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We consider a mathematical model which describes the contact between
a deformable body and an obstacle, the so-called foundation. The body is
assumed to have a viscoelastic behavior that we model with the Kelvin-
Voigt constitutive law. The contact is frictionless and is modeled with the
well-known Signorini condition in a form with a zero gap function. We
present two alternative yet equivalent weak formulations of the problem
and establish existence and uniqueness results for both formulations.
The proofs are based on a general result on evolution equations with
maximal monotone operators. We then study a semi-discrete numeri-
cal scheme for the problem, in terms of displacements. The numerical
scheme has a unique solution. We show the convergence of the scheme
under the basic solution regularity. Under appropriate regularity assum-
ptions on the solution, we also provide optimal order error estimates.

1. Introduction

Contact phenomena involving deformable bodies abound in industry
and everyday life. The contact of the braking pads with the wheel, the
tire with the road, and the piston with the skirt are just three simple
examples. Despite the difficulties that the contact processes present be-
cause of the complicated surface phenomena involved, a considerable
progress has been made in their modeling and analysis, and the litera-
ture in this field is extensive. For the sake of simplicity, we refer in the
following only to results and references concerning frictionless contact
problems. More details and bibliographical comments with regard to
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contact problems with or without friction can be found in the mono-
graph [9], for instance.

The study of frictionless problems represents a first step in the study
of more complicated contact problems, involving friction. The famous
Signorini problem was formulated in [24] as a model of unilateral fric-
tionless contact between an elastic body and a rigid foundation. Mathe-
matical analysis of this problem was first provided in [6] and was sub-
sequently published in full in [7]. In [18], numerical approximation of
the problem is described in detail. An optimal order error estimate is
derived for the linear element solution, under suitable solution regular-
ity assumptions. Some solution algorithms for solving the finite-element
system are introduced and discussed. Results concerning the friction-
less Signorini contact problem between two elastic bodies have been
obtained in [10, 11, 12, 13]. In these papers the authors consider two
types of problems: (1) with a bounded zone of contact, when the zone
of contact cannot enlarge during the deformation process; (2) with an
increasing zone of contact, when the range of the contact zone may ex-
pand during the process. They present variational formulations of the
problems in terms of displacement and stress, respectively, and provide
existence and uniqueness results of the weak solutions; further, they
consider a finite-element model for solving the contact problems, de-
rive error estimates in the case of regular solutions, prove convergence
results in the case of irregular solutions, and discuss some solution
algorithms.

In all the references above, it was assumed that the deformable bod-
ies were linearly elastic. However, a number of recent publications are
dedicated to the modeling, analysis, and numerical approximation of
contact problems involving viscoelastic and viscoplastic materials. For
example, the variational analysis of the frictionless Signorini problem
was provided in [25] in the case of rate-type viscoplastic materials and
extended in [3] in the study of rate-type viscoplastic materials with in-
ternal state variables. The frictionless contact between two viscoplastic
bodies was studied in [23] and the numerical analysis of this problem
was performed in [8]. In all these papers, the processes were assumed
to be quasistatic and the unique solvability of the corresponding contact
problems has been obtained by using arguments on time-dependent el-
liptic variational inequalities and the Banach fixed-point theorem. A sur-
vey of these results, including numerical experiments for test problems
in one, two, and three dimensions, may be found in [5, 9]. Existence re-
sults in the study of the dynamic Signorini frictionless contact problem
for viscoelastic materials with singular memory have been obtained in
[16, 17].
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The aim of this paper is to present new results in the study of the
frictionless Signorini problem. We consider here quasistatic processes
for Kelvin-Voigt viscoelastic materials in which the elasticity operator
may be nonlinear. We derive two alternative yet equivalent weak for-
mulations of the problem, which lead to evolutionary systems for the
displacement and stress field. Then, we prove the unique solvability of
the systems and therefore we deduce the existence of the unique weak
solution to the frictionless contact problem. We also discuss the numeri-
cal treatment of the problem, based on a spatially semi-discrete scheme
for the displacement field, and derive error estimates and convergence
results.

The paper is organized as follows. In Section 2, we state the mechan-
ical problem and present the notation and preliminary material. In
Section 3, we list the assumptions imposed on the problem data and
derive two variational formulations to the model. We show the unique
solvability and the equivalence of the variational formulations in Section
4. The proofs are based on an abstract result on evolution equations
with maximal monotone operators and arguments on convex analysis.
In Section 5, we analyze a semi-discrete scheme, employing the finite-
element method to discretize the spatial domain. We show the existence
of a unique numerical solution, prove convergence of the numerical so-
lution, and derive error estimates under additional solution regularity.

2. Problem statement and preliminaries

We consider a viscoelastic body which occupies a domain Ω ⊂ R
d (d ≤ 3

in applications) with outer Lipschitz surface Γ that is divided into three
disjoint measurable parts Γi, i = 1,2,3, such that meas(Γ1) > 0. Let [0,T]
be the time interval of interest, where T > 0, and let ν denote the unit
outer normal on Γ. The body is clamped on Γ1 × (0,T) and therefore the
displacement field vanishes there. A volume force of density f0 acts in
Ω × (0,T) and surface tractions of density f2 act on Γ2 × (0,T). We as-
sume that the body forces and tractions vary slowly with time, so the
inertial terms may be neglected in the equation of motion, leading to a
quasistatic problem. The body is in contact on Γ3×(0,T) with a rigid ob-
stacle, the so-called foundation. The contact is frictionless and it is mod-
eled with the Signorini contact conditions, in the form with a zero gap
function.

