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We give some refinements of generalized Aczél’s inequality and Bellman’s inequality proposed by Tian. As applications, some
refinements of integral type of generalized Aczél’s inequality and Bellman’s inequality are given.

1. Introduction

The famous Aczél’s inequality [1] states that if 𝑎
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It is well known that Aczél’s inequality plays an important
role in the theory of functional equations in non-Euclidean
geometry. In recent years, various attempts have been made
by many authors to improve and generalize the Aczél’s
inequality (see [2–19] and references therein). We state here
some improvements of Aczél’s inequality.

One of the most important results in the references
mentioned above is an exponential extension of (1), which
is stated in the following theorem.

Theorem A. Let 𝑝 and 𝑞 be real numbers such that 𝑝, 𝑞 ̸= 0,
and 1/𝑝 + 1/𝑞 = 1 and let 𝑎

𝑖
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If 𝑝 < 1 (𝑝 ̸= 0), then the reverse inequality in (2) holds.

Remark 1. The case 𝑝 > 1 of Theorem A was proved by
Popoviciu [8]. The case 𝑝 < 1 was given in [15] by Vasić and
Pečarić.

Vasić and Pečarić [16] presented a further extension of
inequality (1).

Theorem B. Let 𝑎
𝑟𝑗
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In a recent paper [18], Wu and Debnath established an
interesting generalization of Aczél’s inequality [1] as follows.

Theorem C. Let 𝑎
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In 2012, Tian [10] presented the following reversed ver-
sion of inequality (4).
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Theorem D. Let 𝑎
𝑟𝑗
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1
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Therefore, applying the above inequality, Tian gave the re-
versed version of inequality (3) as follows.
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Moreover, in [10], Tian obtained the following integral
form of inequality (5).
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1
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Bellman inequality [20] related with Aczél’s inequality is
stated as follows.

Theorem G. Let 𝑎
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If 0 < 𝑝 < 1, then the reverse inequality in (8) holds.

Remark 2. The case 𝑝 > 1 of Theorem G was proposed by
Bellman [20]. The case 0 < 𝑝 < 1 was proved in [15] by Vasić
and Pečarić.

The main purpose of this work is to give refinements of
inequalities (5) and (8). As applications, some refinements of
integral type of inequality (5) and (8) are given.

2. Refinements of Generalized Aczél’s
Inequality and Bellman’s Inequality
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On the other hand, by using inequality (6) again, we
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where 𝑎𝜆𝑗
1𝑗
− ∑
𝑛
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= ⋅ ⋅ ⋅ =
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∏
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∏
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−

𝑠

∑
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𝑎

𝜆𝑗

𝑟𝑗
)

1/𝜆𝑗

− (

1

𝑛
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𝑛
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∏
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that is,
𝑚

∏
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−
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)
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×

𝑚

∏

𝑗=1

(𝑎

𝜆𝑗

1𝑗
−

𝑠

∑
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𝑎

𝜆𝑗

𝑟𝑗
)

1/𝜆𝑗

−

𝑛

∑

𝑟=𝑠+1

𝑚

∏

𝑗=1

𝑎
𝑟𝑗
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(18)

Therefore, repeating the foregoing arguments, we get

(𝑛 + 1 − 𝑠)
1−1/𝜆1−1/𝜆2−⋅⋅⋅−1/𝜆𝑚

𝑚

∏

𝑗=1

(𝑎

𝜆𝑗

1𝑗
−

𝑠

∑

𝑟=2

𝑎

𝜆𝑗

𝑟𝑗
)

1/𝜆𝑗

−

𝑛

∑

𝑟=𝑠+1

𝑚

∏

𝑗=1

𝑎
𝑟𝑗
≥ 𝑛
1−𝜏

𝑚

∏

𝑗=1

𝑎
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𝑛
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𝑟=2

𝑚
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𝑗=1

𝑎
𝑟𝑗
.

(19)

Combining inequalities (18) and (19) leads to inequality (9)
immediately. The proof of Theorem 3 is completed.

If we set∑𝑚
𝑗=1
(1/𝜆
𝑗
) ≤ 1, then fromTheorem 3, we obtain

the following refinement of inequality (6).

