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In a communication network, the vulnerability parameters measure the resistance of the network to disruption of operation after
the failure of certain stations or communication links. A vertex subversion strategy of a graph𝐺, say 𝑆, is a set of vertices in𝐺whose
closed neighborhood is removed from 𝐺. The survival subgraph is denoted by 𝐺/𝑆. The neighbor rupture degree of 𝐺, Nr(𝐺), is
defined to be Nr(𝐺) = max{𝑤(𝐺/𝑆)−|𝑆|−𝑐(𝐺/𝑆) : 𝑆 ⊂ 𝑉(𝐺), 𝑤(𝐺/𝑆) ≥ 1}, where 𝑆 is any vertex subversion strategy of𝐺,𝑤(𝐺/𝑆) is
the number of connected components in 𝐺/𝑆 and 𝑐(𝐺/𝑆) is the maximum order of the components of 𝐺/𝑆 (G. Bacak Turan, 2010).
In this paper we give some results for the neighbor rupture degree of the graphs obtained by some graph operations.

1. Introduction

A network can be broke down completely or partially with
unexpected reasons. If the data is not transmitted to the
desired location that means there is a problem on the system.
This problem can block a treaty of billions of euros or make
a big problem for human’s life. In these days the reliability
and the vulnerability of networks are so important. For that
reason graphs are taken as a model in the research area of
reliability and vulnerability of the networks. Each network
center is taken as a vertex and the connections of these
vertices are edges of a graph.

A few questions can be asked at this point How can the
reliability and the vulnerability of a network be determined?
What are the factors of the reliability and the vulnerability?
For example, what can be done if there is a problem on the
way you are using every day to work? We have two choices;
we may give up going to work although we have the risk
of dismissal or we can look for another way to work. The
question “if there is another way to reach work” may come to
our minds. In other words “Has the link connection between
home and work completely broken down?”. To answer this
question, we must know the dimensions of the problem
between home and work. The vulnerability of the graph

which represents the way between home and work should be
searched. In graph theory some vulnerability parameters are
defined to measure the vulnerability value of graphs such as
connectivity [1], integrity [2], neighbor integrity [3], rupture
degree [4], and neighbor rupture degree [5].

Terminology and notation not defined in this paper can
be found in [5]. Let𝐺 be a simple graph and let 𝑢 be any vertex
of𝐺.The set𝑁(𝑢) = {V ∈ 𝑉(𝐺) | V ̸= 𝑢; V and 𝑢 are adjacent}
is the open neighborhood of 𝑢, and 𝑁[𝑢] = {𝑢} ∪ 𝑁(𝑢) is the
closed neighborhood of 𝑢. A vertex 𝑢 in 𝐺 is said to be sub-
verted if the closed neighborhood of 𝑢 is removed from 𝐺. A
set of vertices 𝑆 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
} is called a vertex subversion

strategy of 𝐺 if each of the vertices in 𝑆 has been subverted
from 𝐺. If 𝑆 has been subverted from the graph 𝐺, then the
remaining graph is called survival graph, denoted by 𝐺/𝑆.

2. Basic Results

In this paper the new vulnerability parameter neighbor
rupture degree was studied. The concept of neighbor rupture
degree was introduced by Bacak-Turan and Kırlangıc in 2011
[5]. The definition of neighbor rupture degree and some
results are given below.
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Definition 1 (see [6]). The neighbor rupture degree of a non-
complete connected graph 𝐺 is defined to be

Nr (𝐺)

= max {𝑤(
𝐺

𝑆
) − |𝑆| − 𝑐 (

𝐺

𝑆
) : 𝑆 ⊂ 𝑉 (𝐺) , 𝑤 (

𝐺

𝑆
) ≥ 1} ,

(1)

where 𝑆 is any vertex subversion strategy of 𝐺, 𝑤(𝐺/𝑆) is the
number of connected components in 𝐺/𝑆, and 𝑐(𝐺/𝑆) is the
maximum order of the components of 𝐺/𝑆.

In particular, the neighbor rupture degree of a complete
graph 𝐾

𝑛
is defined to be Nr(𝐾

𝑛
) = 1 − 𝑛. A set 𝑆 ⊂ 𝑉(𝐺) is

said to be Nr-𝑠𝑒𝑡 of 𝐺 if

Nr (𝐺) = 𝑤(
𝐺

𝑆
) − |𝑆| − 𝑐 (

𝐺

𝑆
) . (2)

Some known results are listed below.

Theorem 2 (see [6]). (a) Let 𝑃
𝑛
be a path graph with n vertices

and 𝑛 ≥ 2,

Nr (𝑃
𝑛
) = {

0, 𝑛 ≡ 1 (mod 4)

−1, 𝑛 ≡ 0, 2, 3 (mod 4) .
(3)

(b) Let 𝐶
𝑛
be a cycle graph with n vertices and 𝑛 ≥ 3,

Nr (𝐶
𝑛
) = {

−1, 𝑛 ≡ 0 (mod 4)

−2, 𝑛 ≡ 1, 2, 3 (mod 4) .
(4)

(c) Let 𝐾
𝑛
1
,𝑛
2
,𝑛
3
,...,𝑛
𝑘

be a 𝑘-partite graph

Nr (𝐾
𝑛
1
,𝑛
2
,...,𝑛
𝑘

) = max {𝑛
1
, 𝑛
2
, 𝑛
3
, . . . , 𝑛

𝑘
} − 3. (5)

(d) Let 𝑊
𝑛
be a wheel graph with 𝑛 vertices and 𝑛 ≥ 5,

Nr (𝑊
𝑛
) = {

−1, 𝑛 ≡ 1 (mod 4)

−2, 𝑛 ≡ 0, 2, 3 (mod 4) .
(6)

3. Graph Operations and Neighbor
Rupture Degree

In this section some graph operations are operated on graphs
and their neighbor rupture degrees are evaluated.