With these assumptions, denoting by S
d the space of second-order

symmetric tensors on R
d, the classical formulation of the frictionless con-

tact problem of the viscoelastic body is the following.
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Problem 2.1. Find a displacement field u : Ω × [0,T] → R
d and a stress

field σ : Ω×[0,T]→ S
d such that

σ =Aε(u̇)+Gε(u) in Ω×(0,T), (2.1)

Divσ+f0 = 0 in Ω×(0,T), (2.2)

u = 0 on Γ1×(0,T), (2.3)

σν = f2 on Γ2×(0,T), (2.4)

uν ≤ 0, σν ≤ 0, σνuν = 0, στ = 0 on Γ3×(0,T), (2.5)

u(0) = u0 in Ω. (2.6)

In (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) and below, in order to sim-
plify the notation, we do not indicate explicitly the dependence of var-
ious functions on the variables x ∈ Ω ∪ Γ and t ∈ [0,T]. Equation (2.1)
represents the viscoelastic constitutive law in which A is a fourth-order
tensor, G is a nonlinear constitutive function, and ε(u) denotes the small
strain tensor. Here and everywhere in this paper, the dot represents the
derivative with respect to the time variable. Equation (2.2) is the equi-
librium equation, while conditions (2.3) and (2.4) are the displacement
and traction boundary conditions, respectively. Conditions (2.5) repre-
sent the frictionless Signorini contact conditions in which uν denotes the
normal displacement, σν represents the normal stress, and στ is the tan-
gential stress on the potential contact surface. Finally, (2.6) represents the
initial condition in which u0 is the initial displacement field.

Kelvin-Voigt viscoelastic materials of the form (2.1) involving nonlin-
ear constitutive functions have been considered recently in [21, 22]. We
recall that in linear viscoelasticity, the stress tensor σ = (σij) is given by

σij = aijkhεkh(u̇)+gijkhεkh(u), (2.7)

where A = (aijkh) is the viscosity tensor and G = (gijkh) is the elasticity
tensor. Here and below the indices i, j,k,h run between 1 and d and the
summation convention over repeated indices is adopted.

We now make some comments on the Signorini contact conditions
(2.5) in which our interest is. When equality uν = 0 holds, there is a con-
tact between the body and the foundation and when inequality uν < 0
holds, there is no contact. Therefore, at each time instant, the surface
Γ3 is divided into two zones: the zone of contact and the zone of sepa-
ration. The boundary of these zones is the free boundary, since they are
unknown a priori and are part of the problem. However, a key limitation
of problems (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) is that the potential
contact surface Γ3 is assumed to be known a priori. Considering the case
when the potential contact surface is not known and may enlarge during
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the deformation process (cf. [10, 13]) leads to substantial mathematical
difficulties and it is left open.

To study the mechanical problems (2.1), (2.2), (2.3), (2.4), (2.5), and
(2.6) we introduce the notation we will use and some preliminary ma-
terial. For further details, we refer the reader to [4, 15, 20]. We denote
by “·” and | · | the inner product and the Euclidean norm on S

d and R
d,

respectively, that is,

u ·v = uivi, |v| = (v ·v)1/2 ∀u,v ∈ R
d,

σ ·τ = σijτij , |τ | = (τ ·τ)1/2 ∀σ,τ ∈ S
d.

(2.8)

We will use the spaces

H = L2(Ω)d =
{

u =
(
ui
)
| ui ∈ L2(Ω)

}
,

Q =
{
σ =

(
σij

)
| σij = σji ∈ L2(Ω)

}
,

H1 =
{

u =
(
ui
)
∈H | ε(u) ∈Q

}
,

Q1 =
{
σ ∈Q | Divσ ∈H

}
.

(2.9)

Here ε : H1 → Q and Div : Q1 → H are the deformation and divergence
operators, respectively, defined by

ε(u) =
(
εij(u)

)
, εij(u) =

1
2
(
ui,j +uj,i

)
, Divσ =

(
σij,j

)
, (2.10)

where the index that follows a comma indicates a partial derivative with
respect to the corresponding component of the independent variable.
The spaces H, Q, H1, and Q1 are real Hilbert spaces endowed with the
canonical inner products given by

(u,v)H =
∫
Ω
uivi dx,

(σ,τ)Q =
∫
Ω
σijτij dx,

(u,v)H1 = (u,v)H +
(
ε(u),ε(v)

)
Q,

(σ,τ)Q1 = (σ,τ)Q+(Divσ,Divτ)H.

(2.11)

The associated norms on these spaces are denoted by ‖ ·‖H , ‖ ·‖Q, ‖ ·‖H1 ,
and ‖ ·‖Q1 , respectively.

For every element v ∈ H1, we still write v for the trace γv of v on Γ
and we denote by vν and vτ the normal and tangential components of v
on the boundary Γ given by

vν = v ·ν, vτ = v−vνν. (2.12)
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For a regular (say C1) stress field σ, the application of its trace on the
boundary to ν is the Cauchy stress vector σν. We define, similarly, the
normal and tangential components of the stress on the boundary by the
formulas

σν = (σν) ·ν, στ = σν−σνν, (2.13)

and we recall that the following Green’s formula holds:

(
σ,ε(v)

)
Q+(Divσ,v)H =

∫
Γ
σν ·vda ∀v ∈H1. (2.14)

Keeping in mind the boundary conditions (2.3) and (2.5), we intro-
duce the closed subspace of H1 defined by

V =
{

v ∈H1 | v = 0 on Γ1
}

(2.15)

and the set of admissible displacement fields given by

K =
{

v ∈ V | vν ≤ 0 on Γ3
}
. (2.16)

Since meas(Γ1) > 0, Korn’s inequality holds: there exists CK > 0 which
depends only on Ω and Γ1 such that∥∥ε(v)∥∥Q ≥ CK‖v‖H1 ∀v ∈ V. (2.17)

A proof of Korn’s inequality (2.17) may be found in [19, page 79].
Finally, for every real Hilbert space X, we use the classical notation

for the spaces Lp(0,T,X) and Wk,p(0,T,X), 1 ≤ p ≤ +∞, k = 1,2, . . . .
We will need the following result for existence proofs.

