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Three kinds of preconditioners are proposed to accelerate the generalized AOR (GAOR) method for the linear system from the
generalized least squares problem. The convergence and comparison results are obtained. The comparison results show that the
convergence rate of the preconditioned generalized AOR (PGAOR) methods is better than that of the original GAOR methods.
Finally, some numerical results are reported to confirm the validity of the proposed methods.

1. Introduction

Consider the generalized least squares problem

min
𝑥∈R𝑛

(𝐴𝑥 − 𝑏)
𝑇

𝑊
−1

(𝐴𝑥 − 𝑏) , (1)

where𝑥 ∈ R𝑛,𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛, and the variance-covariance
matrix𝑊 ∈ R𝑛×𝑛 is a known symmetric and positive-definite
matrix.This problemhasmany scientific applications and one
of the applications is a parameter estimation in mathematical
model [1, 2].

In order to solve the problem simply, one has to solve a
linear system of the equivalent form as follows:

𝐹𝑦 = 𝑓, (2)
where

𝐹 = (
𝐼 − 𝐵 𝐻

𝐾 𝐼 − 𝐶
) , (3)

with 𝐵 ∈ R𝑝×𝑝, 𝐶 ∈ R𝑞×𝑞, and 𝑝 + 𝑞 = 𝑛. Without loss of
generality, we assume that 𝐹 = I −L − U, where I is the
identity matrix, and L and U are strictly lower and upper
triangular matrices obtained from 𝐹, respectively. So we can
pretty easily get that

I = (
𝐼 0

0 𝐼
) , L = (

0 0

−𝐾 0
) , U = (

𝐵 −𝐻

0 𝐶
) .

(4)

In order to get the approximate solutions of the linear
system (2), a lot of iterative methods such as Jacobi, Gauss-
Seidel (GS), successive over relaxation (SOR), and accelerated
over relaxation (AOR) have been studied bymany authors [3–
8].These iterative methods have very good results, but have a
serious drawback because of computing the inverses of 𝐼 − 𝐵
and 𝐼−𝐶 in (3). To avoid this drawback, Darvishi andHessari
[9] proposed the generalized convergence of the generalized
AOR (GAOR) method when the coefficient matrix 𝐹 is a
diagonally dominant matrix. The GAOR method [10, 11] can
be defined as follows:

𝑦
𝑘+1

= T
𝛾𝜔
𝑦
𝑘
+ 𝜔𝑔, 𝑘 = 0, 1, 2, . . . , (5)

where

T
𝛾𝜔

= (
𝐼 0

𝛾𝐾 𝐼
)

−1

× ((1 − 𝜔) 𝐼 + (𝜔 − 𝛾) (
0 0

−𝐾 0
) + 𝜔(

𝐵 −𝐻

0 𝐶
)) ,

𝑔 = (
𝐼 0

−𝛾𝐾 𝐼
)𝑓.

(6)
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Here, 𝜔 and 𝛾 are real parameters with 𝜔 ̸= 0. The iteration
matrix is rewritten briefly as

T
𝛾𝜔

= (
(1 − 𝜔) 𝐼 + 𝜔𝐵 −𝜔𝐻

𝜔 (𝛾 − 1)𝐾 − 𝛾𝜔𝐾𝐵 (1 − 𝜔) 𝐼 + 𝜔𝐶 + 𝑤𝛾𝐾𝐻
) .