Definition 3 (see [7]). The union graph𝐺 = 𝐺
1
∪𝐺
2
∪⋅ ⋅ ⋅∪𝐺

𝑛

has vertex set 𝑉(𝐺) = 𝑉(𝐺
1
) ∪ 𝑉(𝐺

2
) ∪ ⋅ ⋅ ⋅ ∪ 𝑉(𝐺

𝑛
) and edge

set𝐸(𝐺) = 𝐸(𝐺
1
)∪𝐸(𝐺

2
)∪⋅ ⋅ ⋅∪𝐸(𝐺

𝑛
). If a graph𝐺 consists of

𝑘 (𝑘 ≥ 2) disjoint copies of a graph𝐻, then we write𝐺 = 𝑘𝐻.

Theorem 4. Let 𝐺
1
, 𝐺
2
, 𝐺
3
, . . . , 𝐺

𝑛
be connected graphs. Then

Nr (𝐺
1
∪ 𝐺
2
∪ ⋅ ⋅ ⋅ ∪ 𝐺

𝑛
)

≥ Nr (𝐺
1
) + Nr (𝐺

2
) + ⋅ ⋅ ⋅ + Nr (𝐺

𝑛
) .

(7)

Proof. Let𝐺 = 𝐺
1
∪𝐺
2
∪⋅ ⋅ ⋅∪𝐺

𝑛
be the union of𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑛
.

Let 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
beNr-sets of𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑛
respectively, and

let 𝑆 = 𝑆
1
∪ 𝑆
2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑛
be a subversion strategy of 𝐺. Then

we obtain

Nr (𝐺) ≥ 𝑤(
𝐺

(𝑆
1
∪ 𝑆
2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑛
)
) −

𝑆1 ∪ 𝑆
2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑛



− 𝑐 (
𝐺

(𝑆
1
∪ 𝑆
2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑛
)
)

= 𝑤(
𝐺
1

𝑆
1

) + 𝑤(
𝐺
2

𝑆
2

) + ⋅ ⋅ ⋅ + 𝑤(
𝐺
𝑛

𝑆
𝑛

) −
𝑆1

 −
𝑆2



− ⋅ ⋅ ⋅
𝑆𝑛

 − max{𝑐(
𝐺
1

𝑆
1

) , 𝑐 (
𝐺
2

𝑆
2

) , . . . , 𝑐 (
𝐺
𝑛

𝑆
𝑛

)}

≥ 𝑤(
𝐺
1

𝑆
1

) + 𝑤(
𝐺
2

𝑆
2

) + ⋅ ⋅ ⋅ + 𝑤(
𝐺
𝑛

𝑆
𝑛

) −
𝑆1

 −
𝑆2



− ⋅ ⋅ ⋅
𝑆𝑛

 − 𝑐 (
𝐺
1

𝑆
1

) − 𝑐(
𝐺
2

𝑆
2

) − ⋅ ⋅ ⋅ − 𝑐 (
𝐺
𝑛

𝑆
𝑛

)

= Nr (𝐺
1
) + Nr (𝐺

2
) + Nr (𝐺

3
) + ⋅ ⋅ ⋅ + Nr (𝐺

𝑛
) .

(8)

Thus we have Nr(𝐺
1
∪ 𝐺
2
∪ ⋅ ⋅ ⋅ ∪ 𝐺

𝑛
) ≥ Nr(𝐺

1
) + Nr(𝐺

2
) +

⋅ ⋅ ⋅ + Nr(𝐺
𝑛
).

Theorem 5. Let 𝐾
𝑛
1

, 𝐾
𝑛
2

, . . . , 𝐾
𝑛
𝑚

be complete graphs with
𝑛
1
≤ 𝑛
2
≤ 𝑛
𝑚
where 𝑛

𝑖+1
− 𝑛
𝑖
≥ 2; ∀𝑖 ∈ 𝑍

+. Then

Nr (𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

) = 2 − 𝑚 − 𝑛
1
. (9)

Proof. Let 𝑆 be a subversion strategy of𝐾
𝑛
1

∪𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

.
Since these are complete graphs, it is obvious that 𝑆 contains
at most one vertex from each 𝐾

𝑛 ̇𝐼
.

If |𝑆| = 𝑘, then 𝑤((𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

)/𝑆) = 𝑚 − 𝑘 and
𝑐((𝐾
𝑛
1

∪𝐾
𝑛
2

∪⋅ ⋅ ⋅∪𝐾
𝑛
𝑚

)/𝑆) ≥ 𝑛
𝑚−𝑘

.Thuswehave𝑤((𝐾
𝑛
1

∪𝐾
𝑛
2

∪

𝐾
𝑛
3

∪ ⋅ ⋅ ⋅ ∪𝐾
𝑛
𝑚

)/𝑆)− |𝑆| − 𝑐((𝐾
𝑛
1

∪𝐾
𝑛
2

∪ 𝐾
𝑛
3

∪ ⋅ ⋅ ⋅ ∪𝐾
𝑛
𝑚

)/𝑆) ≤

𝑚 − 2𝑘 − 𝑛
𝑚−𝑘

≤ 𝑚 − 2𝑘 − 𝑛
1
− 2(𝑚 − 𝑘 − 1) since

𝑛
𝑖+1

− 𝑛
𝑖
≥ 2,

𝑛
𝑚−𝑘

≥ 𝑛
1
+ 2 (𝑚 − 𝑘 − 1)

= 2 − 𝑚 − 𝑛
1
⇒ Nr ≤ 2 − 𝑚 − 𝑛

1
.