Theorem 2.2. Let X be a real Hilbert space and let A : D(A) ⊂ X → 2X be
a multivalued operator such that the operator A+ωI is maximal monotone for
some real ω. Then, for every f ∈ W1,1(0,T ;X) and u0 ∈ D(A), there exists a
unique function u ∈W1,∞(0,T ;X) which satisfies

u̇(t)+Au(t) � f(t) a.e. t ∈ (0,T), u(0) = u0. (2.18)

A proof of Theorem 2.2 may be found in [1, page 32]. Here and below
D(A) denotes the domain of the multivalued operator A, 2X represents
the set of the subsets of X, and I is the identity map on X.

3. Variational formulations

In this section, we list the assumptions imposed on the data, derive vari-
ational formulations of the mechanical problem, and state well-posed-
ness results.
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We assume that the viscosity tensor A = (aijkh) : Ω×S
d → S

d satisfies
the usual properties of symmetry and ellipticity

aijkh ∈ L∞(Ω);

Aσ ·τ = σ ·Aτ ∀σ,τ ∈ S
d, a.e. in Ω;

∃mA > 0 : Aτ ·τ ≥mA|τ |2 ∀τ ∈ S
d, a.e. in Ω.

(3.1)

The elasticity operator G : Ω×S
d → S

d satisfies

∃LG > 0 such that
∣∣G(x,ε1

)
−G

(
x,ε2

)∣∣ ≤ LG
∣∣ε1−ε2

∣∣
∀ε1,ε2 ∈ S

d, a.e. x ∈Ω;

x −→ G(x,ε) is Lebesgue measurable on Ω ∀ε ∈ S
d;

x −→ G(x,0) ∈Q.

(3.2)

Clearly, assumptions (3.1) and (3.2) are satisfied for the linear visco-
Elastic model (2.7) if the components aijkl and gijkl belong to L∞(Ω) and
satisfy the usual properties of symmetry and ellipticity. A second exam-
ple is provided by the nonlinear viscoelastic constitutive law

σ =Aε̇+β
(
ε−PKε

)
. (3.3)

Here A is a fourth-order tensor which satisfies (3.1), β > 0, K is a closed-
convex subset of S

d such that 0 ∈ K and PK : S
d → K denotes the pro-

jection map. Using the nonexpansivity of the projection, we see that the
elasticity operator G(x,ε) = β(ε−PKε) satisfies condition (3.2). We con-
clude that the results below are valid for Kelvin-Voigt viscoelastic mate-
rials of the form (2.7) and (3.3), under the above assumptions.

We suppose that the body forces and surface tractions have the regu-
larity

f0 ∈W1,1(0,T ;H), f2 ∈W1,1
(

0,T ;L2(Γ2
)d)

, (3.4)

and, finally, the initial displacement satisfies

u0 ∈K. (3.5)

For u,v ∈ V let

(u,v)V =
(
Aε(u),ε(v)

)
Q, ‖u‖V = (u,u)1/2

V . (3.6)

Using (3.1) and (2.17) we obtain that (·, ·)V is an inner product on V and
‖ ·‖V and ‖ ·‖H1 are equivalent norms on V . Therefore, (V,‖ ·‖V ) is a real
Hilbert space.
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Next, we denote by f(t) the element of V given by(
f(t),v

)
V =

(
f0(t),v

)
H +

(
f2(t),v

)
L2(Γ2)d

∀v ∈ V, t ∈ [0,T], (3.7)

and we note that conditions (3.4) imply

f ∈W1,1(0,T ;V ). (3.8)

Finally, for a.e. t ∈ [0,T], we denote the set of admissible stress fields given
by

Σ(t) =
{
τ ∈Q |

(
τ ,ε(v)

)
Q ≥

(
f(t),v

)
V ∀v ∈K

}
. (3.9)

Using (2.12), (2.13), and (2.14), it is straightforward to show that if u
and σ are two regular functions satisfying (2.2), (2.3), (2.4), and (2.5),
then u(t) ∈ V , σ(t) ∈Q1, and

u(t) ∈K,
(
σ(t),ε(v)−ε

(
u(t)

))
Q≥

(
f(t),v−u(t)

)
V ∀v ∈K, t ∈ [0,T].

(3.10)
Taking now v = 2u(t) and v = 0 in (3.10) we find

σ(t) ∈ Σ(t),
(
τ −σ(t),ε

(
u(t)

))
Q ≥ 0 ∀τ ∈ Σ(t), t ∈ [0,T]. (3.11)

Inequalities (3.10), (3.11), combined with (2.1), (2.6), lead us to con-
sider the following two variational problems.

