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We discuss the exponential stability in mean square of mild solution for neutral stochastic partial functional differential equations
with impulses. By applying impulsive Gronwall-Bellman inequality, the stochastic analytic techniques, the fractional power of
operator, and semigroup theory, we obtain some completely new sufficient conditions ensuring the exponential stability in mean
square of mild solution for neutral stochastic partial functional differential equations with impulses. Finally, an example is provided
to illustrate the obtained theory.

1. Introduction

Stochastic partial differential equations have attracted the
attention of many authors, and many valuable results on the
existence, uniqueness, and stability of mild solution have
been established. For example, Ren and Sakthivel [1] have
established the existence and uniqueness of mild solution for
a class of second-order neutral stochastic evolution equations
with infinite delay and Poisson jumps by means of the
successive approximation and the continuous dependence
of solutions on the initial data by means of a corollary of
the Bihari inequality; Sakthivel et al. [2, 3] have discussed
the existence and uniqueness of square-mean pseudo almost
automorphic mild solutions for stochastic fractional dif-
ferential equations by using the stochastic analysis theory,
fixed point strategy, and the existence of mild solution to
nonlinear stochastic fractional differential by using fractional
calculations, fixed point technique, stochastic analysis theory
and methods adopted directed from deterministic fractional
equations, respectively; Sakthivel et al. [4, 5] also have derived
the exponential stability ofmild solutions to the second-order
stochastic evolution equations with Poisson jumps by apply-
ing stochastic analysis theory, and the existence and asymp-
totic stability in 𝑝th moment of mild solution to second-
order nonlinear neural stochastic differential equations with
the help of fixed point theory, stochastic analysis technique,

and semigroup theory, respectively. Besides stochastic effects,
impulsive effects likewise exist in real-world models. It is to
be noted that there has been increasing interest in the study
of the existence, uniqueness, and stability of mild solution
for stochastic partial functional differential equations with
impulses due to its wide applications in various sciences, and
many significant results have been obtained [6–15].

To the best of the author’s knowledge, there are only
few works about the exponential stability of mild solution
to neutral stochastic partial functional differential equations
with impulses. One of the reasons is that the mild solutions
do not have stochastic differentials, so Itô formula fails to deal
with this problem. Another reason is that when we consider
the exponential stability ofmild solution for stochastic partial
functional differential equations with impulses, impulsive
effects on the system brings about many difficulties, since
the corresponding theory for such problem has not yet
been fully developed. For example, Sakthivel and Luo [8, 9]
have discussed the asymptotic stability for mild solution of
impulsive stochastic partial differential equations by using
the fixed point theorem which can be regarded as an
excellent tool to derive the exponential stability for mild
solution to stochastic partial differential with delays in Luo
[10, 11]; this very useful method may be difficult and even
ineffective for the exponential stability of such system with
impulses; some othermethods used inCaraballo and Liu [12],
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Wan and Duan [13], and so forth are also ineffective for
this problem, since mild solutions do not have stochastic
differentials; in addition, Chen [14] established an impulsive-
integral inequality to investigate the exponential stability
of stochastic partial differential equation with delays and
impulses, but it is not effective for neutral type. For the
previous reasons, Long et al. [15] established a new impulsive-
integral inequality to investigate the global attracting set and
exponential𝑝-stability of stochastic neutral partial functional
differential equations with impulses. However, the methods
of studying the exponential stability of mild solution for
neutral stochastic partial functional differential equations
with impulses is still not abundant.

Motivated by the previous discussion, in this paper, we
discuss exponential stability in mean square of mild solution
for neutral stochastic partial functional differential equations
with impulses. By applying impulsive Gronwall-Bellman
inequality, the stochastic analytic techniques, inequality tech-
nique, the fractional power of operator, and semigroup
theory, we obtain some completely new sufficient conditions
to ensure the exponential stability in mean square of mild
solution for stochastic partial functional differential equa-
tions with impulses.

The rest of this paper is organized as follows. In Section 2,
we present some basic notations, definitions, and auxiliary
results. In Section 3, sufficient conditions are derived to
ensure the exponential stability in mean square for mild
solution. Finally, an example is given to demonstrate the
obtained results.

2. Preliminaries

Let (Ω,F, {F}
𝑡≥0

,P) be a complete probability space with a
filtration {F}

𝑡≥0
satisfying the usual conditions (i.e., it is right

continuous andF
0
contains all P-null sets).

Let𝐻,𝐾 be real separableHilbert spaces, let andL(𝐾,𝐻)

be the space of bounded linear operators mapping 𝐾 into𝐻.
For convenience, we will use the same notations ‖⋅‖ to denote
the norms in𝐻,𝐾, andL(𝐾,𝐻) without any confusion. Let
{𝜔(𝑡) : 𝑡 ≥ 0} denotes a 𝐾-valued {F}

𝑡≥0
-Wiener process

defined on (Ω,F, {F}
𝑡≥0

,P)with covariance operator𝑄; that
is,

E⟨𝜔(𝑡), 𝑥⟩
𝐾
⟨𝜔(𝑠), 𝑦⟩

𝐾
= (𝑡 ∧ 𝑠) ⟨𝑄𝑥, 𝑦⟩

𝐾
, 𝑥, 𝑦 ∈ 𝐾,

(1)

where 𝑄 is a positive self-adjoint, trace class operator on 𝐾,
⟨⋅, ⋅⟩
𝐾
denotes the inner product of 𝐾, and E denotes the

mathematical expectation. In particular, we call such 𝜔(𝑡) :