(10)

There exist 𝑆∗ such that |𝑆∗| = 𝑚 − 1, 𝑤((𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪

𝐾
𝑛
𝑚

)/𝑆
∗
) = 1 and 𝑐((𝐾

𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

)/𝑆
∗
) = 𝑛
1
. Then

we have

𝑤(

(𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

)

𝑆∗
) −

𝑆
∗

− 𝑐(

(𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

)

𝑆∗
)

= 2 − 𝑚 − 𝑛
1

⇒ Nr ≥ 2 − 𝑚 − 𝑛
1
.

(11)

From (10) and (11) we obtain Nr(𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

) =

2 − 𝑚 − 𝑛
1
.
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The following theorem’s proof is very similar to that of
Theorem 5.

Theorem 6. Let 𝐾
𝑛
1

, 𝐾
𝑛
2

, 𝐾
𝑛
3

, . . . , 𝐾
𝑛
𝑚

be complete graphs
with 𝑛

1
≤ 𝑛
2
≤ 𝑛
3
⋅ ⋅ ⋅ ≤ 𝑛

𝑚
where 𝑛

𝑖+1
− 𝑛
𝑖
≤ 2; for all 𝑖 ∈ 𝑍

+.
Then

Nr (𝐾
𝑛
1

∪ 𝐾
𝑛
2

∪ 𝐾
𝑛
3

∪ ⋅ ⋅ ⋅ ∪ 𝐾
𝑛
𝑚

) = 𝑚 − 𝑛
𝑚
. (12)

Corollary 7. Let

Nr (𝐾
𝑛
∪ 𝐾
𝑚
) = {

2 − 𝑛, 2 > 𝑛 − 𝑚,

−𝑚, otherwise.
(13)

Definition 8 (see [7]). The join graph 𝐺 = 𝐺
1
+ 𝐺
2
has vertex

set 𝑉(𝐺) = 𝑉(𝐺
1
) ∪ 𝑉(𝐺

2
) and edge set 𝐸(𝐺) = 𝐸(𝐺

1
) ∪

𝐸(𝐺
2
) ∪ {𝑢V | 𝑢 ∈ 𝑉(𝐺

1
) and V ∈ 𝑉(𝐺

2
)}.

In this part, neighbor rupture degree of join of some
graphs is given.

Theorem 9. Let 𝐺
1
and 𝐺

2
be two connected graphs. Then

Nr (𝐺
1
+ 𝐺
2
) = max {Nr (𝐺

1
) ,Nr (𝐺

2
)} . (14)

Proof. Let 𝑆 be a subversion strategy of 𝐺
1
+ 𝐺
2
. There are

three cases according to the elements of 𝑆.

Case 1. Let 𝑆 = 𝑆
1

⊂ 𝑉(𝐺
1
) be the Nr-set of 𝐺

1
such that

𝑤(𝐺
1
/𝑆
1
)−|𝑆
1
|−𝑐(𝐺

1
/𝑆
1
) = Nr(𝐺

1
). Since any elements from

𝐺
1
are adjacent to every element of 𝐺

2
in 𝐺
1
+ 𝐺
2
, we have

𝑤(
𝐺
1
+ 𝐺
2

𝑆
1

) −
𝑆1

 − 𝑐 (
𝐺
1
+ 𝐺
2

𝑆
1

)

= 𝑤(
𝐺
1

𝑆
1

) −
𝑆1

 − 𝑐 (
𝐺
1

𝑆
1

) = Nr (𝐺
1
) .

(15)

Case 2. Let 𝑆 = 𝑆
2

⊂ 𝑉(𝐺
2
) be the Nr-set of 𝐺

2
such that

𝑤(𝐺
2
/𝑆
2
)−|𝑆
2
|−𝑐(𝐺

2
/𝑆
2
) = Nr(𝐺

2
). Since any elements from

𝐺
2
are adjacent to every element of 𝐺

1
in 𝐺
1
+ 𝐺
2
, we have

𝑤(
𝐺
1
+ 𝐺
2

𝑆
2

) −
𝑆2

 − 𝑐 (
𝐺
1
+ 𝐺
2

𝑆
2

)

= 𝑤(
𝐺
2

𝑆
2

) −
𝑆2

 − 𝑐 (
𝐺
2

𝑆
2

) = Nr (𝐺
2
) .

(16)

Case 3. Let 𝑆 ⊂ 𝑉(𝐺
1
) ∪ 𝑉(𝐺

2
). Since 𝑆 contains at least one

vertex of 𝑉(𝐺
1
) which is adjacent to all the vertices of 𝑉(𝐺

2
)

and 𝑆 contains at least one vertex of𝑉(𝐺
2
)which is adjacent to

all the vertices of𝑉(𝐺
1
) in𝐺
1
+𝐺
2
, then (𝐺

1
+𝐺
2
)/𝑆 is empty.

It contradicts to the definition of neighbor rupture degree.
By (15) and (16) Nr(𝐺

1
+𝐺
2
) = max{Nr(𝐺

1
),Nr(𝐺

2
)}.

For three or more disjoint graphs 𝐺
1
, 𝐺
2
, 𝐺
3
, . . . , 𝐺

𝑛

sequential join 𝐺
1
+ 𝐺
2
+ ⋅ ⋅ ⋅ + 𝐺

𝑛
is the graph (𝐺

1
+ 𝐺
2
) ∪

(𝐺
2
+ 𝐺
3
) ∪ ⋅ ⋅ ⋅ ∪ (𝐺

𝑛−1
+ 𝐺
𝑛
) [8].

The following theorem’s proof is very similar to that of
Theorem 9.

