Kind of Second-Order Delay Differential Equa-
tions. Consider the initial value problems of second-order
delay differential equations

V' 6= f(Ly@),y @), telo,T],
Yyt =9¢' ), tel-1,0], 1)
y(t)=¢(t), te[-1,0],

where ¢(t) is a differentiable function, a(t) € C'[0,T] is a
strictly monotone increasing function and satisfies that —7 <
a(t) < t and a(0) = —r, there exists t; € [0,T] such that
a(t;)=0,and f:D=[0,T] x Rx R — Risagiven continuous
mapping and satisfies the Lipschitz condition

If (£ 0) = f (Eugs0)|| < By 1t — a5
If (two) - f(Euwv)| < B oy -v,,

where f3,, f3; are Lipschitz constants; ||- | denotes the standard
Euclidean norm.
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Now the VIM for (1) can read
ym+1 (t)
= Y (£)
t " = (3)
v j AEE [V O T E yp €0 (@(@))] dE,
0<t<ty
ym+1 (t)
= Y (1)
o[ 1w [ @ - T @0 )]
+ j AEE Y1) = Ty @)y (@ (E))] dE,
t>t,
@)

where y,,(t) = @(t) for t € [-7,0]; f denotes the restrictive
variation, that is, 8 f = 0. Thus, we have

6ym+1 (t)
=08y, (1)

v [ s @ -y ®p@@)]d ©
t
“ o0+ | LBy @ 0<i<n,
Using integration by parts to (4), we have

6ym+1 (t)
=0y, ()

# [ @ [ © - F & ©p@(E))] g

+ j SN E) [ ) = F (& ym ),y (@ ()] dE

= 8y, (1) + 1 (,8) 3, )],

A
o

8y, (§)

LOPA(LE)
£t " L &2 O @ .
(6)

From the above formula, the stationary conditions are
obtained as

IA(8)
e O

A9
0 ey

A(t,£)|E:t =0.

o, )
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Moreover, the general Lagrange multiplier
AtE) =§-t (8)

can be readily identified by (7). Thus, the variational iteration
formula can be written as

ym+1 (t)
= Y (0
AR AGENSAGRIGGN LS
0<t<ty
©)
ym+1 (t)
= Y (1)

¥ j CE-D [ E &y ©) 9 (@ @) dE

0

" j E=O 7 = £ &y @)y (@ ()] dE,

t>t.
(10)
Theorem 1. Suppose that the initial value problems (1) satisfy
the condition (2), and y(t), y;(t) € c*[0,T], i = 1,2,....

Then the sequence {y,,,(t)}._, defined by (9) and (10) with y,(t)
converges to the solution of (1).

Proof. From (1), we have

YO =y + jo E- )" © - F(Ey @9 @®))]dE

0<t<ty

)
Yt = () + j E-0])" © - F(EyE,9@E))]dE

+ j E-0 ] © - FEyE,y@®)]dE

t>t.
(12)
LetE;(t) = y;,(t)—y(£),i =0,1,.... Ift < 0,then E;(t) = 0,i =
0,1,.... From (9) and (11), we have
Em+1 (t)
=E, (t)

o[ € 0B O (62 ©.0@®)
—f (& y(©), 9@ (®)))] dE,

0<t<t.
(13)



Journal of Applied Mathematics
From (10) and (12), we have

Em+1 (t)
=E, (t)

DI CACET S RORTG)
- fEy®, 9 @©)))]dg
o[ €0 © - E @i @)

- FEy®,y@@)))]de,

t>t.
(14)

Using integration by parts, we have

Eyt (1) = E,, () + L E-DE" (¢ d

[ €01 € © 0 @)
- fEy©),p@))]dd

- [0 2 © 0@
- FEr© 9@,

0<t<ty

t
Byt (1) = E,, (1) + L E-DE" € dé

[0 ©.p@©)
- Py © .0 )] dE
- J €01 o @ @ @)
- fEy®,y@@))]dg
= [ €D E©0@®)
- fEy©,p@@))]dd
-J €01 G @ @ @)
- fEy @,y (@@))]dE,

t>t.
(15)

3

Since [ofl(t)], is bounded, M = max,ngga(T)(txfl(E)), is
bounded. Moreover, it follows from (2) and the inequality
|& —t] < T that

B Ol < | 1= &1 (& 7 19 @ (@)
- FEy 9@
< | 1Bl @ - @l

t
= j B, |, © &, 0 <t <ty
(16)

B < [ le=8117 (€ 9 @ (©)
- f(&y©), @)
[ -1 € ® . @)
- fEy .y @@

< j T8y [y (B) = y (B)]