Corollary 4. Let 𝑎
𝑟𝑗
> 0, 𝜆

1
̸= 0, 𝜆
𝑗
< 0 (𝑗 = 2, 3, . . . , 𝑚),

∑
𝑚

𝑗=1
(1/𝜆
𝑗
) ≤ 1, 𝑎𝜆𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝜆𝑗

𝑟𝑗
> 0, 𝑟 = 1, 2, . . . , 𝑛, and 𝑗 =

1, 2, . . . , 𝑚. Then
𝑚

∏

𝑗=1

(𝑎

𝜆𝑗
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−

𝑛
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𝑟=2
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𝜆𝑗
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)

1/𝜆𝑗

≥

𝑚

∏

𝑗=1

(𝑎

𝜆𝑗

1𝑗
−

𝑠

∑

𝑟=2

𝑎

𝜆𝑗

𝑟𝑗
)

1/𝜆𝑗

−

𝑛

∑

𝑟=𝑠+1

𝑚

∏

𝑗=1

𝑎
𝑟𝑗

≥

𝑚

∏

𝑗=1

𝑎
1𝑗
−

𝑛

∑

𝑟=2

𝑚

∏

𝑗=1

𝑎
𝑟𝑗
.

(20)

Putting𝑚 = 2, 𝜆
1
= 𝑝 ̸= 0, 𝜆

2
= 𝑞 < 0, 𝑎

𝑟1
= 𝑎
𝑟
, and 𝑎

𝑟2
=

𝑏
𝑟
(𝑟 = 1, 2, . . . , 𝑛) in Theorem 3, we obtain the refinement

and generalization of Theorem A for 𝑝 < 1.

Corollary 5. Let 𝑎
𝑟
> 0, 𝑏

𝑟
> 0 (𝑟 = 1, 2, . . . , 𝑛), 𝑎𝑝

1
−

∑
𝑛

𝑟=2
𝑎
𝑝

𝑟
> 0, 𝑏𝑞

1
− ∑
𝑛

𝑟=2
𝑏
𝑞

𝑟
> 0, 𝑝 ̸= 0, 𝑞 < 0, and 𝜌 =

max{1/𝑝 + 1/𝑞, 1}. Then, the following inequality holds:

(𝑎
𝑝

1
−

𝑛

∑

𝑟=2

𝑎
𝑝

𝑟
)

1/𝑝

(𝑏
𝑞

1
−

𝑛

∑

𝑟=2

𝑏
𝑞

𝑟
)

1/𝑞

≥ (𝑛 + 1 − 𝑠)
1−𝜌
(𝑎
𝑝

1
−

𝑠

∑

𝑟=2

𝑎
𝑝

𝑟
)

1/𝑝

× (𝑏
𝑞

1
−

𝑠

∑

𝑟=2

𝑏
𝑞

𝑟
)

1/𝑞

−

𝑛

∑

𝑟=𝑠+1

𝑎
𝑟
𝑏
𝑟

≥ 𝑛
1−𝜌
𝑎
1
𝑏
1
−

𝑛

∑

𝑟=2

𝑎
𝑟
𝑏
𝑟
.

(21)

Based on themathematical induction, it is easy to see that
the following generalized Bellman’s inequality is true.

Theorem 6. Let 𝑎
𝑟𝑗
> 0, 𝑎𝜆𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝜆𝑗

𝑟𝑗
> 0, 𝑟 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚, and let 0 < 𝑝 < 1. Then

[

[

𝑚

∏

𝑗=1

(𝑎
𝑝

1𝑗
−

𝑛

∑

𝑟=2

𝑎
𝑝

𝑟𝑗
)

1/𝑝

]

]

𝑝

≥ (

𝑚

∑

𝑗=1

𝑎
1𝑗
)

𝑝

−

𝑛

∑

𝑟=2

(

𝑚

∑

𝑗=1

𝑎
𝑟𝑗
)

𝑝

.

(22)

Next, we give a refinement of generalized Bellman’s
inequality (22) as follows.