(7)

To improve the convergence rate of the GAOR iterative
method, a preconditioner should be applied. Now we can
transform the original linear system (2) into the precondi-
tioned linear system

𝑃𝐹𝑦 = 𝑃𝑓, (8)

where 𝑃 is the preconditioner. 𝑃𝐹 can be expressed as

𝑃𝐹 = (
𝐼 − 𝐵
∗

𝐻
∗

𝐾∗ 𝐼 − 𝐶∗
) . (9)

Meanwhile, the PGAOR method for solving the precondi-
tioned linear system (8) is defined by

𝑦
𝑘+1

= T
∗

𝛾𝜔
𝑦
𝑘
+ 𝑤𝑔
∗

, 𝑘 = 0, 1, 2, . . . , (10)

where

T
∗

𝛾𝜔
= (

(1 − 𝜔) 𝐼 + 𝜔𝐵∗ −𝜔𝐻∗

𝜔 (𝛾 − 1)𝐾∗ − 𝛾𝜔𝐾∗𝐵∗ (1 − 𝜔) 𝐼 + 𝜔𝐶∗ + 𝛾𝜔𝐾∗𝐻∗
) ,

𝑔 = (
𝐼 0

−𝛾𝐾∗ 𝐼
) 𝑃𝑓.

(11)

In this paper, we propose three new types of precondi-
tioners and study the convergence rate of the preconditioned
GAOR methods for solving the linear system (2). This
paper is organized as follows. In Section 2, some notations,
definitions, and preliminary results are presented. In Sec-
tion 3, three new types of preconditioners are proposed and
compared with that of the original GAOR methods. Lastly,
a numerical example is provided to confirm the theoretical
results studied in Section 4.

2. Preliminaries

For vector 𝑥 ∈ R𝑛, 𝑥 ≥ 0 (𝑥 > 0) denotes that all
components of 𝑥 are nonnegative (positive). For two vectors
𝑥, 𝑦 ∈ R𝑛, 𝑥 ≥ 𝑦 (𝑥 > 𝑦)means that 𝑥 − 𝑦 ≥ 0 (𝑥 − 𝑦 > 0).
These definitions are carried immediately over to matrices. A
matrix 𝐴 is said to be irreducible if the directed graph of 𝐴
is strongly connected. 𝜌(𝐴) denotes the spectral radius of 𝐴.
Some useful results are provided as follows.

Lemma 1 (see [7]). Let𝐴 ≥ 0 be an 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒matrix.Then,

(a) 𝐴 has a positive eigenvalue equal to its spectral radius.

(b) 𝐴 has an eigenvector 𝑥 > 0 corresponding to 𝜌(𝐴).

(c) 𝜌(𝐴) is a simple eigenvalue of 𝐴.

Lemma 2 (see [12]). Let 𝐴 be a nonnegative matrix. Then,

(i) if 𝛼𝑥 ≤ 𝐴𝑥 for some nonnegative vector 𝑥, 𝑥 ̸= 0, then
𝛼 ≤ 𝜌(𝐴);

(ii) if 𝐴𝑥 ≤ 𝛽𝑥 for some positive vector 𝑥, then 𝜌(𝐴) ≤ 𝛽.
Moreover, if 𝐴 is irreducible and if 0 ̸= 𝛼𝑥 ≤ 𝐴𝑥 ≤ 𝛽𝑥

for some nonnegative vector 𝑥, then 𝛼 ≤ 𝜌(𝐴) ≤ 𝛽 and
𝑥 is a positive vector.

3. Preconditioned GAOR Methods

To solve the linear system (2) with the coefficient matrix 𝐹 in
(3), we consider the preconditioners as follows:

𝑃
𝑖
= 𝐼 + 𝑆 = (

𝐼 0

𝑆
𝑖
𝐼
) , 𝑖 = 1, 2, 3, (12)

where

𝑆
1
= (

(

0 0 ⋅ ⋅ ⋅ −𝑘
1𝑝

0 0 ⋅ ⋅ ⋅ −𝑘
2𝑝

0 d
...

0 0 ⋅ ⋅ ⋅ −𝑘
𝑞𝑝

)

)

,

𝑆
2
=

(
(
(
(
(

(

0 −𝑘
12

⋅ ⋅ ⋅ 0 0

−𝑘
21

0 −𝑘
23

⋅ ⋅ ⋅ 0

0 −𝑘
32

d
...

...
...