Theorem 10. Let 𝐺
1
, 𝐺
2
, and 𝐺

3
be connected graphs. Then

the neighbor rupture degree of sequential join of 𝐺
1
, 𝐺
2
, and

𝐺
3
is

Nr (𝐺
1
+ 𝐺
2
+ 𝐺
3
) = max {Nr (𝐺

1
∪ 𝐺
3
) ,Nr (𝐺

2
)} . (17)

Corollary 11. If 𝐺
2
≅ 𝐾
𝑛
, then

Nr (𝐺
1
+ 𝐺
2
+ 𝐺
3
) ≥ Nr (𝐺

1
) + Nr (𝐺

3
) . (18)

Corollary 12. If 𝑛
1
≤ 𝑛
2
≤ 𝑛
3
, then

Nr (𝐾
𝑛
1

+ 𝐾
𝑛
2

+ 𝐾
𝑛
3

) = −𝑛
3
. (19)

Definition 13 (see [9]). The complement of a simple graph 𝐺

is obtained by taking the vertices of𝐺 and joining two of them
whenever they are not joined in 𝐺 and denoted by 𝐺

𝑐.

Theorem 14. Let 𝑃
𝑛
be a path graph of order 𝑛. Then

Nr (𝑃𝑐
𝑛
) = −1. (20)

Proof. Let 𝑆 be a subversion strategy of 𝑃
𝑐

𝑛
and let 𝑆 = {𝑢}

where 𝑢 ∈ 𝑉(𝑃
𝑛
).

Case 1. If deg(𝑢) = 1 in 𝑃
𝑛
, then 𝑢 is adjacent to all vertices

in 𝑃
𝑐

𝑛
except its neighbor in 𝑃

𝑛
. It means |𝑁[𝑢]| = 𝑛 − 1 in 𝑃

𝑐

𝑛
,

then we have

𝑤(
𝑃
𝑐

𝑛

𝑆
) − |𝑆| − 𝑐 (

𝑃
𝑐

𝑛

𝑆
) = 1 − 1 − 1 = −1. (21)

Case 2. If deg(𝑢) = 2 in 𝑃
𝑛
, then 𝑢 is adjacent to all vertices

in 𝑃
𝑐

𝑛
except its neighbors in 𝑃

𝑛
. It means |𝑁[𝑢]| = 𝑛 − 2 in 𝑃

𝑐

𝑛

where the remaining two vertices are adjacent. Therefore,

𝑤(
𝑃
𝑐

𝑛

𝑆
) − |𝑆| − 𝑐 (

𝑃
𝑐

𝑛

𝑆
) = 1 − 1 − 2 = −2. (22)

On the other hand, if we assume 𝑆 is a subversion strategy
with |𝑆| ≥ 2, then the remaining graph is empty. Therefore it
contradicts to the definition of neighbor rupture degree.

From (21) and (22) we have Nr(𝑃𝑐
𝑛
) = −1.

The following theorem’s proof is very similar to that of
Theorem 14.

Theorem 15. Let 𝑊
1,𝑛

be a wheel graph of order 𝑛 + 1. Then

Nr (𝑊𝑐
1,𝑛

) = −1. (23)

Theorem 16. Let 𝐾
𝑚,𝑛

be a complete bipartite graph. Then

Nr (𝐾𝑐
𝑚,𝑛

) = {
2 − 𝑛, 2 > 𝑛 − 𝑚,

−𝑚, otherwise.
(24)

Proof. It is obvious that 𝐾𝑐
𝑚,𝑛

= 𝐾
𝑚

∪ 𝐾
𝑛
.

According to Corollary 7 we get the result.

Corollary 17. Let 𝐾
1,𝑛

be a star graph of order 𝑛 + 1. Then

Nr (𝐾𝑐
1,𝑛

) = −1. (25)
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Definition 18 (see [7]). The cartesian product𝐺 = 𝐺
1
×𝐺
2
has

𝑉(𝐺) = 𝑉(𝐺
1
) × 𝑉(𝐺

2
), and two vertices (𝑢

1
, 𝑢
2
) and (V

1
, V
2
)

of 𝐺 are adjacent if and only if either

𝑢
1
= V
1
, 𝑢

2
V
2
∈ 𝐸 (𝐺

2
) (26)

or

𝑢
2
= V
2
, 𝑢

1
V
1
∈ 𝐸 (𝐺

1
) . (27)

Theorem 19. Let 𝑃
2
× 𝑃
3𝑎
be a cartesian product with 𝑎 ∈ 𝑍

+.
Then

Nr (𝑃
2
× 𝑃
3𝑎
) = 𝑎 − 1. (28)

Proof. Let 𝑆 be a subversion strategy of 𝑃
2
× 𝑃
3𝑎

and |𝑆| = 𝑟.
There are two cases according to the number of elements in
𝑆.

Case 1. Let 1 ≤ 𝑟 ≤ 𝑎. Then 𝑁[𝑆] ≤ 4𝑟 and 𝑤 ≤ 2𝑟.
Since 𝑐((𝑃

2
× 𝑃
3𝑎
)/𝑆) ≥ (|𝑉(𝑆)| − |𝑁(𝑆)|)/𝑤 ≥ ((2.(3𝑎) −

4𝑟)/2𝑟) = 3𝑎/𝑟 − 2 and

𝑤(
𝑃
2
× 𝑃
3𝑎

𝑆
) − |𝑆| − 𝑐 (

𝑃
2
× 𝑃
3𝑎

𝑆
)

≤ 2𝑟 − 𝑟 − (
3𝑎

𝑟
− 2)

= 𝑟 + 2 −
3𝑎

𝑟
.

(29)

Let 𝑓(𝑟) = 𝑟 + 2 − 3𝑎/𝑟. 𝑓 is an increasing function since
𝑓

(𝑟) = 1 + 3𝑎/𝑟

2
> 0. So it takes its maximum value at 𝑟 = 𝑎.