𝑡 ≥ 0, a 𝐾-valued 𝑄-Wiener process with respect to {F}
𝑡≥0

.
In order to define stochastic integrals with respect to the

𝑄-Wiener process 𝜔(𝑡), we introduce the subspace 𝐾
0

=

𝑄
1/2

(𝐾) of 𝐾 which, endowed with the inner product
⟨𝑢, V⟩
𝐾0

= ⟨𝑄
−1/2

𝑢, 𝑄
−1/2V⟩

𝐾
, is a Hilbert space. We assume

that there exists a complete orthonormal system {𝑒
𝑖
}
𝑖≥1

in 𝐾,
a bounded sequence of nonnegative real numbers 𝜆

𝑖
such

that 𝑄𝑒
𝑖
= 𝜆
𝑖
𝑒
𝑖
, 𝑖 = 1, 2, . . ., and a sequence {𝛽

𝑖
(𝑡)}
𝑖≥1

of
independent Brownian motions such that

⟨𝜔 (𝑡) , 𝑒⟩ =

∞

∑

𝑖=1

√𝜆
𝑖
⟨𝑒
𝑖
, 𝑒⟩ 𝛽
𝑖
(𝑡) , 𝑒 ∈ 𝐾, (2)

and 𝐵
𝑡
= 𝐵
𝜔

𝑡
, where 𝐵

𝜔

𝑡
is the sigma algebra generated by

{𝜔(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}. Let L0
2
= L
2
(𝐾
0
, 𝐻) denote the space

of all Hilbert-Schmidt operators from𝐾
0
into𝐻. It turns out

to be a separable Hilbert space, equipped with the norm

𝜓

2

L2
0

= tr ((𝜓𝑄1/2) (𝜓𝑄1/2)
∗

) for any 𝜓 ∈ L
0

2
. (3)

Clearly, for any bounded operators 𝜓 ∈ L(𝐾,𝐻), this norm
reduces to ‖𝜓‖2L0

2

= tr(𝜓𝑄𝜓∗).
Let R and Z be the sets of real and integer numbers,

respectively; let R+ = [0, +∞) and 𝐶(𝑋, 𝑌) denote the space
of continuous mapping from the topological space 𝑋 to the
topological space 𝑌. Particularly, 𝐶 ≜ 𝐶([−𝜏, 0],R) denotes
the family of all continuousR-valued functions 𝜙 defined on
[−𝜏, 0] with the norm ‖𝜙‖

𝜏
= sup

−𝜏≤𝜃≤0
‖𝜙(𝜃)‖, where 𝜏 is a

positive constant.
PC(𝐽,R𝑛) = {𝜑 : 𝐽 → R𝑛 is continuous for all, but at

most a finite number of points 𝑡 ∈ 𝐽 and at these points 𝑡 ∈ 𝐽,
𝜑(𝑡
+
) and𝜑(𝑡−) exist,𝜑(𝑡+) = 𝜑(𝑡)}, where 𝐽 ⊂ R is a bounded

interval and 𝜑(𝑡
+
) and 𝜑(𝑡

−
) denote the right-hand and left-

hand limits of the function 𝜑(𝑡), respectively. Particularly, let
PC ≜ PC([−𝜏, 0],𝐻).

Let PC𝑏F0([−𝜏, 0],𝐻)(PC𝑏F𝑡([−𝜏, 0],𝐻))denote the family
of all bounded F

0
(F
𝑡
)-measurable, PC([−𝜏, 0],𝐻)-valued

random variables 𝜙, satisfying ‖𝜙‖2L2 = sup
−𝜏≤𝜃≤0

E‖𝜙(𝜃)‖2
𝐻
.

In this paper, we consider the following neutral stochastic
partial functional differential equation with impulses:

𝑑 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))]

= [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
)

= 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ Z,

𝑥
0
(𝑠) = 𝜙 (𝑠) ∈ PC𝑏F0 ([−𝜏, 0] ,𝐻) , 𝑠 ∈ [−𝜏, 0] , a.s,

(4)

where 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is the infinitesimal generator of
an analytic semigroup of linear operator 𝑆(𝑡)

𝑡≥0
on a Hilbert

space 𝐻; 𝑓, 𝑔 : R+ × 𝐻 → 𝐻 and 𝜎 : R+ × 𝐻 → L0
2

are jointly continuous functions; the fixed moment of time
𝑡
𝑘
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , and lim

𝑘→+∞
=

+∞; 𝑥(𝑡+
𝑘
) and 𝑥(𝑡

−

𝑘
) represent the right and left limits of

𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . ., respectively; Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) −

𝑥(𝑡
−

𝑘
) represents the jump in the state 𝑥 at time 𝑡

𝑘
with 𝐼

𝑘

determining the size of the jump.
We also assume that 0 ∈ 𝜌(−𝐴), the resolvent set of −𝐴.