... ⋅ ⋅ ⋅ 0 −𝑘
𝑞−1,𝑝

0 0 ⋅ ⋅ ⋅ −𝑘
𝑞,𝑝−1

0

)
)
)
)
)

)

,

𝑆
3
=

(
(
(
(

(

0 −𝑘
12

⋅ ⋅ ⋅ 0

0 0 d
...

0
... 0 −𝑘

𝑞−1,𝑝

−
𝑘
𝑞1

𝛼
. . . 0 0

)
)
)
)

)

, (𝛼 > 0) .

(13)

The preconditioned coefficient matrix 𝑃
𝑖
𝐹 can be expressed

as

𝑃
𝑖
𝐹 = (

𝐼 − 𝐵 𝐻

𝐾 + 𝑆
𝑖
(𝐼 − 𝐵) 𝑆

𝑖
𝐻 + 𝐼 − 𝐶

) , 𝑖 = 1, 2, 3, (14)

where
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𝐾 + 𝑆
1
(𝐼 − 𝐵) = (

𝑘
11

𝑘
12

⋅ ⋅ ⋅ 𝑘
1𝑝
𝑏
𝑝𝑝

𝑘
21

𝑘
22

⋅ ⋅ ⋅ 𝑘
2𝑝
𝑏
𝑝𝑝

𝑘
𝑞1

𝑘
𝑞2

⋅ ⋅ ⋅ 𝑘
𝑞𝑝
𝑏
𝑝𝑝

) ,

𝐾 + 𝑆
2
(𝐼 − 𝐵) =

(
(

(

𝑘
11

𝑘
12
𝑏
22

⋅ ⋅ ⋅ 𝑘
1,𝑝−1

𝑘
1𝑝

𝑘
21
𝑏
11
+ 𝑘
23
𝑏
31

𝑘
22

𝑘
21
𝑏
13
+ 𝑘
23
𝑏
33

⋅ ⋅ ⋅ 𝑘
2𝑝

𝑘
31

𝑘
32
𝑏
22
+ 𝑘
34
𝑏
42

d
...

...
...

... ⋅ ⋅ ⋅ 0 𝑘
𝑞−1,𝑝−2

𝑏
𝑞−2,𝑝

+ 𝑘
𝑞−1,𝑝

𝑏
𝑞𝑝

𝑘
𝑞1

𝑘
𝑞2

⋅ ⋅ ⋅ 𝑘
𝑞,𝑝−1

𝑏
𝑞−1,𝑝−1

𝑘
𝑞𝑝

)
)

)

,

𝐾 + 𝑆
3
(𝐼 − 𝐵) = (

𝑘
11

𝑘
12
𝑏
22

⋅ ⋅ ⋅ 𝑘
1𝑝

𝑘
21

𝑘
22

d 𝑘
2𝑝

...
... . . . 𝑘

𝑞−1,𝑝
𝑏
𝑝𝑝

𝑘
𝑞1
(1 −

1 − 𝑏
11

𝛼
) 𝑘

𝑞2
⋅ ⋅ ⋅ 𝑘

𝑞𝑝

).

(15)

Based on the discussed above, 𝑃
𝑖
𝐹 can be spitted as

𝑃
𝑖
𝐹 = I −L

𝑖
−U
𝑖
, 𝑖 = 1, 2, 3. (16)

Similarly,

I = (
𝐼 0

0 𝐼
) , L

𝑖
= (

0 0

−𝐾 − 𝑆
𝑖
(𝐼 − 𝐵) 0

) ,

U
𝑖
= (

𝐵 −𝐻

0 𝐶 − 𝑆
𝑖
𝐻
) , 𝑖 = 1, 2, 3.