Then 𝑓(𝑎) = 𝑎 − 3𝑎/𝑎 + 2 = 𝑎 − 1. Hence,

Nr (𝑃
2
× 𝑃
3𝑎
) ≤ 𝑎 − 1. (30)

Case 2. Let 𝑎 ≤ 𝑟 ≤ |𝑉(𝑃
2
×𝑃
3𝑎
)|.Then 𝑐((𝑃

2
×𝑃
3𝑎
)/𝑆) ≥ 1 and

𝑤((𝑃
2
×𝑃
3𝑎
)/𝑆) ≤ 2(3𝑎)−4𝑎− (𝑟−𝑎) = 3𝑎−𝑟, thus we obtain

𝑤((𝑃
2
×𝑃
3𝑎
)/𝑆)−|𝑆|−𝑐((𝑃

2
×𝑃
3𝑎
)/𝑆) ≤ 3𝑎−𝑟−𝑟−1 = 3𝑎−2𝑟−1.

Let 𝑓(𝑟) = 3𝑎 − 2𝑟 − 1. Since 𝑓

< 0, 𝑓 is a decreasing

function, so it takes its maximum value at 𝑟 = 𝑎. Then 𝑓(𝑎) =

3𝑎 − 2𝑎 − 1 = 𝑎 − 1

Nr (𝑃
2
× 𝑃
3𝑎
) ≤ 𝑎 − 1. (31)

From (30) and (31) we have

Nr (𝑃
2
× 𝑃
3𝑎
) ≤ 𝑎 − 1. (32)

It is obvious that there exist 𝑆
∗ such that |𝑆

∗
| = 𝑎, 𝑤((𝑃

2
×

𝑃
3𝑎
)/𝑆
∗
) = 2𝑎 and 𝑐((𝑃

2
× 𝑃
3𝑎
)/𝑆
∗
) = 1 so

Nr (𝑃
2
× 𝑃
3𝑎
) ≥ 𝑎 − 1. (33)

From (32) and (33) we have Nr(𝑃
2
× 𝑃
3𝑎
) = 𝑎 − 1.

The following theorems’ proofs are very similar to that of
Theorem 19.

Theorem20. Let𝑃
2
×𝑃
3𝑎+1

be a cartesian productwith 𝑎 ∈ 𝑍
+.

Then

Nr (𝑃
2
× 𝑃
3𝑎+1

) = 𝑎 − 2. (34)

Theorem 21. Let 𝑃
2

× 𝑃
3𝑎+2

be a cartesian product with 𝑎 ∈

𝑍
+. Then

Nr (𝑃
2
× 𝑃
3𝑎+2

) = 𝑎 − 1. (35)

Theorem 22. Let 𝐾
𝑚
and 𝐾

𝑛
be two complete graphs with

(𝑚 ≤ 𝑛). Then

Nr (𝐾
𝑚

× 𝐾
𝑛
) = 1 − 𝑛. (36)

Proof. Let 𝑆 be a subversion strategy of𝐾
𝑚
×𝐾
𝑛
and let |𝑆| = 𝑟.

We have two cases according to the cardinality of 𝑆.

Case 1. If 0 ≤ 𝑟 < 𝑚 − 1, then 𝑤((𝐾
𝑚

× 𝐾
𝑛
)/𝑆) = 1 and

𝑐((𝐾
𝑚

× 𝐾
𝑛
)/𝑆) ≥ (𝑚 − 𝑟)(𝑛 − 𝑟), so we have

𝑤(
𝐾
𝑚

× 𝐾
𝑛

𝑆
) − |𝑆| − 𝑐 (

𝐾
𝑚

× 𝐾
𝑛

𝑆
)

≤ 1 − 𝑟 − (𝑚 − 𝑟) (𝑛 − 𝑟) .

(37)

Let𝑓(𝑟) = 1−𝑟−𝑚𝑛 + (𝑚+𝑛)𝑟−𝑟
2. Since𝑓(𝑟) is an increasing

function in (0, 𝑚−1), it takes its maximum value at 𝑟 = 𝑚−1

and 𝑓(𝑚 − 1) = 1 − 𝑛. Thus we get

Nr (𝐾
𝑚

× 𝐾
𝑛
) ≤ 1 − 𝑛. (38)

Case 2. If𝑚−1 ≤ 𝑟 ≤ (𝑚−1)(𝑛−1), then𝑤((𝐾
𝑚
×𝐾
𝑛
)/𝑆) = 1

and 𝑐((𝐾
𝑚
×𝐾
𝑛
)/𝑆) ≥ 𝑛−𝑚+1. So we have𝑤((𝐾

𝑚
×𝐾
𝑛
)/𝑆)−

|𝑆| − 𝑐((𝐾
𝑚

× 𝐾
𝑛
)/𝑆) ≤ 1 − 𝑟 − (𝑛 − 𝑚 + 1) = 𝑚 − 𝑛 − 𝑟.

Let 𝑓(𝑟) = 𝑚 − 𝑛 − 𝑟. Since 𝑓(𝑟) is a decreasing function,
it takes its maximum value at 𝑟 = 𝑚−1 and 𝑓(𝑚−1) = 1−𝑛.
Thus we get

Nr (𝐾
𝑚

× 𝐾
𝑛
) ≤ 1 − 𝑛. (39)

From (38) and (39) we have

Nr ≤ 1 − 𝑛. (40)

There exist 𝑆∗ such that 𝑟 = 𝑚 − 1, 𝑤((𝐾
𝑚

× 𝐾
𝑛
)/𝑆
∗
) = 1 and

𝑐((𝐾
𝑚

× 𝐾
𝑛
)/𝑆
∗
) = 𝑛 − 𝑚 + 1, thus we have

Nr ≥ 1 − 𝑛. (41)

From (40) and (41) we get Nr = 1 − 𝑛.