Then, it is possible to define the fractional power (−𝐴)𝛼 for
some 0 < 𝛼 ≤ 1 as a closed linear operator with its domain
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𝐷((−𝐴)
𝛼
); furthermore, the subspace 𝐷((−𝐴)

𝛼
) is dense in

𝐻, and the expression

‖𝑥‖
𝛼
=
(−𝐴)

𝛼
𝑥
𝐻, 𝑥 ∈ 𝐷 ((−𝐴)

𝛼
) , (5)

defines a norm on𝐷((−𝐴)
𝛼
).

Lemma 1 (see Pazy [16]). Suppose that 0 ∈ 𝜌(−𝐴), then, we
know that there exist constants𝑀 ≥ 1, 𝛾 > 0 such that ‖𝑆(𝑡)‖ ≤
𝑀𝑒
−𝛾𝑡 for 𝑡 ≥ 0, and for every 0 < 𝛼 ≤ 1

(i) we have for each 𝑥 ∈ 𝐷((−𝐴)
𝛼
),

𝑆 (𝑡) (−𝐴)
𝛼
𝑥 = (−𝐴)

𝛼
𝑆 (𝑡) 𝑥; (6)

(ii) there exists𝑀
𝛼
> 0 such that

(−𝐴)
𝛼
𝑆 (𝑡)

 ≤ 𝑀
𝛼
𝑡
−𝛼
𝑒
−𝛾𝑡

. (7)

Definition 2. Astochastic process𝑥(𝑡), 𝑡 ∈ R+, is called amild
solution of the system (4), if

(i) 𝑥(𝑡) is anF
𝑡
(𝑡 ≥ 0) adapted process,

(ii) 𝑥(𝑡) ∈ 𝐻 has a càdlàg path on 𝑡 ∈ R+ almost surely,
(iii) for arbitrary 𝑡 ∈ R+, we have

𝑥 (𝑡) = 𝑆 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝜔 (𝑠)

+ ∑

0<𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) ,

(8)

where 𝑥
0
(⋅) ∈ PC𝑏F0([−𝜏, 0],𝐻), a.s.

Definition 3. The mild solution of system (4) is said to be
exponentially stable in mean square if there exists a pair of
positive constants 𝜆 > 0 and𝑀 ≥ 1 such that for any solution
𝑥(𝑡) with the initial condition 𝜙 ∈ PC𝑏F0([−𝜏, 0],𝐻),

E‖𝑥(𝑡)‖2 ≤ 𝑀
𝜙

2

L2
𝑒
−𝜆𝑡

, 𝑡 ≥ 0. (9)

3. Exponential Stability

For system (4), we impose the following assumptions.

(A1) There exist constants 𝐿
𝑓
> 0, 𝐿

𝜎
> 0 such that for any

𝑥, 𝑦 ∈ 𝐻 and 𝑡 ≥ 0,
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

 ≤ 𝐿
𝑓

𝑥 − 𝑦
 , 𝑓 (𝑡, 0) = 0,

𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)
L0
2

≤ 𝐿
𝜎

𝑥 − 𝑦
 , 𝜎 (𝑡, 0) = 0.

(10)

(A2) There exist 𝛼 ∈ (0, 1], 𝐿
𝑔
> 0 such that for any 𝑥, 𝑦 ∈

𝐻 and 𝑡 ≥ 0,

𝑔 (𝑡, 𝑥) ∈ 𝐷 ((−𝐴)
𝛼
) ,

(−𝐴)
𝛼
𝑔 (𝑡, 𝑥) − (−𝐴)

𝛼
𝑔 (𝑡, 𝑦)

 ≤ 𝐿
𝑔

𝑥 − 𝑦
 ,

𝑔 (𝑡, 0) = 0.

(11)

(A3) There exist some positive numbers 𝑞
𝑘
(𝑘 = 1, 2, . . .)

such that

𝐼𝑘 (𝑥) − 𝐼
𝑘
(𝑦)

 ≤ 𝑞
𝑘

𝑥 − 𝑦
 , 𝐼

𝑘
(0) = 0, 𝑘 = 1, 2, . . . ,

(12)

for any 𝑥, 𝑦 ∈ 𝐻 and ∑
∞

𝑘=1
𝑞
𝑘
< ∞.

Under the assumptions, (A1)–(A3), the existence and
uniqueness ofmild solution to the system (4) are easily shown
by using Picard iterative method.

Theorem 4. Suppose that the assumptions (A1)–(A3) hold;
furthermore, and the following assumptions

(A4) inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) = 𝜃 > 0,

(A5) 0 < ((18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ(2𝛼 − 1) + 3𝑀
2
𝐿
2

𝑓
𝛾
−1

+

3𝑀
2
𝐿
2

𝜎
)𝑒
𝛾𝜏

+ (1/𝜃) ln(6𝑀2(∑∞
𝑘=1

𝑞
𝑘
)
2
))/(1 −

18‖(−𝐴)
−𝛼
‖
2

𝐿
2

𝑔
𝑒
𝛾𝜏
) < 𝛾

hold for 𝛼 ∈ (1/2, 1], where Γ(⋅) is the Gamma function and
𝑀,𝑀

1−𝛼
, and 𝛾 are corresponding constants in Lemma 1.Then

the mild solution of system (4) is exponentially stable in mean
square.