(17)

The preconditioned GAOR methods for solving 𝑃
𝑖
𝐹𝑦 = 𝑃

𝑖
𝑓

are defined by

𝑦
𝑘+1

= T
∗

𝛾𝜔𝑖
𝑦
𝑘
+ 𝜔𝑔
∗

𝑖
, 𝑘 = 0, 1, 2, . . . , 𝑖 = 1, 2, 3, (18)

where

𝜔𝑔
∗

𝑖
= (I − ΓL

𝑖
)
−1

Ω𝑃
𝑖
𝑓, 𝑖 = 1, 2, 3, (19)

with

T
∗

𝛾𝜔𝑖
= (𝐼 − ΓL

𝑖
)
−1

(𝐼 − Ω + (Ω − Γ)L
𝑖
+ ΩU

𝑖
) ,

𝑖 = 1, 2, 3,

(20)

where

Ω = (
𝜔
1
𝐼 0

0 𝜔
2
𝐼,
) , Γ = (

𝛾
1
𝐼 0

0 𝛾
2
𝐼
) . (21)

For 𝑖 = 1, 2, 3, we have

T
∗

𝛾𝜔𝑖
= (

(1 − 𝜔
1
) 𝐼 + 𝜔

1
𝐵 −𝜔

1
𝐻

(𝜔
1
𝛾
2
− 𝜔
2
) [𝐾 + 𝑆

𝑖
(𝐼 − 𝐵)] (1 − 𝛾

2
) 𝐼 + 𝛾

2
𝐶 − 𝛾

2
𝑆
𝑖
𝐻

−𝜔
1
𝛾
2
[𝐾 + 𝑆

𝑖
(𝐼 − 𝐵)] 𝐵 +𝜔

1
𝛾
2
[𝐾 + 𝑆

𝑖
(𝐼 − 𝐵)]𝐻

) .

(22)

Next, we will study the convergence condition of the
PGAOR methods. For simplicity, without loss of generality,
we can assume that

𝐻 ≤ 0, 𝐾 ≤ 0, 𝐵 ≥ 0, 𝐶 ≥ 0,

0 < 𝜔
1
≤ 1, 0 < 𝜔

2
≤ 1, 0 < 𝛾

2
≤
𝜔
2

𝜔
1

.
(23)

Then, we have the following theorem.

Theorem 3. Let T
𝛾𝜔

and T∗
𝛾𝜔1

be the iteration matrices of
the GAOR method and the PGAOR method corresponding to
problem (2), which are defined by (7) and (22), respectively.
If matrix 𝐹 in (3) is an irreducible matrix then it holds that
𝜌(T
𝛾𝜔
) ̸= 1,

𝜌 (T
∗

𝛾𝜔1
) > 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) > 1,

𝜌 (T
∗

𝛾𝜔1
) < 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) < 1.

(24)

Proof. By some simple calculations on (7), one can get

T
𝛾𝜔

= (
(1 − 𝜔

1
𝐼) + 𝜔

1
𝐵 −𝜔

1
𝐻

(𝜔
1
𝛾
2
− 𝜔
2
)𝐾 (1 − 𝜔

2
𝐼 + 𝜔
2
) 𝐶

)

+ 𝜔
1
𝛾
2
(

0 0

−𝐾𝐵 𝐾𝐻
) .

(25)

Since here 𝐹 is irreducible, one can pretty easily obtain that
T
𝛾𝜔

is nonnegative and irreducible by the above assump-
tions. And so on, one can also easily prove thatT∗

𝛾𝜔1
is non-

negative and irreducible. By Lemma 1, there exists a positive
vector 𝑥 > 0 such that

T
𝛾𝜔
𝑥 = 𝜆𝑥, (26)

where 𝜆 = 𝜌(T
𝛾𝜔
).
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One can easily have

[I − Ω + (Ω − Γ)L + ΩU] 𝑥 = 𝜆 (I − ΓL) 𝑥. (27)

That is,

(I − Ω) 𝑥 = 𝜆 (I − ΓL𝑥 − (Ω − Γ)L𝑥 − ΩU𝑥) . (28)

With the same vector 𝑥 > 0, it holds

T
∗

𝛾𝜔1
𝑥 − 𝜆𝑥 = (I − ΓL

1
)
−1

× [I − Ω + (Ω − Γ)L
1
− 𝜆 (I − ΓL

1
)] 𝑥.