Definition 23 (see [9]). The tensor product 𝐺
1
⊗ 𝐺
2
of two

simple graphs𝐺
1
and𝐺

2
is the graphwith𝑉(𝐺

1
⊗ 𝐺
2
) = 𝑉
1
×

𝑉
2
and where in (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are adjacent in 𝐺

1
⊗ 𝐺
2

if, and only if, 𝑢
1
is adjacent to V

1
in 𝐺
1
and 𝑢

2
is adjacent to

V
2
in 𝐺
2
.

Theorem 24. Let 𝑃
3
⊗𝑃
𝑛
be a tensor product of 𝑃

3
and 𝑃
𝑛
and

𝑛 ≡ 0 (mod 4). Then

Nr (𝑃
3
⊗ 𝑃
𝑛
) = 𝑛 − 1. (42)
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Proof. Let 𝑆 be a subversion strategy of 𝑃
3
⊗ 𝑃
𝑛
and |𝑆| = 𝑟 be

the number of removing vertices from 𝑃
3
⊗ 𝑃
𝑛
. There are two

cases according to the number of elements in 𝑆.

Case 1. If 0 ≤ 𝑟 ≤ (𝑛/2), then 𝑤((𝑃
3
⊗ 𝑃
𝑛
)/𝑆) ≤ 𝑛 + 𝑟 and

𝑐((𝑃
3
⊗ 𝑃
𝑛
)/𝑆) ≥ 1. Thus we have

𝑤(
𝑃
3
⊗ 𝑃
𝑛

𝑆
) − |𝑆| − 𝑐 (

𝑃
3
⊗ 𝑃
𝑛

𝑆
) ≤ 𝑛 − 1. (43)

Case 2. If (𝑛/2) ≤ 𝑟 ≤ 3𝑛, then 𝑤((𝑃
3
⊗ 𝑃
𝑛
)/𝑆) ≤ 𝑛 + (𝑛/2) −

((𝑟 − (𝑛/2)) = 2𝑛 − 𝑟 and 𝑐((𝑃
3
⊗ 𝑃
𝑛
)/𝑆) ≥ 1. Thus we have

𝑤(
𝑃
3
⊗ 𝑃
𝑛

𝑆
) − |𝑆| − 𝑐 (

𝑃
3
⊗ 𝑃
𝑛

𝑆
) ≤ 2𝑛 − 2𝑟 − 1. (44)

Let 𝑓(𝑟) = 2𝑛 − 2𝑟 − 1 since 𝑓

(𝑟) < 0 the function 𝑓(𝑟) is a

decreasing function so it takes its maximum value at

𝑟 = (
𝑛

2
) , 𝑓 (

𝑛

2
) = 𝑛 − 1. (45)

From (43) and (45) we get

Nr (𝑃
3
⊗ 𝑃
𝑛
) ≤ 𝑛 − 1. (46)

There exist 𝑆∗ such that |𝑆∗| = (𝑛/2),𝑤((𝑃
3
⊗𝑃
𝑛
)/𝑆) = 𝑛+(𝑛/2)

and 𝑐((𝑃
3
⊗ 𝑃
𝑛
)/𝑆) ≥ 1 thus we have

Nr (𝑃
3
⊗ 𝑃
𝑛
) ≥ 𝑛 − 1. (47)

From (46) and (47) we get Nr(𝑃
3
⊗ 𝑃
𝑛
) = 𝑛 − 1.

The following theorem’s proof is very similar to that of
Theorem 24.

Theorem 25. Let 𝑃
3
⊗𝑃
𝑛
be a tensor product of 𝑃

3
and 𝑃
𝑛
and

𝑛 ̸= 0 (mod 4). Then

Nr (𝑃
3
⊗ 𝑃
𝑛
) = 2𝑛 − 2 ⌈

(𝑛 + 1)

2
⌉ − 1. (48)

Theorem 26. Let the tensor product of𝐾
𝑚
and𝐾

𝑛
is𝐾
𝑚
⊗𝐾
𝑛
.

Then

Nr (𝐾
𝑚

⊗ 𝐾
𝑛
) = Nr (𝐾

𝑚−1,𝑛−1
) − 1 = max {𝑚 − 5, 𝑛 − 5} .

(49)

Proof. Let (𝑎, 𝑏) be any vertex of 𝐾
𝑚

⊗ 𝐾
𝑛
such that 𝑎 ∈ 𝐾

𝑚

and 𝑏 ∈ 𝐾
𝑛
. The only vertices that are not adjacent to (𝑎, 𝑏)

in (𝐾
𝑚

⊗ 𝐾
𝑛
) are (𝑎, 𝑐

𝑗
) with (𝑗 = 1, 2, . . . , 𝑛) and (𝑑

𝑖
, 𝑏) with

(𝑖 = 1, 2, . . . , 𝑚), where 𝑐
𝑗
∈ 𝑉(𝐾

𝑛
) and 𝑑

𝑖
∈ 𝑉(𝐾

𝑚
).

The vertices (𝑎, 𝑐
𝑗
) are not adjacent to each other, neither

do the vertices (𝑑
𝑖
, 𝑏). But these are adjacent to each other, so

(𝐾
𝑚

⊗ 𝐾
𝑛
)

{𝑎, 𝑏}
≅ 𝐾
𝑚−1,𝑛−1

,

Nr (𝐾
𝑚

⊗ 𝐾
𝑛
) = Nr (𝐾

𝑚−1,𝑛−1
) − 1

= max {𝑚 − 4, 𝑛 − 4} − 1

= max {𝑚 − 5, 𝑛 − 5} .