Theorem 7. Let 𝑎
𝑟𝑗
> 0, 𝑎𝜆𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝜆𝑗

𝑟𝑗
> 0, 𝑟 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚, and let 0 < 𝑝 < 1. Then

[

[

𝑚

∏

𝑗=1

(𝑎
𝑝

1𝑗
−

𝑛

∑

𝑟=2

𝑎
𝑝

𝑟𝑗
)

1/𝑝

]

]

𝑝

≥
[

[

𝑚

∏

𝑗=1

(𝑎
𝑝

1𝑗
−

𝑠

∑

𝑟=2

𝑎
𝑝

𝑟𝑗
)

1/𝑝

]

]

𝑝

−

𝑛

∑

𝑟=𝑠+1

(

𝑚

∑

𝑗=1

𝑎
𝑟𝑗
)

𝑝

≥ (

𝑚

∑

𝑗=1

𝑎
1𝑗
)

𝑝

−

𝑛

∑

𝑟=2

(

𝑚

∑

𝑗=1

𝑎
𝑟𝑗
)

𝑝

.

(23)

Proof. The proof of Theorem 7 is similar to the one of
Theorem 3. Applying generalized Bellman’s inequality (22)
twice, we can deduce the inequality (23).

3. Application

In this section, we show two applications of the inequalities
newly obtained in Section 2.
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Firstly, we give an improvement of inequality (7) by using
Theorem 3.

Theorem 8. Let 𝐵
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑚), let 𝜆

1
> 0,

𝜆
𝑗
< 0 (𝑗 = 2, 3, . . . , 𝑚), ∑𝑚

𝑗=1
𝜆
𝑗
= 1, and let 𝑓

𝑗
(𝑥) (𝑗 =

1, 2, . . . , 𝑚) be positive integrable functions defined on [𝑎, 𝑏]
with 𝐵𝜆𝑗

𝑗
− ∫

𝑏

𝑎
𝑓

𝜆𝑗

𝑗
(𝑥)d𝑥 > 0. Then, for any 𝑡 ∈ [𝑎, 𝑏), one has

𝑚

∏

𝑗=1

(𝐵

𝜆𝑗

𝑗
− ∫

𝑏

𝑎

𝑓

𝜆𝑗

𝑗
(𝑥) d𝑥)

1/𝜆𝑗

≥

𝑚

∏

𝑗=1

(𝐵

𝜆𝑗

𝑗
− ∫

𝑡

𝑎

𝑓

𝜆𝑗

𝑗
(𝑥) d𝑥)

1/𝜆𝑗

− ∫

𝑏

𝑡

𝑚

∏

𝑗=1

𝑓
𝑗 (
𝑥) d𝑥

≥

𝑚

∏

𝑗=1

𝐵
𝑗
− ∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
𝑗 (
𝑥) d𝑥.

(24)

Proof. We need to prove only the left side of inequality (24).
The proof of the right side of inequality (24) is similar. For any
positive integers 𝑛 and 𝑙, we choose an equidistant partition
of [𝑎, 𝑡] and [𝑡, 𝑏], respectively, as

𝑎 < 𝑎 +

𝑐 − 𝑎

𝑛

< ⋅ ⋅ ⋅ < 𝑎 +

𝑐 − 𝑎

𝑛

𝑘

< ⋅ ⋅ ⋅ < 𝑎 +

𝑐 − 𝑎

𝑛

(𝑛 − 1) < 𝑐,

𝑐 < 𝑐 +

𝑏 − 𝑐

𝑙

< ⋅ ⋅ ⋅ < 𝑐 +

𝑏 − 𝑐

𝑙

𝑖

< ⋅ ⋅ ⋅ < 𝑐 +

𝑏 − 𝑐

𝑙

(𝑙 − 1) < 𝑏,

𝑥
𝑘
= 𝑎 +

𝑐 − 𝑎

𝑛

𝑘, Δ𝑥
𝑘
=

𝑐 − 𝑎

𝑛

, 𝑘 = 1, 2, . . . , 𝑛,

𝑥
𝑖
= 𝑐 +

𝑏 − 𝑐

𝑙

𝑖, Δ𝑥
𝑖
=

𝑏 − 𝑐

𝑙

, 𝑖 = 1, 2, . . . , 𝑛.