Problem 3.1. Find a displacement field u : [0,T] → V and a stress field
σ : [0,T]→Q1 such that

σ(t) =Aε
(
u̇(t)

)
+Gε

(
u(t)

)
a.e. t ∈ (0,T), (3.12)

u(t) ∈K,
(
σ(t),ε(v)−ε

(
u(t)

))
Q ≥

(
f(t),v−u(t)

)
V

∀v ∈K, a.e. t ∈ (0,T),
(3.13)

u(0) = u0. (3.14)

Problem 3.2. Find a displacement field u : [0,T] → V and stress field σ :
[0,T]→Q1 which satisfy (3.12), (3.14), and

σ(t) ∈ Σ(t),
(
τ −σ(t),ε

(
u(t)

))
Q ≥ 0 ∀τ ∈ Σ(t), a.e. t ∈ (0,T). (3.15)

We remark that Problems 3.1 and 3.2 are formally equivalent to the
mechanical problems (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6). Indeed,
if {u,σ} represents a regular solution of the variational problem 3.1 or
3.2, using the arguments of [4], it follows that {u,σ} satisfies (2.1), (2.2),
(2.3), (2.4), (2.5), and (2.6). For this reason, we may consider Problems
3.1 and 3.2 as variational formulations of the mechanical problems (2.1),
(2.2), (2.3), (2.4), (2.5), and (2.6).
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4. Existence and uniqueness results

The main results of this section concern the unique solvability and the
equivalence of the variational problems 3.1 and 3.2. We have the follow-
ing results.

Theorem 4.1. Assume (3.1), (3.2), (3.4), and (3.5). Then there exists a unique
solution {u,σ} to Problem 3.1. Moreover, the solution satisfies

u ∈W1,∞(0,T ;V ), σ ∈ L∞(0,T ;Q1
)
. (4.1)

Theorem 4.2. Assume (3.1), (3.2), (3.4), and (3.5) and let {u,σ} be a couple
of functions which satisfies (4.1). Then {u,σ} is a solution of the variational
Problem 3.1 if and only if {u,σ} is a solution of the variational Problem 3.2.

Theorem 4.3. Assume (3.1), (3.2), (3.4), and (3.5). Then there exists a unique
solution {u,σ} to Problem 3.2. Moreover, the solution satisfies (4.1).

Theorems 4.1 and 4.3 state the unique solvability of Problems 3.1 and
3.2, respectively, while Theorem 4.2 expresses the equivalence of these
variational problems. From these theorems we conclude that the me-
chanical problem (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) has a unique
weak solution which solves both Problems 3.1 and 3.2. Moreover, since
Theorem 4.3 is a consequence of Theorems 4.1 and 4.2, we only need to
provide the proofs of Theorems 4.1 and 4.2.

We start with the proof of Theorem 4.1. We will apply Theorem 2.2.

Proof of Theorem 4.1. By the Riesz representation theorem we can define
an operator B : V → V by

(Bu,v)V =
(
Gε(u),ε(v)

)
Q ∀u,v ∈ V. (4.2)

It follows from (3.2), (3.1), and (3.6) that

∥∥Bu1−Bu2
∥∥
V ≤

LG

mA

∥∥u1−u2
∥∥
V ∀u1,u2 ∈ V, (4.3)

that is, B is a Lipschitz continuous operator. Moreover, the operator

B+
LG

mA
I : V −→ V (4.4)

is a monotone Lipschitz continuous operator on V . Let ψK : V → (−∞,
+∞] denote the indicator function of the set K and let ∂ψK be the subd-
ifferential of ψK. Since K is a nonempty, convex, closed part of V , it fol-
lows that ∂ψK is a maximal monotone operator on V and D(∂ψK) = K.
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Moreover, the sum

∂ψK+B+
LG

mA
I : K ⊂ V −→ 2V (4.5)

is a maximal monotone operator. Thus, conditions (3.5) and (3.8) allow
us to apply Theorem 2.2 with X = V , A = ∂ψK +B : D(A) = K ⊂ V →
2V , and ω = LG/mA. We deduce that there exists a unique element u ∈
W1,∞(0,T ;V ) such that

u̇(t)+∂ψK
(
u(t)

)
+Bu(t) � f(t) a.e. t ∈ (0,T), (4.6)

u(0) = u0. (4.7)

Since for any elements u,g ∈ V , the following equivalence holds:

g ∈ ∂ψK(u)⇐⇒ u ∈K, (g,v−u)V ≤ 0 ∀v ∈K, (4.8)

the differential inclusion (4.6) is equivalent to the following variational
inequality:

u(t) ∈K,
(
u̇(t),v−u(t)

)
V +

(
Bu(t),v−u(t)

)
V ≥

(
f(t),v−u(t)

)
V

∀v ∈K, a.e. t ∈ (0,T).
(4.9)

It follows now from (4.9), (4.2), and (3.6) that u satisfies the inequality

u(t) ∈K,
(
Aε

(
u̇(t)

)
,ε(v)−ε

(
u(t)

))
Q+

(
Gε

(
u(t)

)
,ε(v)−ε

(
u(t)

))
Q

≥
(
f(t),v−u(t)

)
V ∀v ∈K, a.e. t ∈ (0,T).

(4.10)

Let σ denote the function defined by (3.12). It follows from (4.10) and
(4.7) that {u,σ} is a solution of Problem 3.1. Moreover, since u ∈
W1,∞(0,T ;V ), from (3.12), (3.1), and (3.2) we obtain σ ∈ L∞(0,T ;Q). Tak-
ing v = u(t)±ϕ in (3.13) where ϕ ∈ D(Ω)d and using (3.7), we find

Divσ(t)+f0(t) = 0 a.e. t ∈ (0,T). (4.11)

Keeping in mind (3.4), we obtain Divσ ∈ L∞(0,T ;H). Therefore, we de-
duce that σ ∈ L∞(0,T ;Q1) which concludes the existence part in Theorem
4.1.

The uniqueness part results from the uniqueness of the element u ∈
W1,∞(0,T ;V ) which satisfies (4.6), (4.7), guaranteed by Theorem 2.2. �

Under the assumption

σν ∈ L∞(0,T ;L2(Γ)d
)
, (4.12)



Mikäel Barboteu et al. 11

by a standard procedure (cf. [18]) we have

σν = f2 a.e. on Γ2×(0,T), στ = 0 a.e. on Γ3×(0,T). (4.13)

These relations will be needed in error estimation of numerical solutions.