0

+ [ T 1B, @1+ B 1E, @@ dE
- | 1B IEL @l g+ [ T8 1B, @@l a8
= |, 780 B ]2

a(t) '
g T 1 O () a

< TMB L IE,, @ d&, t>1,,
17)

where 8 = max f3;,i = 1,2. Moreover,
t s
B O = (M) | [ "B ()] s,
t s S,
< (TMB)’ Jo Jo Jo IE,-2 (s3)] dssds,ds,

t
0oJo Jo Jo

< (TMB)* J JSl JSZ J% IE s (s4)|| dsydssds,ds,

< (np)™ [ 7 [ 1B Gl s

---dsyds,dsy,
(18)



where ||[E,(¢)| is constant. Therefore, we have

T m+1
o] T o,

E
" m+1 (t)“ )

(m — 00).
(19)

O

2.2. The Second Kind of Second-Order Delay Differential
Equations. Consider the initial value problems of second-
order delay oscillation differential equations

Y =-’y®) - fLy®),y@®)), telo,T],
y ) =9 (), tel-10],
y) =¢(t), te[-1,0],
(20)

where ¢(t) is a differentiable function, a(t) € C'[0,T] is a
strictly monotone increasing function and satisfies that —7 <
a(t) < tand a(0) = —r, there exists t; € [0,T] such that
a(t;) =0, wis a constant, and f : D = [0,T] x RXx R —
R is a given continuous mapping and satisfies the Lipschitz
condition

If (& upsv) = f (£ up0)|| < 5 [Jur = s
If (twv,) = f(tu0,)| <x o, -0y,

where «, k; are Lipschitz constants.
Now the VIM for (20) can read

Yimer (£) = Y, (£)
j A8 [ ©) + @y ()
+ (& Y (©) 9, (@ (8)) ] dE,
0<t<ty;
(22)
Ym+1 (t) = Vm (t)

R AGETA
+ F 9 &), 0 ((9)) ] dE
j A8 [ + @'y, ©)

+ FEyn @,y (@ () ] dE,

t>t,
(23)
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where y,,(t) = @(t) for t € [-7,0]; f denotes the restrictive
variation, that is, § f = 0. Thus, we have

Va1 () = 8y, (t)
. L A [ @) + @y ©
+ F &y ©), 9, ((9))] dE
= 8y, (6) + jo (LD [yl ©) + 0y, (©)] d,

0<t<t.
(24)

Using integration by parts to (23), we have
Vi1 () = Op, (1)
- L SA(EE) [y (©) + @y, (©)
+ F & 7m &) 9 ((8)))] dE
; j NGO [ + Py ©
+ F & ym O,y (2 (9))] dE

t
= Sy (6) + j SL(8) [y, () + 'y, (8)] dE

oA (1,9)
o0& 0

A6 8y, )y

‘ IA(58)
+ L [wZ/\(t,E) + —852

= aym (t) -

] 8y, (§) dE.
(25)

From the above formula, the stationary conditions are obtai-
ned as

A (t,8)
oE2

ALY _, (26)
o e

A(t’ E)|£:t =0

WA (4, E) +

:0’

1-

Moreover, the general Lagrange multiplier

At &) = — smw(E —-t) (27)
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can be readily identified by (26). Thus, the variational itera-
tion formula can be written as

ym+1 (t)
= Y (1)

+ Jt 1 sinw (£ —t) [,’V" &) + ‘UZJ’ ®)
0w " "

+ £ & ym @0 @) ]dE,
0<t<ty

ym+1 (t)
= Y (2)

o[ Lm0 [ © + @y ©

+ £y ©), 0@ ()] dE
rf Sona@-0 @+t ©

+ £ (&9 O (€ (E)) ] &,

t>t.
(28)

Theorem 2. Suppose that the initial value problems (20)
satisfy the condition (21), and y(t), y;(t) € Cc%[0,T], i =
1,2,.... Then the sequence {y,,(t)},., defined by (28) with
¥,o(t) converges to the solution of (20).

Proof. The proof process is similar that in Theorem 1. O

2.3. 'The Third Kind of Second-Order Delay Differential Equa-
tions. In order to improve the iteration speed, we modify
the above iterative formulas and reconstruct the Lagrange
multiplier. Consider the initial value problems of second-
order delay differential equations

Y't)ra®)y @) +b@) y )+ N (L y(t), y(«(t)))=0,
tel0,T],

Y () =¢ (), te[-1,0],

y(t):(P(t)) fE[—T,O],

(29)

where ¢(t) is a differentiable function, «(t) € C0,T] is a
strictly monotone increasing function and satisfies that —7 <
a(t) < t and «(0) = —r, there exists t; € [0,T] such that
a(ty) = 0, a(t),b(t) are bounded functions, and N : D =
[0,T] x R x R — R s a given continuous mapping and
satisfies the Lipschitz condition

IN (£, u;,v) = N (t,u5,0)|| <y 4y - 3] >

(30)
IN (t,u,0,) = N (t,u,0,)|| <y, [Joy = va|»

where y,, y; are Lipschitz constants.

