INTEGRAL REPRESENTATIONS FOR PADÉ-TYPE OPERATORS

NICHOLAS J. DARAS

Received 2 October 2000 and in revised form 10 October 2001

The main purpose of this paper is to consider an explicit form of the Padé-type operators. To do so, we consider the representation of Padé-type approximants to the Fourier series of the harmonic functions in the open disk and of the L^p -functions on the circle by means of integral formulas, and, then we define the corresponding Padé-type operators. We are also concerned with the properties of these integral operators and, in this connection, we prove some convergence results.

1. Introduction

Let *f* be a function analytic in the open unit disk *D*, with Taylor power series expansion $\sum_{v=0}^{\infty} a_v \cdot z^v$, and let Λ_f be the linear functional on the space of complex polynomials defined by $\Lambda_f(x^v) = a_v$ (v = 0, 1, 2, ...). By Cauchy's integral formula and by a density argument, the functional Λ_f can be extended to the space $A(\overline{D})$ of all functions which are analytic in *D* and continuous in the open neighborhood of \overline{D} (see [4]). In particular, we have $f(z) = \Lambda_f((1 - x \cdot z)^{-1})$ for any $z \in D$.

Now, let $v_{m+1}(x)$ be an arbitrary polynomial of degree m + 1, with distinct zeros $\pi_1, \pi_2, ..., \pi_n$ of respective multiplicities $(m_1 + 1), (m_2 + 1), ..., (m_n + 1)$ and $(m_1 + 1) + (m_2 + 1) + \dots + (m_n + 1) = m + 1$.

Let $I(v_{m+1})$ be the linear operator mapping each $g(x) \in A(\overline{D})$ into its Hermite interpolation polynomial G_{m+1} of degree at most *m* defined by

$$g^{(j)}(\pi_i) = G^{(j)}_{m+1}(\pi_i) \quad \text{for } i = 1, \dots, n, \ j = 0, 1, \dots, m_i.$$
(1.1)

If $g(x,z) = (1 - x \cdot z)^{-1}$, then $\Lambda_f(G_{m+1}(x,z))$ is the so-called Padé-type

Copyright © 2002 Hindawi Publishing Corporation Journal of Applied Mathematics 2:2 (2002) 51–69 2000 Mathematics Subject Classification: 32A25, 32E30, 41A05 URL: http://dx.doi.org/10.1155/S1110757X02112125

approximant to f(z) with generating polynomial $v_{m+1}(x)$. It is a rational function with numerator of degree m and denominator of degree m + 1, denoted by $(m/(m+1))_f(z)$ and such that

$$f(z) - \left(\frac{m}{m+1}\right)_f(z) = O(z^{m+1}), \quad \text{if } |z| < \min\left\{\frac{1}{|\pi_1|}, \dots, \frac{1}{|\pi_n|}\right\}.$$
(1.2)

If $v_{m+1}(x)$ is identical to the orthogonal polynomial $q_{m+1}(x)$ with respect to Λ_f , that is, the polynomial satisfying the orthogonality conditions $\Lambda_f(x^v \cdot q_{m+1}(x)) = 0, v = 0, 1, ..., m$, then the Padé-type approximant $(m/(m+1))_f(z)$ becomes identical to the classical Padé approximant $[m/(m+1)]_f(z)$ such that

$$f(z) - \left[\frac{m}{m+1}\right]_f(z) = O(z^{2m+2}), \quad \text{if } |z| < \min\left\{\frac{1}{|\pi_1|}, \dots, \frac{1}{|\pi_n|}\right\}.$$
(1.3)

By making use of the notation of duality, we can also write

$$\left(\frac{m}{m+1}\right)_{f}(z) = \Lambda_{f}\left(G_{m+1}(x,z)\right)$$
$$= \left\langle \Lambda_{f}, \left[I(\upsilon_{m+1})\right](1-x\cdot z)^{-1}\right\rangle$$
$$= \left\langle \left[I^{*}(\upsilon_{m+1})\right](\Lambda_{f})(1-x\cdot z)^{-1}\right\rangle.$$
(1.4)

In [3], Brezinski showed that the operator which maps f on $(m/(m + 1))_f$ can be understood as the mapping of $A^*(\overline{D})$ into itself which maps Λ_f into $[I^*(v_{m+1})](\Lambda_f)$. This mapping, which depends on the generating polynomial $v_{m+1}(x)$, is called the Padé-type operator for the space O(D) of all analytic functions on D and it is exactly the operator $I^*(v_{m+1})$. If $v_{m+1}(x)$ does not depend on Λ_f , then $I^*(v_{m+1})$ is linear. But for Padé approximants, since $v_{m+1}(x)$ is the orthogonal polynomial $q_{m+1}(x)$ of degree m + 1 with respect to the functional Λ_f , then $v_{m+1}(x)$ depends on Λ_f and the linearity property holds only if the first 2m + 2 moments of both functionals are the same since, then, both orthogonal polynomial of degree m + 1 will be the same.