(29)

Using (22), (26), and (28), we can obtain

T
∗

𝛾𝜔1
𝑥 − 𝜆𝑥 = (I − ΓL

1
)
−1

× [(Ω − Γ) (L
1
−L)

+Ω (U
1
−U) + 𝜆Γ (L

1
−L)] 𝑥

= (I − ΓL
1
)
−1

[Ω (U
1
−U +L

1
−L)

+ (𝜆 − 1) Γ (L
1
−L)] 𝑥

= (I − ΓL
1
)
−1

Ω(U
1
−U +L

1
−L) 𝑥

+ (𝜆 − 1) ((I − ΓL
1
)
−1

) Γ (L
1
−L) 𝑥

= (I − ΓL
1
)
−1

(
0 0

−𝜔
2
𝑆
1
(𝐼 − 𝐵) −𝜔

2
𝑆
1
𝐻
)𝑥

+ (𝜆 − 1) ((I − ΓL
1
)
−1

)

× (
0 0

−𝛾
2
𝑆
1
(𝐼 − 𝐵) 0

) 𝑥.

(30)

Meanwhile, we have

(I − ΓL
1
)
−1

(
0 0

−𝜔
2
𝑆
1
(𝐼 − 𝐵) −𝜔

2
𝑆
1
𝐻
)𝑥

= (I − ΓL
1
)
−1

(
0 0

𝜔
2

𝜔
1

𝑆
1
0)(

−𝜔
1
𝐼 + 𝜔
1
𝐵 −𝜔

1
𝐻

0 0
)𝑥

= (I − ΓL
1
)
−1

(
0 0

𝜔
2

𝜔
1

𝑆
1
0)

× (
−𝜔
1
𝐼 + 𝜔
1
𝐵 −𝜔

1
𝐻

(𝜔
1
𝛾
2
𝐾 − 𝜔

1
𝛾
2
𝐾𝐵) −𝜔

2
𝐼 + 𝜔
2
𝐶 + 𝜔

1
𝛾
2
𝐾𝐻

)𝑥

= (I − ΓL
1
)
−1

(
0 0

𝜔
2

𝜔
1

𝑆
1
0) (T

𝑤𝑟
−I) 𝑥

= (𝜆 − 1) (I − ΓL
1
)
−1

(
0 0

𝜔
2

𝜔
1

𝑆
1
0)𝑥.

(31)

By far, we can easily get

T
∗

𝛾𝜔1
𝑥 − 𝜆𝑥 = (𝜆 − 1) (I − ΓL

1
)
−1

× [

[

(
0 0

𝜔
2

𝜔
1

𝑆
1
0) + (

0 0

−𝛾
2
𝑆
1
(𝐼 − 𝐵) 0

)]

]

𝑥

= (𝜆 − 1) (
𝐼 0

−𝛾
2
[𝐾 + 𝑆

1
(𝐼 − 𝐵)] 𝐼

)

× (

0 0

(
𝜔
2

𝜔
1

− 𝛾
2
) 𝑆
1
+ 𝛾
2
𝑆
1
𝐵 0

)𝑥

= (𝜆 − 1)(

0 0

(
𝜔
2

𝜔
1

− 𝛾
2
) 𝑆
1
+ 𝛾
2
𝑆
1
𝐵 0

)𝑥.