(25)

Noting that 𝐵𝜆𝑗
𝑗
− ∫

𝑏

𝑎
𝑓

𝜆𝑗

𝑗
(𝑥)d𝑥 = 𝐵

𝜆𝑗

𝑗
− (∫

𝑐

𝑎
𝑓

𝜆𝑗

𝑗
(𝑥)d𝑥 +

∫

𝑏

𝑐
𝑓

𝜆𝑗

𝑗
(𝑥)d𝑥) > 0 (𝑗 = 1, 2, . . . , 𝑚), we have

𝐵

𝜆𝑗

𝑗
− { lim
𝑛→∞

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
[𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

]

𝑐 − 𝑎

𝑛

+ lim
𝑙→∞

𝑙

∑

𝑖=1

𝑓

𝜆𝑗

𝑗
[𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

]

𝑏 − 𝑐

𝑙

} > 0,

(𝑗 = 1, 2, . . . , 𝑚) .

(26)

Consequently, there exists a positive integer𝑁, such that

𝐵

𝜆𝑗

𝑗
− [

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
(𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

)

𝑐 − 𝑎

𝑛

+

𝑙

∑

𝑖=1

𝑓

𝜆𝑗

𝑗
(𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

)

𝑏 − 𝑐

𝑙

] > 0

(27)

for all 𝑛, 𝑙 > 𝑁 and 𝑗 = 1, 2, . . . , 𝑚.
By using Theorem 3, for any 𝑛, 𝑙 > 𝑁, the following

inequality holds:

𝑚

∏

𝑗=1

{𝐵

𝜆𝑗

𝑗
− [

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
(𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

)

𝑐 − 𝑎

𝑛

+

𝑙

∑

𝑖=1

𝑓

𝜆𝑗

𝑗
(𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

)

𝑏 − 𝑐

𝑙

]}

1/𝜆𝑗

≥

𝑚

∏

𝑗=1

[𝐵

𝜆𝑗

𝑗
−

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
(𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

)

𝑐 − 𝑎

𝑛

]

1/𝜆𝑗

−

𝑙

∑

𝑖=1

[

[

𝑚

∏

𝑗=1

𝑓
𝑗
(𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

)
]

]

(

𝑏 − 𝑐

𝑙

)

∑
𝑚
𝑗=1(1/𝜆𝑗)

.

(28)

Since
𝑚

∑

𝑗=1

1

𝜆
𝑗

= 1, (29)

we have
𝑚

∏

𝑗=1

{𝐵

𝜆𝑗

𝑗
− [

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
(𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

)

𝑐 − 𝑎

𝑛

+

𝑙

∑

𝑖=1

𝑓

𝜆𝑗

𝑗
(𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

)

𝑏 − 𝑐

𝑙

]}

1/𝜆𝑗

≥

𝑚

∏

𝑗=1

[𝐵

𝜆𝑗

𝑗
−

𝑛

∑

𝑘=1

𝑓

𝜆𝑗

𝑗
(𝑎 +

𝑘 (𝑐 − 𝑎)

𝑛

)

𝑐 − 𝑎

𝑛

]

1/𝜆𝑗

−

𝑙

∑

𝑖=1

[

[

𝑚

∏

𝑗=1

𝑓
𝑗
(𝑐 +

𝑖 (𝑏 − 𝑐)

𝑙

)
]

]

(

𝑏 − 𝑐

𝑙

) .

(30)

Noting that 𝑓
𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) are positive Riemann

integrable functions on [𝑎, 𝑏], we know that ∏𝑚
𝑗=1
𝑓
𝑗
(𝑥) and

𝑓

𝜆𝑗

𝑗
(𝑥) are also integrable on [𝑎, 𝑏]. Letting 𝑛 → ∞ on both

sides of inequality (30), we get the left side of inequality (24).
The proof of Theorem 8 is completed.

We give here a direct consequence from Theorem 8.
Putting𝑚 = 2, 𝜆

1
= 𝑝, 𝜆

2
= 𝑞, 𝐵

1
= 𝑎
1
, 𝐵
2
= 𝑏
1
, 𝑓
1
= 𝑓, and

𝑓
2
= 𝑔 in (24), we obtain a special important case as follows.
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Corollary 9. Let 𝑝 and 𝑞 be real numbers such that 𝑝 > 0, 𝑞 <
0, and (1/𝑝) + (1/𝑞) = 1, let 𝑎