The aim of this paper is to consider the explicit form of the Padétype operator by means of integral representations. Section 2 deals with the definition of integral representations of Padé-type approximants to real-valued L^2 or harmonic functions and, thus, with the expressions of the Padé-type operator for the spaces $L^2_{\mathbb{R}}(C)$ of all real-valued L^2 functions on C, $L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$ of all real-valued $2\pi\text{-periodic }L^2$ functions on $[-\pi,\pi]$, and $H_{\mathbb{R}}(D)$ of all real-valued harmonic functions on D. We

also give some examples with applications of these integral representations for the Padé-type operator to the convergence problem of a series of Padé-type approximants and to the problem of finding a sufficient condition permitting the interpretation of any 2π -periodic L^p real-valued function on $[-\pi,\pi]$ as a Padé-type approximant. In [7], by introducing the so-called composed Padé-type approximation, we discussed the general situation of complex-valued harmonic or L^p functions and we showed that any Padé-type approximant in the ordinary sense to a function $f \in O(D)$ is a special case of this composed procedure. It is therefore natural to reflect that any $I^*(v_{m+1})$ can also be viewed as a special case of the operator which maps every $f \in O(D)$ on a composed Padé-type approximant to f. Such a mapping will be called a composed Padé-type operator for O(D). In Section 3, we define and give the explicit form of the composed Padé-type operators for the spaces $L^2_{\mathbb{C}}(C)$ of all complexvalued L^2 functions on C, $L^2_{\mathbb{C},(2\pi\text{-per})}[-\pi,\pi]$ of all complex-valued 2π periodic L^2 functions on $[-\pi,\pi]$, and $H_{\mathbb{C}}(D)$ of all complex-valued harmonic functions on *D*. Since $O(D) \subset H_{\mathbb{C}}(D)$, we thus obtain the desired explicit form of $I^*(v_{m+1})$.

2. Integral representations and Padé-type operators

In [5, 6], we have defined and studied Padé-type approximation to $L^P 2\pi$ -periodic real-valued functions and to harmonic functions in *D*. In all cases, the development of our theory was analogous to the classical one about analytic functions.

Really, no situation is quite as pleasant as the L^2 case. In this section, we look for another way to introduce Padé-type approximants to L^2 functions and to harmonic functions. Our method is based on integral representation formulas and leads to a number of convergence results.

To begin our discussion, consider any real-valued L^2 function u(z) defined on the unit circle *C*. Suppose that the Fourier series expansion of $u(e^{it})$ is $\sum_{v=-\infty}^{\infty} \sigma_v \cdot e^{ivt}$. Since *u* is square integrable, the sequence of partial sums $\{\sum_{v=-n}^{n} \sigma_v \cdot e^{ivt} : n = 0, 1, 2, ...\}$ converges to $u(e^{it})$ in the L^2 -norm. Let $P(\mathbb{C})$ be the vector space of all complex-valued analytic polynomials with coefficients in \mathbb{C} . For every $p(x) = \sum_{v=0}^{m} \beta_v \cdot x^v \in P(\mathbb{C})$, we denote by $\bar{p}(x)$ the polynomial $\bar{p}(x) = \sum_{v=0}^{m} \bar{\beta}_v \cdot x^v \in P(\mathbb{C})$. Define the linear functionals $T_u : P(\mathbb{C}) \to \mathbb{C}$ and $S_u : P(\mathbb{C}) \to \mathbb{C}$ associated with *u* by

$$T_u(x^v) := \sigma_v, \quad S_u(x^v) := \sigma_{-v} \quad (v = 0, 1, 2, \dots).$$
(2.1)

As it is well known, the Poisson integral of $u(z) = u(e^{it})$ (|z| = 1) extends to a harmonic real-valued function $u(z) = u(r \cdot e^{it})$ in the unit disk *D* (where |z| < 1, $0 \le r < 1$). This harmonic function being the real part of

some analytic function in *D*, we immediately see that $\overline{T_u(x^v)} = \overline{\sigma}_v = \sigma_{-v} = S_u(x^v)$ for any $v \ge 0$. More generally, we have the following proposition.