Proof of Theorem 4.2. Let {u,σ} be a couple of functions which satisfies
(4.1). We need to prove the equivalence of the inequalities (3.13) and
(3.15). All the equalities, inequalities, and inclusions below involving
the argument t are understood to be valid for almost any t ∈ (0,T).

Suppose that {u,σ} satisfies (3.13). Choosing v = 2u(t) and v = 0 in
(3.13) we find (

σ(t),ε
(
u(t)

))
Q =

(
f(t),u

)
V . (4.14)

Using now (3.13) and (4.14), we deduce that
(
σ(t),ε(v)

)
Q ≥

(
f(t),v

)
V ∀v ∈K, (4.15)

that is, σ(t) ∈ Σ(t). The inequality in (3.15) follows now from (3.9) and
(4.14), which concludes the first part of the proof.

Conversely, suppose that {u,σ} satisfies (3.15). We will first prove that
u(t) ∈ K. Indeed, suppose that u(t) �∈ K and denote by P(u(t)) the pro-
jection of u(t) on the closed convex subset K ⊂ V . We have

(
Pu(t)−u(t),v

)
V

≥
(
Pu(t)−u(t),Pu(t)

)
V >

(
Pu(t)−u(t),u(t)

)
V ∀v ∈K.

(4.16)

From these inequalities we obtain that there exists α ∈ R such that
(
Pu(t)−u(t),v

)
V > α >

(
Pu(t)−u(t),u(t)

)
V ∀v ∈K. (4.17)

Let τ̃(t) ∈Q be the element

τ̃(t) =Aε
(
Pu(t)−u(t)

)
. (4.18)

Using (3.6), (4.17), and (4.18) we deduce that
(
τ̃(t),ε(v)

)
Q > α >

(
τ̃(t),ε

(
u(t)

))
Q ∀v ∈K (4.19)

and, taking v = 0 in (4.19), we obtain

α < 0. (4.20)

Now suppose that there exists v ∈K such that
(
τ̃(t),ε(v)

)
Q < 0. (4.21)
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Using (4.19), since λv ∈K for λ ≥ 0, it follows that

λ
(
τ̃(t),ε(v)

)
Q > α ∀λ ≥ 0 (4.22)

and, passing to the limit when λ → +∞, from (4.21) we obtain α ≤ −∞
which is in contradiction with α ∈ R. We conclude that

(
τ̃(t),ε(v)

)
Q ≥ 0 ∀v ∈K. (4.23)

Let σ̃(t) =Aε(f(t)) ∈Q. Using (3.6) we find

(
σ̃(t),ε(v)

)
Q =

(
f(t),v

)
V ∀v ∈ V. (4.24)

It follows from (3.9), (4.23), and (4.24) that τ̃(t) + σ̃(t) ∈ Σ(t). Taking
τ = τ̃(t)+ σ̃(t) in (3.15) we find

(
τ̃(t),ε

(
u(t)

))
Q ≥

(
σ(t)− σ̃(t),ε

(
u(t)

))
Q. (4.25)

Keeping now in mind (4.19) and (4.20), from (4.25) we deduce

(
σ(t)− σ̃(t),ε

(
u(t)

))
Q < 0. (4.26)

On the other hand, (3.9) and (4.24) imply that 2σ(t)− σ̃(t) ∈ Σ(t) and,
taking τ = 2σ(t)− σ̃(t) in (3.15), we obtain

(
σ(t)− σ̃(t),ε

(
u(t)

))
Q ≥ 0. (4.27)

We note that (4.26) and (4.27) are in contradiction. Therefore, u(t) ∈ K.
Taking now τ = σ̃(t) in (3.15) and using (4.24) we have

(
f(t),u(t)

)
V ≥

(
σ(t),ε

(
u(t)

))
Q. (4.28)

As σ(t) ∈ Σ(t) and u(t) ∈K, from (3.9) it follows that

(
σ(t),ε

(
u(t)

))
Q ≥

(
f(t),u(t)

)
V . (4.29)

So, from (4.28) and (4.29) we obtain

(
σ(t),ε

(
u(t)

))
Q =

(
f(t),u(t)

)
V . (4.30)

The inequality in (3.13) results now from (3.9) and (4.30), which con-
cludes the proof. �
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5. A spatially semi-discrete scheme

In this section, we consider an approximation of Problem 3.1 by dis-
cretizing only the spatial domain. First we observe that, in terms of dis-
placements, Problem 3.1 can be equivalently stated as finding u : [0,T]→
V such that the initial value condition (3.14) holds and for a.e. t ∈ (0,T),
u(t) ∈K, and(

Aε
(
u̇(t)

)
,ε(v)−ε

(
u(t)

))
Q+

(
Gε

(
u(t)

)
,ε(v)−ε

(
u(t)

))
Q

≥
(
f(t),v−u(t)

)
V ∀v ∈K.

(5.1)

Let V h be a finite-dimensional subspace of V , which can be con-
structed for example by the finite-element method. Here h→ 0+ is a dis-
cretization parameter. DenoteKh = V h∩K. Notice thatKh is a nonempty,
closed, convex subset of V h. Let uh

0 ∈Kh be an approximation of u0. Then
a spatially semi-discrete scheme of Problem 3.1 is the following.

Problem 5.1. Find a displacement field uh : [0,T]→ V h such that

uh(0) = uh
0 (5.2)

and for a.e. t ∈ (0,T), uh(t) ∈Kh, and(
Aε

(
u̇h(t)

)
,ε
(
vh

)
−ε

(
uh(t)

))
Q+

(
Gε

(
uh(t)

)
,ε
(
vh

)
−ε

(
uh(t)

))
Q

≥
(
f(t),vh−uh(t)

)
V ∀vh ∈Kh.