1
, 𝑏
1
> 0, and let 𝑓, 𝑔 be positive

integrable functions defined on [𝑎, 𝑏]with 𝑎𝑝
1
−∫

𝑏

𝑎
𝑓
𝑝
(𝑥)d𝑥 > 0

and 𝑏𝑞
1
− ∫

𝑏

𝑎
𝑔
𝑞
(𝑥)d𝑥 > 0. Then, for any 𝑡 ∈ [𝑎, 𝑏), one has

(𝑎
𝑝

1
− ∫

𝑏

𝑎

𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

(𝑏
𝑞

1
− ∫

𝑏

𝑎

𝑔
𝑞
(𝑥) d𝑥)

1/𝑞

≥ (𝑎
𝑝

1
− ∫

𝑐

𝑎

𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

(𝑏
𝑞

1
− ∫

𝑐

𝑎

𝑔
𝑞
(𝑥) d𝑥)

1/𝑞

≥ 𝑎
1
𝑏
1
− ∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) d𝑥.

(31)

Finally, we present a refinement of integral type of
generalized Bellman’s inequality.

Theorem 10. Let 𝐵
𝑗
> 0 (𝑗 = 1, 2, . . . , 𝑚), let 0 < 𝑝 < 1,

and let 𝑓
𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) be positive integrable functions

defined on [𝑎, 𝑏] with 𝐵𝜆𝑗
𝑗
− ∫

𝑏

𝑎
𝑓

𝜆𝑗

𝑗
(𝑥)d𝑥 > 0. Then, for any

𝑡 ∈ [𝑎, 𝑏), one has

[

[

𝑚

∑

𝑗=1

(𝐵
𝑝

𝑗
− ∫

𝑏

𝑎

𝑓
𝑝

𝑗
(𝑥) d𝑥)

1/𝑝

]

]

𝑝

≥
[

[

𝑚

∑

𝑗=1

(𝐵
𝑝

𝑗
− ∫

𝑡

𝑎

𝑓
𝑝

𝑗
(𝑥) d𝑥)

1/𝑝

]

]

𝑝

− ∫

𝑏

𝑡

(

𝑚

∑

𝑗=1

𝑓
𝑗 (
𝑥))

𝑝

d𝑥

≥ (

𝑚

∑

𝑗=1

𝐵
𝑗
)

𝑝

− ∫

𝑏

𝑎

(

𝑚

∑

𝑗=1

𝑓
𝑗 (
𝑥))

𝑝

d𝑥.

(32)

Proof. The proof of Theorem 10 is similar to the proof of
Theorem 8.

A special case to the last theorem is as follows.

Corollary 11. Let 0 < 𝑝 < 1, let 𝑎
1
, 𝑏
1
> 0, and let 𝑓, 𝑔

be positive integrable functions defined on [𝑎, 𝑏] with 𝑎𝑝
1
−

∫

𝑏

𝑎
𝑓
𝑝
(𝑥)d𝑥 > 0 and 𝑏𝑞

1
− ∫

𝑏

𝑎
𝑔
𝑞
(𝑥)d𝑥 > 0. Then, for any

𝑡 ∈ [𝑎, 𝑏), one has

[(𝑎
𝑝

1
− ∫

𝑏

𝑎

𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

+ (𝑏
𝑝

1
− ∫

𝑏

𝑎

𝑔
𝑝
(𝑥) d𝑥)

1/𝑝

]

𝑝

≥ [(𝑎
𝑝

1
− ∫

𝑡

𝑎

𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

+ (𝑏
𝑝

1
− ∫

𝑡

𝑎

𝑔
𝑝
(𝑥) d𝑥)

1/𝑝

]

𝑝

− ∫

𝑏

𝑡

(𝑓 (𝑥) + 𝑔 (𝑥))
𝑝d𝑥

≥ (𝑎
1
+ 𝑏
1
)
𝑝
− ∫

𝑏

𝑎

(𝑓 (𝑥) + 𝑔 (𝑥))
𝑝d𝑥.

(33)
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inequality and its applications,” Information Sciences, vol. 201,
pp. 61–69, 2012.

[12] J. Tian, “Extension of Hu Ke’s inequality and its applications,”
Journal of Inequalities and Applications, vol. 2011, article 77, 2011.

[13] J. Tian, “Property of a Hölder-type inequality and its applica-
tion,”Mathematical Inequalities & Applications. In press.

[14] J. Tian and X. M. Hu, “A new reversed version of a generalized
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[16] P. M. Vasić and J. E. Pečarić, “On the Jensen inequality for
monotone functions,” Analele Universitatii din Timişoara, vol.
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