(50)

Definition 27 (see [10]). The composition of simple graphs 𝐺
and𝐻 is the simple graph𝐺[𝐻]with vertex set𝑉(𝐺)×𝑉(𝐻),
in which (𝑢, V) is adjacent (𝑢, V) if and only if either 𝑢𝑢


∈

𝐸(𝐺) or 𝑢 = 𝑢
 and VV ∈ 𝐸(𝐻).

Theorem 28. Let 𝑃
3
[𝑃
𝑛
] be the composition of 𝑃

3
and 𝑃

𝑛
with

𝑛 ≥ 5. Then neighbor rupture degree of 𝑃
3
[𝑃
𝑛
] is

Nr (𝑃
3
[𝑃
𝑛
]) = {

1, 𝑛 ≡ 1 (mod 4) ,

0, 𝑛 ≡ 0, 2, 3 (mod 4) .
(51)

Proof. Let the vertex set of 𝑃
3
[𝑃
𝑛
] be labeled as 𝑃

𝑖

𝑛
, 𝑃𝑖𝑖
𝑛
, and

𝑃
𝑖𝑖𝑖

𝑛
.

· · ·

· · ·

· · ·

P
i

n

P
ii

n

P
iii

n

(52)

It can be easily seen that 𝑃
3
[𝑃
𝑛
] is the sequential join of

three disjoint path graphs, 𝑃
3
[𝑃
𝑛
] ≅ 𝑃

𝑛
+ 𝑃
𝑛

+ 𝑃
𝑛
. Then,

according to the Theorem 10 we get

Nr (𝑃
3
[𝑃
𝑛
]) = Nr (𝑃

𝑛
+ 𝑃
𝑛
+ 𝑃
𝑛
)

= max {Nr (𝑃
𝑛
∪ 𝑃
𝑛
) ,Nr (𝑃

𝑛
)} .

(53)

ByTheorem 2, we have

Nr (𝑃
𝑛
) = {

0, 𝑛 ≡ 1 (mod 4) ,

−1, 𝑛 ≡ 0, 2, 3 (mod 4) .
(54)

To conclude the proof we need to findNr(𝑃
𝑛
∪𝑃
𝑛
). Let 𝑆 be

a subversion strategy of𝑃
𝑛
∪𝑃
𝑛
. Since𝑃

𝑛
∪𝑃
𝑛
has two identical

disjoint path graphs, let 𝑥 denote the number of removing
vertices of each 𝑃

𝑛
and let |𝑆| = 2𝑥.

Case 1. If 𝑥 ≤ ⌊(𝑛 − 1)/4⌋, 𝑤((𝑃
𝑛
∪ 𝑃
𝑛
) \ 𝑆) ≤ 2𝑥 + 2 and

𝑐((𝑃
𝑛
∪ 𝑃
𝑛
) \ 𝑆) ≥ ⌈(2𝑛 − 6𝑥)/(2𝑥 + 2)⌉ = ⌈(𝑛 − 3𝑥)/(𝑥 + 1)⌉,

then we get

𝑤 ((𝑃
𝑛
∪ 𝑃
𝑛
) \ 𝑆) − |𝑆| − 𝑐 ((𝑃

𝑛
∪ 𝑃
𝑛
) \ 𝑆)

≤ 2 − ⌈
𝑛 − 3𝑥

𝑥 + 1
⌉ .

(55)

Let 𝑓(𝑥) = 2 − (𝑛 − 3𝑥)/(𝑥 + 1), since 𝑓(𝑥) is an increasing
function it takes itsmaximumvalue at𝑥 = ⌊(𝑛−1)/4⌋.𝑓(⌊(𝑛−

1)/4⌋) = 5 − (𝑛 + 3)/(⌊(𝑛 − 1)/4⌋ + 1). Since neighbor rupture
degree has to be an integer, we have Nr(𝑃

𝑛
∪ 𝑃
𝑛
) ≤ ⌈5 − (𝑛 +

3)/(⌊(𝑛 − 1)/4⌋ + 1)⌉ and we get

Nr (𝑃
𝑛
∪ 𝑃
𝑛
) ≤ {

1, 𝑛 ≡ 1 (mod 4) ,

0, 𝑛 ≡ 0, 2, 3 (mod 4) .
(56)

Case 2. If 𝑥 ≥ ⌊(𝑛 − 1)/4⌋, 𝑤((𝑃
𝑛
∪ 𝑃
𝑛
) \ 𝑆) ≤ 2𝑥, and 𝑐((𝑃

𝑛
∪

𝑃
𝑛
) \ 𝑆) ≥ 1, thus we get

Nr (𝑃
𝑛
∪ 𝑃
𝑛
) ≤ −1. (57)
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From (56) and (57) we have

Nr (𝑃
𝑛
∪ 𝑃
𝑛
) ≤ {

1, 𝑛 ≡ 1 (mod 4) ,

0, 𝑛 ≡ 0, 2, 3 (mod 4) .
(58)

There exist 𝑆∗ such that |𝑆∗| = 2⌊(𝑛−1)/4⌋,𝑤((𝑃
𝑛
∪𝑃
𝑛
) \ 𝑆) =

(2⌊(𝑛−1)/4⌋+1) and 𝑐((𝑃
𝑛
∪𝑃
𝑛
)\𝑆) = 2 for 𝑛 ≡ 0, 2, 3( mod 4),

𝑐((𝑃
𝑛
∪ 𝑃
𝑛
) \ 𝑆) = 1 for 𝑛 ≡ 1(mod 4).

Thus we have

Nr (𝑃
𝑛
∪ 𝑃
𝑛
) ≥ {

1, 𝑛 ≡ 1 (mod 4) ,

0, 𝑛 ≡ 0, 2, 3 (mod 4) .
(59)

From (58) and (59) we get

Nr (𝑃
𝑛
∪ 𝑃
𝑛
) = {

1, 𝑛 ≡ 1 (mod 4) ,

0, 𝑛 ≡ 0, 2, 3 (mod 4) .
(60)

By (54) and (60) we conclude the proof.