(5.3)

We first show the existence of a unique solution to Problem 5.1 by an
argument similar to the proof of Theorem 4.1.

Theorem 5.2. Assume (3.1), (3.2), (3.3), and (3.4). Then there exists a unique
semi-discrete solution u ∈W1,∞(0,T ;V h) to Problem 5.1.

Proof. We apply Theorem 2.2 for X = V h with the inner product (·, ·)V .
Denote by Ih : V h → V h the identity operator on V h. We define an oper-
ator Bh : V h → V h by(

Bhuh,vh
)
V =

(
Gε

(
uh),ε(vh

))
Q ∀uh,vh ∈ V h. (5.4)

Then as in the proof of Theorem 4.1,

∥∥Bhuh
1 −B

huh
2

∥∥
V ≤

LG

mA

∥∥uh
1 −uh

2

∥∥
V ∀uh

1 ,u
h
2 ∈ V h. (5.5)

So the operator

Bh+
LG

mA
Ih : V h −→ V h (5.6)
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is monotone and Lipschitz continuous. For the indicator function de-
noted ψh

Kh : V h → (−∞,∞] defined by

ψh
Kh

(
vh

)
=

{
0 if vh ∈Kh,

∞ otherwise,
(5.7)

we denote its (discrete) subdifferential

∂hψh
Kh

(
uh) = {

gh ∈ V h |
(
gh,vh−uh)

V ≤ 0 ∀vh ∈Kh
}
, (5.8)

for any uh ∈Kh. Like the subdifferential ∂ψK, ∂hψh
Kh is a maximal mono-

tone operator on V h and the effective domain of ∂hψh
Kh is Kh. We then

define fh : [0,T]→ V h by(
fh(t),vh

)
V =

(
f(t),vh

)
V ∀vh ∈ V h. (5.9)

We have the regularity fh ∈ W1,1(0,T ;V h). Applying Theorem 2.2 with
X = V h, Ah = ∂hψh

Kh +Bh, and fh defined in (5.9), we obtain the existence
of a unique uh ∈W1,∞(0,T ;V h) such that (5.2) and

u̇h(t)+∂hψh
Kh

(
uh(t)

)
+Bhuh(t) � fh(t) a.e. t ∈ (0,T) (5.10)

hold. It is easy to see that (5.10) is equivalent to uh(t) ∈Kh and inequality
(5.3) for a.e. t ∈ (0,T). �

Now we turn to an error analysis of the method. We take v = uh(s) in
(5.1) and add it to (5.3) with vh = vh(s) ∈Kh. After some rearrangement
of the terms, we obtain(

Aε
(
u̇(s)

)
−Aε

(
u̇h(s)

)
,ε
(
u(s)−uh(s)

))
Q

≤
(
Aε

(
u̇h(s)

)
,ε
(
vh−u(s)

))
Q

+
(
Gε

(
u(s)

)
−Gε

(
uh(s)

)
,ε
(
uh(s)−u(s)

))
Q

+
(
Gε

(
uh(s)

)
,ε
(
vh−u(s)

))
Q−

(
f(s),vh−uh(s)

)
V a.e. s ∈ (0,T).

(5.11)

Using now (3.6), we have

1
2
d

ds

∥∥u(s)−uh(s)
∥∥2
V ≤

(
Aε

(
u̇h(s)− u̇(s)

)
,ε
(
vh−u(s)

))
Q

+
(
Gε

(
uh(s)

)
−Gε

(
u(s)

)
,ε
(
vh−u(s)

))
Q

+
(
Gε

(
u(s)

)
−Gε

(
uh(s)

)
,ε
(
uh(s)−u(s)

))
Q

+R
(
s;vh−u(s)

)
a.e. s ∈ (0,T),

(5.12)
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where

R(s;v) =
(
Aε

(
u̇(s)

)
,ε(v)

)
Q+

(
Gε

(
u(s)

)
,ε(v)

)
Q−

(
f(s),v

)
V (5.13)

for all v ∈ V , a.e. s ∈ (0,T).
Let t ∈ [0,T], integrating inequality (5.12) from 0 to t and using the

initial conditions (3.14) and (5.2), we find

1
2

[∥∥u(t)−uh(t)
∥∥2
V −

∥∥u0−uh
0

∥∥2
V

]

≤
∫ t

0

(
Aε

(
u̇h(s)− u̇(s)

)
,ε
(
vh−u(s)

))
Qds

+
∫ t

0
LG

∥∥u(s)−uh(s)
∥∥
V

∥∥u(s)−vh
∥∥
V ds

+
∫ t

0
LG

∥∥u(s)−uh(s)
∥∥2
V dt+

∫ t

0

∣∣R(s;vh−u(s)
)∣∣ds.

(5.14)

We perform an integration by parts on the first term in the right-hand
side

∫ t

0

(
Aε

(
u̇h(s)− u̇(s)

)
,ε
(
vh−u(s)

))
Qds

=
(
Aε

(
u(t)−uh(t)

)
,ε
(
u(t)−vh(t)

))
Q−

(
Aε

(
u0−uh

0

)
,ε
(
u0−vh0

))
Q

−
∫ t

0

(
Aε

(
uh(s)−u(s)

)
,ε
(
v̇h− u̇(s)

))
Qds.