Now the VIM for (29) can read

ym+1 (t) = )’m (t)
+ j A8 [V +a® oy &) +bE) yp ©)

+ N (& 3, &), 0 ((9))] dE,
0<t<ty;

(31)
Ym+1 (t) = Ym (1)

+L A [y ©+a(®) 3, © +b©) 3, ©)
+ Ny ©) 9 (@())] d8

+j A [ O +a @yl O +b(E) 7, @)
+ N (& Yo 2 (@(9))] &,

t>t,
(32)

where y,,(t) = ¢(t) for t € [-7,0]; N denotes the restrictive
variation, that is, SN = 0. Thus, we have

Sym+1 (t)
=06y, (1)

v [ e [ ®+a® @+ 0@, @

+ Ny, ©), 0 (@ (@) ] dE
=8y, (t)

v [ 01w [ @+a @, @b @y, @] de.

0<t<t,.
(33)

Using integration by parts to (32), we have
Y1 ()
=8y, (1)
. L A8 [y © +a(® yiy ) +b(®) 3, (©
+ N (& ym ©), 9 @(®))]dE
. j A8 [y © +a(® yiy ) +b(®) 3, (©
+ N (&3 ©) y (€ (§)))] dE



=8y, (t)

v [ s [ ®+a® @+ 0@y, ©)d
=8y, 0+ | 2B 8y, @
v [ Aepa®sdy, ©
0

N j SA(LE) b (E) y, (£) dE

~ oA (t,§)
- (1- 280 ama0) o,
+A (688, ®)_,
TP @@ ) ]
| [ 2@ T
X 8y, (§) dE.

(34)

From the above formula, the stationary conditions are
obtained as

PA(E) d@@A(tE) _
Fra o +b(E)A(t,8) =
oA (1,6) 3 (35)
1- T +a@)A(, 5) =0,
At 8)|e, =0

We suppose that A, (£, &), A,(t,&) are the fundamental solu-
tions of (35); the corresponding general solution of (35) is

At,8) = A (8) + A, (£8). (36)
Using the initial conditions of (35), we have

gl (1) + A, (1) =0,
(37)
QA (8 1) + A) (t,1) = 1.

() A6t
L) As(tt)
,(t,8). We have

Note that W(t,t) = ' is the Wronski determinant

of A,(£,6), A
_)LZ (ta t) Al (t’ 6) + )‘1 (ta t) A2 (t> E)

A(t,€) = TR . (38)

Using the Liouville formula, we have

W (t,) = W (£, 0) elo @O (39)
So A(t, &) can be expressed as

A, (60) Ay (68) + Ay (D) A, (1,8) o Joa®de.

At &) = A, (¢, 0)/\' (t,0) - /\' (t,0)A, (,0)

(40)
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Note that
RN RN
231 & = WG 0), U, €3] W 0)- (41)

Equation (40) can be expressed as

N6, E) = e b O% [ @) uy (1) 1, E)uy (1) (42)

Substituting (42) into (31) and (32), we obtain

Yime1 (£) = Y, (£)
* jo e b O [ @) uy (6) -, B u, (1))
<[ @ +a @y, ©+b@y,® @
+ N (&3, (6), 0 () | d&,
0<t<ty
Yimer (£) = Y, (£)

+ Ll ¢ ly o [0 (&) 1y () — 1y (&) 14y ()]

x [y @) +a(®) 3, (©) +b(E) y,, ©)
+N (& 3 ), (@ 8))) | dE

+ L ¢ loa®d [t (&) 1y () — 1y (§) g (1)]

x [y € +a @)y, (©) +b (&) 3, )

+ N (& Yoo Yo (@ (E)) | dE, >t

(44)

Theorem 3. Suppose that the initial value problems (29) satisfy
the condition (30), and y(t) yi(t) € c%[0,T], i = 1,2,.
Then the sequence {y,,(t)},_, defined by (43) and (44) wzth
¥o(t) converges to the solutzon of (29).

Proof. The proof process is similar to that in Theorem 1. [J

3. Illustrative Examples

In this section, some illustrative examples are given to show
the efficiency of the VIM for solving second-order delay
differential equations.