(32)

In view of the abovementioned assumptions, we have that

(

0 0

(
𝜔
2

𝜔
1

− 𝛾
2
) 𝑆
1
+ 𝛾
2
𝑆
1
𝐵 0

)𝑥 > 0. (33)

Then, if 𝜆 = 𝜌(T
𝑤𝑟
) > 1, then

T
∗

𝛾𝜔1
− 𝜆𝑥 > 0, T

∗

𝛾𝜔1
− 𝜆𝑥 ̸= 0. (34)

From Lemma 2, we can easily get

𝜌 (T
∗

𝛾𝜔1
) > 𝜌 (T

𝑤𝑟
) > 1. (35)

Similarly, if 𝜆 = 𝜌(T
𝑤𝑟
) < 1, then

T
∗

𝛾𝜔1
− 𝜆𝑥 < 0, T

∗

𝛾𝜔1
− 𝜆𝑥 ̸= 0. (36)

So we have

𝜌 (T
∗

𝛾𝜔1
) < 𝜌 (T

𝛾𝜔
) < 1. (37)

If 𝜆 = 𝜌(T
𝛾𝜔
) = 1, then we may get that 𝐹𝑦 = 𝑓 but 𝑦 ̸= 0,

which is contradictory to the fact of nonsingular matrix 𝐹 by
assumptions; this completes the conclusion of the theorem.

Theorem 4. Let T
𝛾𝜔

and T∗
𝛾𝜔2

be the iteration matrices of
the GAOR method and the PGAOR method corresponding to
problem (2), which are defined by (7) and (22), respectively. If
the matrix 𝐹 in (3) is an irreducible matrix satisfying

𝑏
11
> 0, 𝑘

𝑖𝑗
̸= 0 for 𝑖 − 𝑗

 = 1, (38)

then it holds that 𝜌(𝑇
𝑤𝑟
) ̸= 0,

𝜌 (T
∗

𝛾𝜔2
) > 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) > 1,

𝜌 (T
∗

𝛾𝜔2
) < 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) < 1.

(39)
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Proof. One can easily prove this theorem by using similar
arguments of Theorem 3.

Similarly, we have the following theorem.

Theorem 5. Let T
𝛾𝜔

and T∗
𝛾𝜔3

be the iteration matrices of
the GAOR method and the PGAOR method corresponding to
problem (2), which are defined by (7) and (22), respectively. If
the matrix 𝐹 in (3) is an irreducible matrix satisfying

𝛼 > 1, 𝑘
𝑞1
< 0, 𝑏

11
> 0,

𝑘
𝑖,𝑖+1

< 0 for 𝑖 = 1, 2, . . . , 𝑞 − 1,
(40)

then it holds that 𝜌(T
𝛾𝜔
) ̸= 1,

𝜌 (T
∗

𝛾𝜔3
) > 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) > 1,

𝜌 (T
∗

𝛾𝜔3
) < 𝜌 (T

𝛾𝜔
) ̸= 1 if 𝜌 (T

𝛾𝜔
) < 1.

(41)

4. Numerical Examples

In this section, we give numerical examples to demonstrate
the conclusions drawn above. The numerical experiments
were done by using MATLAB 7.0.

Example 1. Consider the following Laplace equation:

𝜕2𝑢 (𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑢 (𝑥, 𝑦)

𝜕𝑦2
= 0. (42)

Under a uniform square domain, applying the five-point
finite difference method with the uniform mesh size, we can
get the following linear system:

F𝑥 = 𝑓, (43)

where

F =

(
(
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(44)

The coefficient matrixF is spitted as

F = (
𝐼 − 𝐵 𝐻

𝐾 𝐼 − 𝐶
) , (45)

where

𝐵 =

(
(
(
(
(
(
(
(
(

(

1

2
0 0 0 0 0

0
1

2
0 0 0 0

0 0
1

2
0 0 0

0 0 0
1

2
0 0

0 0 0 0
1

2
0

0 0 0 0 0
1

2

)
)
)
)
)
)
)
)
)

)

,

𝐶 =
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𝐾 =
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(46)

Table 1 reveals the spectral radii of the GAOR methods
and the PGAORmethods. It tells that the spectral radii of the
preconditioned PGAOR methods are smaller than those of
the GAOR methods, so we can get that the proposed three
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Table 1: Spectral radii of GAOR method and PGAOR method.