Proof. From (8), for any 𝑡 ≥ 0, we can get

E‖𝑥(𝑡)‖2 = E


𝑆 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝜔 (𝑠)

+ ∑

0<𝑡𝑘<𝑡

𝑆(𝑡 − 𝑡
𝑘
)𝐼
𝑘
(𝑥(𝑡
𝑘
))



2
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≤ 3E


𝑆 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))

− ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠 − 𝜏)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

𝑆(𝑡 − 𝑡
𝑘
)𝐼
𝑘
(𝑥(𝑡
𝑘
))



2

+ 3E

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝑠



2

+ 3E

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝜎(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝜔(𝑠)



2

≤ 18E𝑆(𝑡)[𝜙(0) + 𝑔(0, 𝜙)]

2

+ 18E𝑔(𝑡, 𝑥(𝑡 − 𝜏))

2

+ 18E

∫

𝑡

0

−𝐴𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝑠



2

+ 6E


∑

0<𝑡𝑘<𝑡

𝑆(𝑡 − 𝑡
𝑘
)𝐼
𝑘
(𝑥(𝑡
𝑘
))



2

+ 3E

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝑠



2

+ 3E

∫

𝑡

0

𝑆(𝑡 − 𝑠)𝜎(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝜔(𝑠)



2

=

6

∑

𝑖=1

𝐽
𝑖
.

(13)

It follows from (A2) that

𝐽
1
= 18E𝑆(𝑡)[𝜙(0) + 𝑔(0, 𝜙)]


2

≤ 18‖𝑆(𝑡)‖
2

× E(𝜙 (0)
 +

(−𝐴)
−𝛼

(−𝐴)
𝛼
𝑔 (0, 𝜙)

)
2

≤ 18𝑀
2
𝑒
−2𝛾𝑡E(𝜙

 +
(−𝐴)

−𝛼 𝐿𝑔
𝜙
)
2

≤ 18𝑀
2
𝑒
−𝛾𝑡

(1 +
(−𝐴)

−𝛼 𝐿𝑔)
2𝜙


2

L2
.

(14)

By (A2), we can get

𝐽
2
= 18E𝑔(𝑡, 𝑥(𝑡 − 𝜏))


2

= 18E(−𝐴)
−𝛼
(−𝐴)
𝛼
𝑔(𝑡, 𝑥(𝑡 − 𝜏))


2

≤ 18
(−𝐴)

−𝛼
2

𝐿
2

𝑔
E‖𝑥 (𝑡 − 𝜏)‖

2
.

(15)

Employing Lemma 1, (A2), and Hölder inequality, we obtain

𝐽
3
= 18E


∫

𝑡

0

−𝐴𝑆(𝑡 − 𝑠)𝑔(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝑠



2

≤ 18E(∫
𝑡

0


(−𝐴)
1−𝛼

𝑆 (𝑡 − 𝑠)


×
(−𝐴)

𝛼
𝑔 (𝑠, 𝑥 (𝑠 − 𝜏))

 𝑑𝑠)

2

≤ 18𝑀
2

1−𝛼
𝐿
2

𝑔
E

× (∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

(𝑡 − 𝑠)
𝛼−1

‖𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠)

2

≤ 18𝑀
2

1−𝛼
𝐿
2

𝑔
(∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

(𝑡 − 𝑠)
2(𝛼−1)

𝑑𝑠)

× (∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑥 (𝑠 − 𝜏)‖

2
𝑑𝑠)

≤ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ (2𝛼 − 1)

× ∫

𝑡−𝜏

−𝜏

𝑒
𝛾𝜏
𝑒
−𝛾(𝑡−𝑠)E‖𝑥(𝑠)‖2𝑑𝑠

≤ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ (2𝛼 − 1)

× [𝛾
−1
𝑒
−𝛾𝑡

(𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 𝑒
𝛾𝜏
∫

𝑡−𝜏

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑥 (𝑠)‖2𝑑𝑠] .

(16)

Combining Lemma 1 and (A3), with Hölder inequality, we
can get

𝐽
4
= 6E



∑

0<𝑡𝑘<𝑡

𝑆(𝑡 − 𝑡
𝑘
)𝐼
𝑘
(𝑥(𝑡
𝑘
))



2

≤ 6E( ∑

0<𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡
𝑘
)

𝐼𝑘 (𝑥 (𝑡𝑘))

)

2

≤ 6𝑀
2E( ∑

0<𝑡𝑘<𝑡

𝑒
−𝛾(𝑡−𝑡𝑘)𝑞

𝑘

𝑥 (𝑡𝑘)
)

2

≤ 6𝑀
2
(

∞

∑

𝑘=1

𝑞
𝑘
)( ∑

0<𝑡𝑘<𝑡

𝑒
−𝛾(𝑡−𝑡𝑘)𝑞

𝑘
E𝑥 (𝑡𝑘)


2

)

≤ 6𝑀
2
(

∞

∑

𝑘=1

𝑞
𝑘
)

2

( ∑

0<𝑡𝑘<𝑡

𝑒
−𝛾(𝑡−𝑡𝑘)E𝑥 (𝑡𝑘)


2

) .