(5.15)

Then we have

∥∥u(t)−uh(t)
∥∥2
V ≤ c

(∥∥u(t)−vh(t)
∥∥2
V +

∥∥u0−uh
0

∥∥2
V +

∥∥u0−vh0
∥∥2
V

)

+c
∫ t

0

∥∥u(s)−uh(s)
∥∥2
V ds+c

∫ t

0

∥∥u(s)−vh(s)
∥∥2
V ds

+c
∫ t

0

∥∥u̇(s)− v̇h(s)
∥∥2
V ds+c

∫ t

0

∣∣R(s;vh(s)−u(s)
)∣∣ds.
(5.16)

Here and below, c denotes various positive generic constants which do
not depend on h and whose values may change from line to line. Since

u(t)−vh(t) = u0−vh0 +
∫ t

0

(
u̇(s)− v̇h(s)

)
ds, (5.17)
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we have

∥∥u(t)−vh(t)
∥∥2
V ≤ c

∥∥u0−vh0
∥∥2
V +c

∫ t

0

∥∥u̇(s)− v̇h(s)
∥∥2
V ds,∫ t

0

∥∥u(s)−vh(s)
∥∥2
V ds ≤ c

∥∥u0−vh0
∥∥2
V +c

∫ t

0

∥∥u̇(s)− v̇h(s)
∥∥2
V ds.

(5.18)

Thus,

∥∥u(t)−uh(t)
∥∥2
V ≤ c

(∥∥u0−uh
0

∥∥2
V +

∥∥u0−vh0
∥∥2
V

)
+c

∫ t

0

∥∥u(s)−uh(s)
∥∥2
V ds

+c
∫ t

0

∥∥u̇(s)− v̇h(s)
∥∥2
V ds+c

∫ t

0

∣∣R(s;vh(s)−u(s)
)∣∣ds.
(5.19)

Applying Gronwall’s inequality, we obtain∥∥u−uh
∥∥2
L∞(0,T ;V ) ≤ c

(∥∥u0−vh0
∥∥2
V +

∥∥u̇− v̇h
∥∥2
L2(0,T ;V )

+
∥∥R(·;vh−u)

∥∥
L1(0,T ;V ) +

∥∥u0−uh
0

∥∥2
V

)
.

(5.20)

Since vh ∈W1,2(0,T ;Kh) is arbitrary, we then have∥∥u−uh
∥∥
L∞(0,T ;V )

≤ c inf
vh∈W1,2(0,T ;Kh)

(∥∥u0−vh0
∥∥
V +

∥∥u̇− v̇h
∥∥
L2(0,T ;V )

+
∥∥R(·;vh−u

)∥∥1/2
L1(0,T ;V )

)
+c

∥∥u0−uh
0

∥∥
V .

(5.21)

Inequality (5.21) is a basis for convergence analysis and error estima-
tion. For definiteness, in the following we consider the two-dimensional
case. We assume Ω is a polygon. Then the boundary ∂Ω consists of line
segments. Write

Γ̄3 = ∪Ii=1Γ̄3,i (5.22)

with each Γ̄3,i being a line segment. Let {Th}h be a family of regular
finite-element partitions of Ω̄ into triangles (cf. [2]), compatible to the
boundary decomposition ∂Ω = Γ̄1 ∩ Γ̄2 ∩ Γ̄3, that is, any point when the
boundary condition type changes is a vertex of the partitions. Let {V h}h
⊂ V be the corresponding family of finite-element spaces of linear el-
ements which are zero on Γ̄1. Then Kh = K ∩ V h consists of functions
vh ∈ C(Ω̄)2 such that on each element, vh is an affine function, vh(z) = 0
for any vertex z ∈ Γ̄1, and vhν(z) ≤ 0 for any vertex z ∈ Γ̄3. Let Πh :
C(Ω̄)2 → V h be the finite-element interpolation operator. Then we have
the interpolation error estimate (cf. [2]):∥∥v−Πhv

∥∥
V ≤ ch |v|H2(Ω) ∀v ∈H2(Ω)2. (5.23)
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The restriction of the partitions {Th}h on Γ̄3 induces a regular family of
finite-element partitions of Γ̄3. So we also have the interpolation error
estimate

∥∥v−Πhv
∥∥
L2(Γ3,i)

≤ ch |v|H2(Γ3,i) ∀v ∈H2(Γ3,i
)2
, 1 ≤ i ≤ I. (5.24)

We notice that for v ∈K∩C(Ω̄), Πhv ∈Kh.
We have the following convergence result under the basic solution

regularity.

Proposition 5.3. Assume the intersection Γ̄1 ∩ Γ̄3 has a finite number of
points. If we choose uh

0 ∈Kh such that

∥∥u0−uh
0

∥∥
V −→ 0 as h −→ 0. (5.25)

Then the numerical method converges, that is,

∥∥u−uh
∥∥
L∞(0,T ;V ) −→ 0 as h −→ 0. (5.26)

Proof. From definition (5.13), we immediately get
∣∣R(s;v)

∣∣≤c(‖u‖W1,∞(0,T ;V ) +‖f‖L∞(0,T ;V )
)
‖v‖V ∀v ∈ V, a.e. s ∈ (0,T).

(5.27)
Thus, we derive from (5.21) that

∥∥u−uh
∥∥
L∞(0,T ;V )

≤ c inf
vh∈W1,2(0,T ;Kh)

(∥∥u0−vh0
∥∥
V +

∥∥u̇− v̇h
∥∥
L2(0,T ;V )

+
∥∥u−vh

∥∥1/2
L∞(0,T ;V )

)
+c

∥∥u0−uh
0

∥∥
V .