Theorem 29. Neighbor rupture degree of composition of 𝐾
𝑚

and any graph 𝐺 is

Nr (𝐾𝑚 [𝐺]) = Nr (𝐺) . (61)

Proof. Let the vertex set of 𝐾
𝑚
[𝐺] be labeled as,

𝐺
𝑖
, 𝐺
𝑖𝑖
, . . . , 𝐺

𝑚,

𝐺
i

𝐺
ii

𝐺
m

· · ·

· · ·

· · ·

...

(62)

Let 𝑆 be a subversion strategy of 𝐾
𝑚
[𝐺]. We have two cases

according to the elements of 𝑆.

Case 1. Let we choose one element from any vertex set 𝐺𝑖 (𝑖 =
1, 2, . . . , 𝑚); if 𝑢 ∈ 𝑉(𝐺

𝑖
) and 𝑆 = {𝑢}, then it removes all of

other vertex sets. So it depends on only 𝐺
𝑖 which we choose

one element. Then we have

Nr (𝐾
𝑚 [𝐺]) = Nr (𝐺𝑖) = Nr (𝐺) . (63)

Case 2. Let we choose two elements from any vertex set
𝐺
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and 𝐺

𝑗
(𝑗 = 1, 2, . . . , 𝑚) with 𝑖 ̸= 𝑗. Then

(𝐾
𝑚
[𝐺])/𝑆 is empty set. It contradicts to the definition of

neighbor rupture degree. Thus we obtain

Nr (𝐾
𝑚 [𝐺]) = Nr (𝐺) . (64)

Definition 30 (see [11]). An 𝑛th power of a graph 𝐺 is formed
by adding an edge between all pairs of vertices of 𝐺 with
distance at most 𝑛. If 𝑛 = 2 then it is called a second power
of a graph also called a square.

Theorem 31. Neighbor rupture degree of 𝑃2
𝑛
(𝑛 > 6) is

Nr (𝑃2
𝑛
) = {

0, 𝑛 ≡ 1 (mod 6) ,

−1, otherwise.
(65)

Proof. Let 𝑆 be a subversion strategy of 𝑃
2

𝑛
and let |𝑆| = 𝑟.

There are two cases according to the number of elements of
𝑆.

Case 1. If 0 ≤ 𝑟 ≤ ⌈𝑛/6⌉ − 1, then 𝑤(𝑃
2

𝑛
/𝑆) ≤ 𝑟 + 1, 𝑐(𝑃2

𝑛
/𝑆) ≥

(𝑛 − 5𝑟)/(𝑟 + 1); then we get

𝑤(
𝑃
2

𝑛

𝑆
) − |𝑆| − 𝑐 (𝑃

2

𝑛
\ 𝑆)

≤ 𝑟 + 1 − 𝑟 −
𝑛 − 5𝑟

𝑟 + 1
= 6 −

𝑛 + 5

𝑟 + 1
.

(66)

Let

𝑓 (𝑟) = 6 −
𝑛 + 5

𝑟 + 1
= {

0, 𝑛 ≡ 1 (mod 6) ,

< 0, otherwise.
(67)

Case 2. If = ⌈𝑛/6⌉, then 𝑤(𝑃
2

𝑛
/𝑆) ≤ 𝑟, 𝑐(𝑃

2

𝑛
/𝑆) ≥ 1; then we

get

𝑤(
𝑃
2

𝑛

𝑆
) − |𝑆| − 𝑐 (

𝑃
2

𝑛

𝑆
)

≤ 𝑟 − 𝑟 − 1

= −1 therefore Nr ≤ −1.

(68)

Case 3. If ⌈𝑛/6⌉ + 1 ≤ 𝑟 ≤ 𝑛, then𝑤(𝑃
2

𝑛
/𝑆) ≤ 𝑟−1, 𝑐(𝑃2

𝑛
/𝑆) ≥ 1;

then we get

𝑤(
𝑃
2

𝑛

𝑆
) − |𝑆| − 𝑐 (𝑃

2

𝑛
\ 𝑆)

≤ 𝑟 − 1 − 𝑟 − 1

= −2 therefore Nr ≤ −2.

(69)

According to (67), (68), and (69) we have

Nr (𝑃2
𝑛
) ≤ {

0, 𝑛 ≡ 1 (mod 6) ,

−1, otherwise.
(70)

There exist 𝑆∗ such that |𝑆∗| = ⌈(𝑛−1)/6⌉,𝑤(𝑃
2

𝑛
/𝑆
∗
) = ⌈𝑛/6⌉,

𝑐(𝑃
2

𝑛
/𝑆
∗
) = 1; then

𝑤(
𝑃
2

𝑛

𝑆∗
) −

𝑆
∗ − 𝑐 (

𝑃
2

𝑛

𝑆∗
) = {

0, 𝑛 ≡ 1 (mod 6) ,

1, otherwise.
(71)

By (70) and (71) we get the result,

Nr(
𝑃
2

𝑛

𝑆
) = max{𝑤(

𝑃
2

𝑛

𝑆
) − |𝑆| − 𝑐(

𝑃
2

𝑛

𝑆
)}

= {
0, 𝑛 ≡ 1 (mod 6) ,

1, otherwise.

(72)
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4. Conclusion

In this study, we investigate the neighbor rupture degree of
graphs obtained by graph operations. The graph operations
are used to obtain new graphs. Union, join, complement,
composition, power, cartesian product, and tensor product
are taken into consideration in this work. These operations
are performed to various graphs and their neighbor rupture
degrees were determined.
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