(17)
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From Lemma 1, (A1) and Hölder inequality, we obtain

𝐽
5
= 3E


∫

𝑡

0

𝑆(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝑠



2

≤ 3E(∫
𝑡

0

‖(𝑆(𝑡 − 𝑠)‖
𝑓 (𝑠, 𝑥 (𝑠 − 𝜏))

 𝑑𝑠)

2

≤ 3𝑀
2
𝐿
2

𝑓
E(∫
𝑡

0

𝑒
−𝛾(𝑡−𝑠)

‖𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠)

2

≤ 3𝑀
2
𝐿
2

𝑓
(∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑥 (𝑠 − 𝜏)‖

2
𝑑𝑠)

≤ 3𝑀
2
𝐿
2

𝑓
𝛾
−1
[𝛾
−1
𝑒
−𝛾𝑡

(𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 𝑒
𝛾𝜏
∫

𝑡−𝜏

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑥(𝑠)‖2𝑑𝑠] .

(18)

Using (A1) and Burkholder-type inequality, we obtain

𝐽
6
= 3E


∫

𝑡

0

𝑆(𝑡 − 𝑠)𝜎(𝑠, 𝑥(𝑠 − 𝜏))𝑑𝜔(𝑠)



2

≤ 3E∫
𝑡

0

‖𝑆(𝑡 − 𝑠)‖
2
‖𝜎(𝑠, 𝑥(𝑠 − 𝜏))‖

2

L0
2

𝑑𝑠

≤ 3𝑀
2
𝐿
2

𝜎
∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)E‖𝑥(𝑠 − 𝜏)‖

2
𝑑𝑠

≤ 3𝑀
2
𝐿
2

𝜎
[𝛾
−1
𝑒
−𝛾𝑡

(𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 𝑒
𝛾𝜏
∫

𝑡−𝜏

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑥 (𝑠)‖2𝑑𝑠] .

(19)

Substituting (14)–(19) into (13), we have

E‖𝑥(𝑡)‖2𝑒𝛾𝑡 ≤ 18𝑀
2
(1 +

(−𝐴)
−𝛼 𝐿𝑔)

2𝜙

2

L2

+ 18
(−𝐴)

−𝛼
2

𝐿
2

𝑔
E
{𝑡−𝜏<0}

‖𝑥(𝑡 − 𝜏)‖
2
𝑒
𝛾𝑡

+ 18
(−𝐴)

−𝛼
2

𝐿
2

𝑔

× E
{𝑡−𝜏≥0}

‖𝑥(𝑡 − 𝜏)‖
2
𝑒
𝛾𝑡

+ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ (2𝛼 − 1)

× [𝛾
−1
(𝑒
𝛾𝜏
− 1)

𝜙

2

L2
+ 𝑒
𝛾𝜏
∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠]

+ 6𝑀
2
(

∞

∑

𝑘=1

𝑞
𝑘
)

2

( ∑

0<𝑡𝑘<𝑡

E𝑥 (𝑡𝑘)

2

𝑒
𝛾𝑡𝑘)

+ 3𝑀
2
𝐿
2

𝑓
𝛾
−1

× [𝛾
−1
(𝑒
𝛾𝜏
− 1)

𝜙

2

L2
+ 𝑒
𝛾𝜏
∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠]

+ 3𝑀
2
𝐿
2

𝜎

× [𝛾
−1
(𝑒
𝛾𝜏
− 1)

𝜙

2

L2
+ 𝑒
𝛾𝜏
∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠]

≤ 18𝑀
2
(1 +

(−𝐴)
−𝛼 𝐿𝑔)

2𝜙

2

L2

+ 18
(−𝐴)

−𝛼
2

𝐿
2

𝑔
𝑒
𝛾𝜏𝜙


2

L2

+ 18
(−𝐴)

−𝛼
2

𝐿
2

𝑔
𝑒
𝛾𝜏E‖𝑥(𝑡)‖2𝑒𝛾𝑡

+ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
−2𝛼

Γ (2𝛼 − 1) (𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ (2𝛼 − 1) 𝑒
𝛾𝜏

× ∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠

+ 6𝑀
2
(

∞

∑

𝑘=1

𝑞
𝑘
)

2

( ∑

0<𝑡𝑘<𝑡

E𝑥(𝑡𝑘)

2

𝑒
𝛾𝑡𝑘)

+ 3𝑀
2
𝐿
2

𝑓
𝛾
−2
(𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 3𝑀
2
𝐿
2

𝑓
𝛾
−1
𝑒
𝛾𝜏
∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠

+ 3𝑀
2
𝐿
2

𝜎
𝛾
−1
(𝑒
𝛾𝜏
− 1)

𝜙

2

L2

+ 3𝑀
2
𝐿
2

𝜎
𝑒
𝛾𝜏
∫

𝑡

0

E‖𝑥 (𝑠)‖2𝑒𝛾𝑠𝑑𝑠.