Preconditioner 𝛼 𝜔
1

𝜔
2

𝛾
2

𝜌GAOR 𝜌PGAOR

𝑆
1

0.8912 0.9654 0.8865 0.8478 0.8457
𝑆
2

0.8912 0.9654 0.8865 0.8478 0.8376

𝑆
3

1.5 0.8912 0.9654 0.8865 0.8478 0.8418
2 0.8912 0.9654 0.8865 0.8478 0.8420

Table 2: Spectral radii of GAOR method and PGAOR method.

Preconditioner 𝛼 𝜔
1

𝜔
2
= 𝜔 𝛾

2
= 𝛾 𝜌GAOR 𝜌PGAOR

𝑆
1

0.8 0.6 0.7 0.7505 0.6618
𝑆
2

0.8 0.6 0.7 0.7505 0.7340

𝑆
3

0.1 0.8 0.6 0.7 0.7505 0.7298
0.5 0.8 0.6 0.7 0.7505 0.7328

preconditioners can accelerate the speed rate of the GAOR
method for the linear systems (2).The results in Table 1 are in
accordance withTheorems 3–5.

Example 2. The coefficient matrix 𝐹 in (3) is given by

𝐹 = (
𝐼 − 𝐵 𝐻

𝐾 𝐼 − 𝐶
) , (47)

where 𝐵 = (𝑏
𝑖𝑗
)
𝑝×𝑝

, 𝐶 = (𝑐
𝑖𝑗
)
𝑞×𝑞

, and 𝑝 + 𝑞 = 𝑛,𝐻 = (ℎ
𝑖𝑗
)
𝑝×𝑞

,
𝐾 = (𝑘

𝑖𝑗
)
𝑞×𝑝

with

𝑏
𝑖𝑖
=

1

𝑖 + 1
, 𝑖 = 1, . . . 𝑝,

𝑏
𝑖𝑗
=

1

30
−

1

(30𝑗) + 𝑖
, 𝑗 > 𝑖, 𝑖 = 1, . . . 𝑝 − 1, 𝑗 = 2, . . . 𝑝,

𝑏
𝑖𝑗
=

1

30
−

1

30 ((10 (𝑖 − 𝑗 + 1)) + 𝑖)
,

𝑖 > 𝑗, 𝑖 = 2, . . . 𝑝, 𝑗 = 1, . . . 𝑝 − 1,

𝑐
𝑖𝑖
=

1

𝑛 + 𝑖 + 1
, 𝑖 = 1, . . . 𝑞,

𝑐
𝑖𝑗
=

1

30
−

1

30 (𝑛 + 𝑗) + 𝑛 + 𝑖
,

𝑗 > 𝑖, 𝑖 = 1, . . . , 𝑞 − 1, 𝑗 = 2, . . . , 𝑞,

𝑐
𝑖𝑗
=

1

30
−

1

30 (𝑖 − 𝑗 + 1) + 𝑛 + 𝑖
,

𝑖 > 𝑗, 𝑖 = 2, . . . , 𝑞, 𝑗 = 1, . . . 𝑞 − 1,

𝑘
𝑖𝑗
=

1

30 (𝑛 + 𝑖 − 𝑗 + 1) + 𝑛 + 𝑖
−

1

30
,

𝑖 = 1, . . . , 𝑞, 𝑗 = 1, . . . , 𝑝,

ℎ
𝑖𝑗
=

1

30 (𝑛 + 𝑗) + 𝑖
−

1

30
, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞.

(48)

Obviously, 𝐹 is irreducible. Table 2 shows the spectral
radii of the corresponding iteration matrices with 𝑛 = 8 and
𝑚 = 6.

Similarly, in Table 2, we get that the results are in concord
withTheorems 3–5.
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