(5.28)

With the assumption made on the boundary, it is known (see [14]) that
K ∩C∞(Ω̄)2 is dense in K with respect to the norm of V . It can then
be shown (see [9]) that W1,2(0,T ;K ∩C∞(Ω̄)2) is dense in W1,2(0,T ;K)
with respect to the norm of W1,2(0,T ;V ). So for any ε > 0, there exists
uε ∈W1,2(0,T ;K∩C∞(Ω̄)2) such that

∥∥u−uε

∥∥
W1,2(0,T ;V ) < ε. (5.29)

For any t ∈ [0,T], let vh(t) = Πhuε(t). Then vh(t) ∈ Kh, v̇h(t) = Πhu̇ε(t),
and by (5.23) we obtain

∥∥uε(t)−Πhuε(t)
∥∥
V ≤ ch

∥∥uε(t)
∥∥
H2(Ω)2 ,∥∥u̇ε(t)−Πhu̇ε(t)

∥∥
V ≤ ch

∥∥u̇ε(t)
∥∥
H2(Ω)2 .

(5.30)



18 A frictionless contact problem for viscoelastic materials

Then ∥∥uε−Πhuε

∥∥
L2(0,T ;V ) ≤ ch

∥∥uε

∥∥
L∞(0,T ;H2(Ω)2),∥∥u̇ε−Πhu̇ε

∥∥
L2(0,T ;V ) ≤ ch

∥∥u̇ε

∥∥
L∞(0,T ;H2(Ω)2).

(5.31)

Also we have ∥∥uε(0)−Πhuε(0)
∥∥
V ≤ ch

∥∥uε(0)
∥∥
H2(Ω)2 . (5.32)

Applying the triangle inequality for the norm, we then obtain from (5.28)
that∥∥u−uh

∥∥
L∞(0,T ;V )

≤ c
(
ε+ε1/2)+ch(∥∥uε(0)

∥∥
H2(Ω)2 +

∥∥u̇ε

∥∥
L2(0,T ;H2(Ω)2)

)
+ch1/2∥∥uε

∥∥1/2
L∞(0,T ;H2(Ω)2) +c

∥∥u0−uh
0

∥∥
V .

(5.33)

We can choose h sufficiently small so that

h
(∥∥uε(0)

∥∥
H2(Ω)2 +

∥∥u̇ε

∥∥
L2(0,T ;H2(Ω)2)

)
+h1/2∥∥uε

∥∥1/2
L∞(0,T ;H2(Ω)2) +

∥∥u0−uh
0

∥∥
V < ε.

(5.34)

Then ∥∥u−uh
∥∥
L∞(0,T ;V ) ≤ c

(
ε+ε1/2). (5.35)

Therefore, we have the convergence (5.26). �

We remark that assumption (5.25) is satisfied if uh
0 = Πhu0 when u0 ∈

C(Ω̄).
Now, we provide an optimal error estimates result under additional

regularity on the solution.

Proposition 5.4. Assume (4.12) and

u ∈W1,2(0,T ;H2(Ω)d
)
, uν|Γ3,i ∈ L1(0,T ;H2(Γ3,i

))
, 1 ≤ i ≤ I. (5.36)

We choose uh
0 = Πhu0. Then we have the following optimal order error estimate:∥∥u−uh

∥∥
L∞(0,T ;V ) =O(h). (5.37)

Proof. We first derive a sharper bound on the residual term under as-
sumption (4.12). Let v ∈ V . The equalities and inequalities below involv-
ing the argument t are understood to be valid for almost any t ∈ (0,T).
Using (5.13) and (3.12) we obtain

R(t;v) =
(
σ(t),ε(v)

)
Q−

(
f(t),v

)
V ∀v ∈ V, a.e. t ∈ (0,T). (5.38)



Mikäel Barboteu et al. 19

Performing an integration by parts on the first term and using (3.7), we
have

R(t;v) =
∫
Γ
σ(t)ν ·vda−

∫
Ω

Divσ(t) ·vdx−
∫
Ω

f0(t) ·vdx−
∫
Γ2

f2(t) ·vda.

(5.39)

Using now the relations (4.11) and (4.13), we obtain

R(t;v) =
∫
Γ3

σν(t)vν da. (5.40)

Thus, instead of (5.27), we have the following bound:∣∣R(t;v)∣∣ ≤ c∥∥σν∥∥L∞(0,T ;L2(Γ))

∥∥vν∥∥L2(Γ3)
. (5.41)

By (5.21) we then get∥∥u−uh
∥∥
L∞(0,T ;V )

≤ c inf
vh∈W1,2(0,T ;Kh)

(∥∥u0−vh0
∥∥
V +

∥∥u̇− v̇h
∥∥
L2(0,T ;V )

+
∥∥uν−vhν∥∥1/2

L1(0,T ;L2(Γ3))

)
+c

∥∥u0−Πhu0
∥∥
V .

(5.42)

For any t ∈ [0,T], let vh(t) = Πhu(t) be the finite-element interpolant
of u(t). Then we have Πhu ∈ W1,2(0,T ;Kh) and the interpolation error
estimates ∥∥u0−Πhu0

∥∥
V ≤ ch

∥∥u0
∥∥
H2(Ω)2 ,∥∥u̇−Πhu̇

∥∥
L2(0,T ;V ) ≤ ch

∥∥u̇
∥∥
L2(0,T ;H2(Ω)2),

∥∥uν−Πhuν
∥∥
L1(0,T ;L2(Γ3))

≤ ch2
I∑
i=1

∥∥uν∥∥L1(0,T ;L2(Γ3,i))
.

(5.43)

Now the error estimate (5.37) follows from (5.42), keeping in mind the
previous inequalities. �

From the viewpoint of applications, it is more important to consider
fully discrete schemes where discretization is introduced with respect to
both time and space variables. For fully discrete schemes, existence of
a unique solution is not difficult to prove. However, derivation of error
estimates for fully discrete solutions remains an open problem.
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