(20)

From assumption (A5), we can get

E‖𝑥(𝑡)‖2𝑒𝜆𝑡 ≤ 𝐶
𝜙

2

L2
+ 𝑝∫

𝑡

0

E‖𝑥(𝑠)‖2𝑒𝛾𝑠𝑑𝑠

+ 𝛽 ∑

0<𝑡𝑘<𝑡

E𝑥(𝑡𝑘)

2

𝑒
𝛾𝑡𝑘 ,

(21)

where 𝐶 ≜ (1 − 18‖(−𝐴)
−𝛼
‖
2

𝐿
2

𝑔
𝑒
𝛾𝜏
)
−1
[18𝑀

2
(1 +

‖(−𝐴)
−𝛼
‖𝐿
𝑔
)
2
+ 18‖(−𝐴)

−𝛼
‖
2

𝐿
2

𝑔
𝑒
𝛾𝜏

+ 18𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
−2𝛼

Γ(2𝛼 −

1)(𝑒
𝛾𝜏

− 1) + 3𝑀
2
𝐿
2

𝑓
𝛾
−2
(𝑒
𝛾𝜏

− 1) + 3𝑀
2
𝐿
2

𝜎
𝛾
−1
(𝑒
𝛾𝜏

− 1)],
𝑝 ≜ (1 − 18‖(−𝐴)

−𝛼
‖
2

𝐿
2

𝑔
𝑒
𝛾𝜏
)
−1
[18𝑀

2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ(2𝛼 − 1)𝑒
𝛾𝜏
+

3𝑀
2
𝐿
2

𝑓
𝛾
−1
𝑒
𝛾𝜏

+ 3𝑀
2
𝐿
2

𝜎
𝑒
𝛾𝜏
], and 𝛽 ≜ (1 −

18‖(−𝐴)
−𝛼
‖
2

𝐿
2

𝑔
𝑒
𝛾𝜏
)
−1
6𝑀
2
(∑
∞

𝑘=1
𝑞
𝑘
)
2.

According to Gronwall-Bellmen’s inequality [17], we have

E‖𝑥(𝑡)‖2 ≤ 𝐶
𝜙

2

L2
∏

0<𝑡𝑘<𝑡

(1 + 𝛽) 𝑒
−(𝛾−𝑝)𝑡

. (22)
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On the other hand, by (A4), one has

∏

0<𝑡𝑘<𝑡

(1 + 𝛽) ≤ (1 + 𝛽)
𝑡/𝜃

= 𝑒
(𝑡/𝜃) ln(1+𝛽)

. (23)

Thereby, (22) can be rewritten as

E‖𝑥(𝑡)‖2 ≤ 𝐶
𝜙

2

L2
∏

0<𝑡𝑘<𝑡

(1 + 𝛽) 𝑒
−(𝛾−𝑝−ln(1+𝛽)/𝜃)𝑡

, (24)

which implies themild solution of system (4) is exponentially
stable in mean square.

This completes the proof.

Theorem 5. Suppose that all the conditions ofTheorem 4 hold.
Then themild solution of system (4) is exponential stable almost
surely.

Proof. The proof is quite similar to the proof of Theorem 5.1
in [18], and we omit it here.

If the impulsive effects, 𝐼
𝑘
(⋅) ≡ 0 (𝑘 = 1, 2, . . .), system

(4) is turned into the following neutral stochastic partial
functional differential equations:

𝑑 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏))] = [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0,

𝑥
0
(𝑠) = 𝜙 (𝑠) ∈ 𝐶

𝑏

F0
([−𝜏, 0] ,𝐻) , 𝑠 ∈ [−𝜏, 0] , a.s.

(25)

Corollary 6. Assume that (A1)-(A2) hold, and the following
condition

0 <
(9𝑀
2

1−𝛼
𝐿
2

𝑔
𝛾
1−2𝛼

Γ (2𝛼 − 1) + 3𝑀
2
𝐿
2

𝑓
𝛾
−1

+ 3𝑀
2
𝐿
2

𝜎
) 𝑒
𝛾𝜏

1 − 9
(−𝐴)

−𝛼
2

𝐿2
𝑔
𝑒𝛾𝜏

< 𝛾

(26)

holds for 𝛼 ∈ (1/2, 1]. Then the mild solution of system (25) is
exponentially stable in mean square.

If 𝑔(𝑡, ⋅) ≡ 0, then system (4) becomes stochastic partial
functional differential equations with impulses as follows:

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ Z,

𝑥
0
(𝑠) = 𝜙 (𝑠) ∈ PC𝑏F0 ([−𝜏, 0] ,𝐻) , 𝑠 ∈ [−𝜏, 0] , a.s.

(27)

Corollary 7. Assume that (A1) and (A3) hold, and the
following conditions

(A4) inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) = 𝜃 > 0,
(A5) (3𝑀2𝐿2

𝑓
𝛾
−1
+3𝑀
2
𝐿
2

𝜎
)𝑒
𝛾𝜏
+(1/𝜃) ln(6𝑀2(∑∞

𝑘=1
𝑞
𝑘
)
2
) <

𝛾

hold. Then the mild solution of system (27) is exponentially
stable in mean square.

If 𝑔(𝑡, ⋅) ≡ 0 and 𝐼
𝑘
(⋅) ≡ 0, then system (4) becomes

stochastic partial functional differential equations as follows:

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡 − 𝜏)) 𝑑𝜔 (𝑡) , 𝑡 ≥ 0,

𝑥
0
(𝑠) = 𝜙 (𝑠) ∈ 𝐶

𝑏

F0
([−𝜏, 0] ,𝐻) , 𝑠 ∈ [−𝜏, 0] , a.s.