Example 4. Consider the initial value problem of second-
order differential equation with pantograph delay

y" t) = —y(%) —yz (t) +sin? (t) + sin’ (%) +8, t>0,
¢ (0) =

¢ (0) =
(45)
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with the exact solution y(t) = (5 — cos 2t)/2. Using the VIM
given in formulas (9) and (10), we construct the correction
functional

Ym+1 (t)
= Y ()

e (@ (E) s

— sin’ (E)—8>d§, m=12,....
(46)

We take y,(t) = 2 as the initial approximation and obtain that

5 23, 1 5 o2, 1 4
y ()= -+ —t"+ = cost+ —cos’t — —cos't,
4 16 2 16 16
989 815, 23 4, 1 . /1 1, .
Y(t) =———+—t + —t + —ts1n<—t + —tsint
512 512 1536 2 2 16
1 . 1 11
— ——tsintcost + 3 cos <—t> + — cost
256 2 16
1
+ —cos’t — —cos4t,
512 16
252541 9781 , 815 4 23
y3(t) = - + t+ t+ t
2048 4096 49125 491520

(1 15 . /1 121 .
+ 14t sin (A_Lt> + —tsin (—t) + tsint

16 2 2048

1 . 1 39 1
+ ——tsintcost + 120 cos <—t> + — cos <—t>
256 4 8 2

1393 157 5 1 4 [
+ ——cost+ ——cos"t—cos't + ——t" cost
2048 512 16 2048

51t eos(51) - 51" eos (1)
— —t"cos| —t)— -t cos|—-t],
32 2 2 4
(47)

The exact and approximate solutions are plotted in Figure 1,
which shows that the method gives a very good approxima-
tion to the exact solution.

Example 5. Consider the second-order delay differential
equation

y" (t)=-16y(t) + y2 <£—tl) —sin’t, t>0,

(P, 0) = 4, (48)

@ (0)=0.

2.04

2.03

2.02

2.01

0 0.05 0.1 0.15 0.2
®)

FIGURE 1: Results for Example 4.

Using the VIM given in formulas (28), we construct the
correction functional

ym+1 (t)
= Y (2)

i Lt }1 sin (45 — 4f) <yl,i (&) + 16y, () - ¥, (Z)

+ sin2E>d£, m=12,....
(49)

We take y,(t) = 4t as the initial approximation, and obtain
that

y, (£) = —0.0390625 + 0.0625¢” + sin (4¢)
+0.04166666667 cos (2t)
— 0.002604166667 cos (4t) ,

¥, () = 0.00613912861 — 3.998216869¢ + 0.1805413564¢"
—0.4340277778¢" + o (t")
+(0.006666666667 — 0.5208333333t + 0 (¢*) ) sint
+(—0.1946373457 — 0.5555555556t + 0 () ) cost

—0.1085069444 sin (2t) — 2 cos 4t,
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TaBLE 1: The errors of the iteration solutions.

t=0.01 t=0.05 t=0.1 t=0.15
Tterative formula (43) 1.9048E - 09 1.1905E - 06 1.9048E — 05 906428E - 05
Tterative formula (9) 1.89278E — 05 1.0972E - 03 9.2763E - 03 3.8062E - 02

Example 6. Consider the second-order delay differential
equation

y' () = —%y’ (t) + 16y (%) +6-t1 t>0,

(Pr 0) = 0, (51)

(P(O) =0,

with the exact solution y(t) = 2. From (35), we can solve that
A(t, &) = —& +&*/t. Using the VIM given in formulas (43) and
(44), we construct the correction functional

Ym+1 (t)
= Y ()
‘ & " 2y 2 (€ (52)
g (—£+ 7) (m©+ Dt @-16%(3)

- 6+E4>d£, m=1,2,....

We take y,(t) = 2t as the initial approximation and obtain
that

16
t)=——t°+ 1%,
¥ (t) D)

2 4 6 1 10 1 14
D=t +—t — o+ e (53)
72 ®) 210 T 17600 ' 1935360

We use the iterative formulas (9) and (43) for Example 6,
respectively. When the iteration number n = 2, the corre-
sponding relative errors are showed in Table 1.

Table 1 shows that the iteration speed of the iterative
formula (43) for Example 6 is much faster than that of
iterative formula (9). This demonstrates that it is important
to choose a reasonable Lagrange multiplier.

4. Conclusion

In this paper, we apply the VIM to obtain the analytical
or approximate analytical solutions of second-order delay
differential equations. Some illustrative examples show that
this method gives a very good approximation to the exact
solution. The VIM is a promising method for second-order
delay differential equations.
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