(28)

Corollary 8. Assume that (A1) holds, and the following
condition

(3𝑀
2
𝐿
2

𝑓
𝛾
−1

+ 3𝑀
2
𝐿
2

𝜎
) 𝑒
𝛾𝜏

< 𝛾 (29)

holds. Then the mild solution of system (28) is exponentially
stable in mean square.

Remark 9. In [12], Caraballo and Liu have studied the
exponential stability in 𝑝 (𝑝 ≥ 2)-moment of mild solution
to (28) by utilizing Gronwall inequality, and the monotone
decreasing behaviors of the delays are imposed. Particularly,
when 𝜏(𝑡) ≡ 𝜏, 𝛿(𝑡) ≡ 𝜏, the condition ensuring the exponen-
tial stability in mean square is (3𝑀2𝐿2

𝑓
𝛾
−1

+ 3𝑀
2
𝐿
2

𝜎
)𝑒
𝛾𝜏

< 𝛾.
From Corollary 8, it is obvious that our results improve the
results in [12].

4. Example

Example 1. We consider the following neutral stochastic
partial functional differential equation with impulses:

𝑑 [𝑥 (𝑡) + 𝑎
1
𝑥 (𝑡 − 1)]

= [
𝜕
2

𝜕𝑧2
𝑥 (𝑡) + 𝑎

2
𝑥 (𝑡 − 1)] 𝑑𝑡

+ 𝑎
3
𝑥 (𝑡 − 1) 𝑑𝑤 (𝑡) , 0 ≤ 𝑧 ≤ 𝜋, 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) =

𝑏
1

𝑘2
𝑥 (𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

𝑥
0
(𝑠) = 𝜙 (𝑠) ∈ PC𝑏F𝑡 ([−1, 0] , 𝐿

2
[0, 𝜋]) ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, −1 ≤ 𝑠 ≤ 0,

(30)

where 𝑎
𝑖
> 0, 𝑖 = 1, 2, 3, 𝑏

1
≤ 0 are constants and 𝑤(𝑡)

denote the standard cylindrical Wiener process.
Let 𝐻 = 𝐿

2
[0, 𝜋], 𝐻

1
= 𝑊
2,2
(0, 𝜋) ∩ 𝑊

1,2

0
(0, 𝜋). Define

bounded linear operator 𝐴 : 𝐻
1
→ 𝐻 by

𝐴𝑥 =
𝜕
2
𝑥

𝜕𝑧2
∈ 𝐻, ∀𝑥 ∈ 𝐻

1
. (31)

Then we get

𝐴𝑥 =

∞

∑

𝑛=1

𝑛
2
⟨𝑥, 𝑒
𝑛
⟩
𝐻
𝑒
𝑛
, 𝑥 ∈ 𝐻

1
, (32)
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where 𝑒
𝑛
(𝑧) = √2/𝜋 sin 𝑛𝑧, 𝑛 = 1, 2, . . . is the set of

eigenvector of −𝐴.
The bounded linear operator (−𝐴)3/4 is given by

(−𝐴)
3/4

𝑥 =

∞

∑

𝑛=1

𝑛
3/2

⟨𝑥, 𝑒
𝑛
⟩
𝐻
𝑒
𝑛
, (33)

with domain

𝐷((−𝐴)
3/4

) = 𝐻
3/4

= {𝑥 ∈ 𝐻,

∞

∑

𝑛=1

𝑛
3/2

⟨𝑥, 𝑒
𝑛
⟩
𝐻
𝑒
𝑛
∈ 𝐻} .

(34)

We can easily know that 𝐴 is the infinitesimal generator
of an analytic semigroup 𝑆(𝑡), 𝑡 ≥ 0, in𝐻 and

𝑆 (𝑡) 𝑥 =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡
⟨𝑥, 𝑒
𝑛
⟩
𝐻
𝑒
𝑛
, 𝑥 ∈ 𝐻. (35)

Furthermore, we know that ‖𝑆(𝑡)‖ ≤ 𝑒
−𝜋
2
𝑡, 𝑡 ≥ 0.

Let 𝑔(𝑡, 𝑥(𝑡 − 𝜏)) = 𝑎
1
𝑥(𝑡 − 1), 𝑓(𝑡, 𝑥(𝑡 − 𝜏)) = 𝑎

2
𝑥(𝑡 − 1),

𝜎(𝑡, 𝑥(𝑡 − 𝜏)) = 𝑎
3
𝑥(𝑡 − 1), and 𝑡

𝑘+1
= 𝑡
𝑘
+ 1.

Then we can get

𝑀 = 1, 𝛾 = 𝜋
2
, 𝜏 = 1, 𝐿

𝑓
= 𝑎
2
,

𝐿
𝑔
= 𝑎
1


(−𝐴)
3/4

, 𝐿
𝜎
= 𝑎
3
, 𝜃 = 1,

𝑞
𝑘
=

𝑏
1

𝑘2
,


(−𝐴)
3/4

= 1,

(−𝐴)
−3/4

≤
1

𝜋3/2
.

(36)

From Theorem 4, we know that the mild of system (30) is
exponentially stable in mean square provided that

[
18𝑀
2

1/4
𝑎
2

1

𝜋1/2
+
3𝑎
2

2

𝜋2
+ 3𝑎
2

3
] 𝑒
𝜋
2

+ ln 𝜋
4

6
< 𝜋
2
−
18𝑎
2

1
𝑒
𝜋
2

𝜋
.

(37)

5. Conclusion

In this paper, neutral stochastic partial functional differential
equation with impulses has been investigated. By utiliz-
ing impulsive inequality, the stochastic analytic technique,
inequality technique, the fractional power of operator, and
semigroup theory, some completely new sufficient conditions
are obtained to guarantee the exponential stability of mild
solution for neutral stochastic partial functional differential
equation with impulses. Finally, it should be pointed out that
it is possible to extend the results obtained in this paper to
other neutral stochastic impulsive differential equations, such
as neutral stochastic impulsive partial differential equations
with Poisson jumps and so forth.

Acknowledgments

The author would like to thank the referee and the editor
for their careful comments and valuable suggestions on this
work. This work is supported by the Key Foundation of
ChongqingThree Gorges University (no. 12ZD19).

References

[1] Y. Ren and R. Sakthivel, “Existence, uniqueness, and stability
of mild solutions for second-order neutral stochastic evolution
equations with infinite delay and Poisson jumps,” Journal of
Mathematical Physics, vol. 53, no. 7, Article ID 073517, 14 pages,
2012.

[2] R. Sakthivel, P. Revathi, and S.M.Anthoni, “Existence of pseudo
almost automorphic mild solutions to stochastic fractional
differential equations,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 75, no. 7, pp. 3339–3347, 2012.

[3] R. Sakthivel, P. Revathi, and Y. Ren, “Existence of solutions for
nonlinear fractional stochastic differential equations,” Nonlin-
ear Analysis: Theory, Methods & Applications, vol. 81, pp. 70–86,
2013.

[4] R. Sakthivel and Y. Ren, “Exponential stability of second-order
stochastic evolution equations with Poisson jumps,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 17,
no. 12, pp. 4517–4523, 2012.

[5] R. Sakthivel, Y. Ren, and H. Kim, “Asymptotic stability of
second-order neutral stochastic differential equations,” Journal
ofMathematical Physics, vol. 51, no. 5, Article ID 052701, 9 pages,
2010.

[6] A.Anguraj andA.Vinodkumar, “Existence, uniqueness and sta-
bility of random impulsive stochastic partial neutral functional
differential equations with infinite delays,” Journal of Applied
Mathematics information, vol. 28, pp. 739–751, 2010.

[7] A. Anguraj and A. Vinodkumar, “Existence, uniqueness and
stability results of random impulsive semilinear differential
systems,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 3, pp.
475–483, 2010.

[8] R. Sakthivel and J. Luo, “Asymptotic stability of impulsive
stochastic partial differential equations with infinite delays,”
Journal of Mathematical Analysis and Applications, vol. 356, no.
1, pp. 1–6, 2009.

[9] R. Sakthivel and J. Luo, “Asymptotic stability of nonlinear
impulsive stochastic differential equations,” Statistics & Proba-
bility Letters, vol. 79, no. 9, pp. 1219–1223, 2009.

[10] J. Luo, “Fixed points and exponential stability of mild solutions
of stochastic partial differential equations with delays,” Journal
of Mathematical Analysis and Applications, vol. 342, no. 2, pp.
753–760, 2008.

[11] J. Luo, “Exponential stability for stochastic neutral partial func-
tional differential equations,” Journal of Mathematical Analysis
and Applications, vol. 355, no. 1, pp. 414–425, 2009.

[12] T. Caraballo and K. Liu, “Exponential stability of mild solutions
of stochastic partial differential equations with delays,” Stochas-
tic Analysis and Applications, vol. 17, no. 5, pp. 743–763, 1999.

[13] L. Wan and J. Duan, “Exponential stability of non-autonomous
stochastic partial differential equations with finite memory,”
Statistics & Probability Letters, vol. 78, no. 5, pp. 490–498, 2008.

[14] H. Chen, “Impulsive-integral inequality and exponential sta-
bility for stochastic partial differential equations with delays,”
Statistics & Probability Letters, vol. 80, no. 1, pp. 50–56, 2010.

[15] S. Long, L. Teng, and D. Xu, “Global attracting set and stability
of stochastic neutral partial functional differential equations
with impulses,” Statistics & Probability Letters, vol. 82, no. 9, pp.
1699–1709, 2012.

[16] A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, vol. 44 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 1983.



8 Journal of Applied Mathematics

[17] A. M. Samoı̆lenko and N. A. Perestyuk, Impulsive Differential
Equations, vol. 14 ofWorld Scientific Series on Nonlinear Science.
Series A: Monographs and Treatises, World Scientific, River
Edge, NJ, USA, 1995.

[18] T. Taniguchi, “Almost sure exponential stability for stochastic
partial functional-differential equations,” Stochastic Analysis
and Applications, vol. 16, no. 5, pp. 965–975, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