PROPOSITION 2.1. For every $p(x) \in P(\mathbb{C})$ there holds

$$\overline{S_u(p(x))} = T_u(\bar{p}(x)), \qquad \overline{S_u(\bar{p}(x))} = T_u(p(x)).$$
(2.2)

Proof. Let $p(x) = \sum_{v=0}^{m} \beta_v x^v \in P(\mathbb{C})$. By linearity, we obtain

$$S_{u}(p(x)) = S_{u}\left(\sum_{v=0}^{m}\beta_{v}x^{v}\right) = \sum_{v=0}^{m}\beta_{v}S_{u}(x^{v}) = \sum_{v=0}^{m}\beta_{v}\overline{T_{u}(x^{v})}$$
$$= \overline{\sum_{v=0}^{m}\bar{\beta}_{v}\cdot T_{u}(x^{v})} = \overline{T_{u}\left(\sum_{v=0}^{m}\bar{\beta}_{v}\cdot x^{v}\right)} = \overline{T_{u}(\bar{p}(x))},$$
$$(2.3)$$
$$= \overline{S_{u}\left(\sum_{v=0}^{m}\bar{\beta}_{v}x^{v}\right)} = \overline{\sum_{v=0}^{m}\bar{\beta}_{v}S_{u}(x^{v})} = \overline{\sum_{v=0}^{m}\bar{\beta}_{v}\overline{T_{u}(x^{v})}}$$
$$= \sum_{v=0}^{m}\beta_{v}\cdot T_{u}(x^{v}) = T_{u}\left(\sum_{v=0}^{m}\beta_{v}\cdot x^{v}\right) = T_{u}(p(x)).$$

COROLLARY 2.2. For every $p(x) \in P(\mathbb{C})$ there holds

$$\operatorname{Re}T_{u}(\bar{p}(x)) = \operatorname{Re}S_{u}(p(x)), \qquad \operatorname{Re}T_{u}(p(x)) = \operatorname{Re}S_{u}(\bar{p}(x)).$$
(2.4)

Now, observe that the linear functional S_u can be extended continuously on the space $L^2_{\mathbb{R}}(C)$ of all real-valued square integrable functions on the unit circle *C*. In fact, if $p(x) = \sum_{v=0}^{m} \beta_v x^v \in P(\mathbb{C})$ then, by Hölder's inequality, we get

$$\begin{aligned} \left|S_{u}(p(x))\right|^{2} &= \left|\sum_{v=0}^{m} \beta_{v} \sigma_{-v}\right|^{2} \\ &= \left|\sum_{v=0}^{m} \bar{\beta}_{v} \sigma_{v}\right|^{2} \\ &= \left|\frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u(e^{it}) \cdot \left(\sum_{v=0}^{m} \bar{\beta}_{v} \cdot e^{-ivt}\right) dt\right|^{2} \\ &= \left|\frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u(e^{it}) \cdot \overline{p(e^{it})} dt\right|^{2} \\ &\leq c_{u} \cdot \left\|p(x)\right\|_{2^{\prime}}^{2} \end{aligned}$$
(2.5)

for some positive constant c_u depending only on u, and hence, by the Hahn-Banach theorem, there is a continuous linear extension of S_u on $L^2_{\mathbb{R}}(C)$. It follows, from the Riesz representation theorem, that there exists a unique $F_u \in L^2_{\mathbb{R}}(C)$ such that

$$S_{u}(g) = \int_{C} g(\zeta) \cdot \overline{F_{u}(\zeta)} \, d\zeta = i \cdot \int_{-\pi}^{\pi} g(e^{i\theta}) \cdot \overline{F_{u}(e^{i\theta})} \cdot e^{i\theta} \, d\theta \tag{2.6}$$

for all $g \in L^2_{\mathbb{R}}(C)$. In particular, if $g(\zeta) = \zeta^v$ then

$$S_u(\zeta^v) = \int_C \zeta^v \overline{F_u(\zeta)} \, d\zeta = i \cdot \int_{-\pi}^{\pi} e^{iv\theta} \cdot \overline{F_u(e^{i\theta})} \cdot e^{i\theta} \, d\theta.$$
(2.7)

But

$$S_u(\zeta^v) = \sigma_{-v} = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u(e^{i\theta}) \cdot e^{iv\theta} d\theta, \qquad (2.8)$$

and therefore

$$\overline{F_u(e^{i\theta})} = -i \cdot u(e^{i\theta}) \cdot e^{-i\theta}, \qquad (2.9)$$

which implies that

$$S_u(g) = \int_{-\pi}^{\pi} g(e^{i\theta}) \cdot u(e^{i\theta}) \, d\theta \tag{2.10}$$

for all $g \in L^2_{\mathbb{R}}(C)$. In view of Corollary 2.2, we have thus obtained the following theorem.

THEOREM 2.3. Let $M = (\pi_{m,k})_{m \ge 0, 0 \le k \le m}$ be an infinite triangular interpolation matrix with complex entries and, for any $m \ge 0$, let $G_m(x,z)$ be the unique polynomial of degree at most m which interpolates the function $(1 - x \cdot z)^{-1}$ at $x = \pi_{m,0}, \pi_{m,1}, \pi_{m,2}, \dots, \pi_{m,m}$ (where z is fixed and $|\pi_{m,k}| < 1$).

(a) For any real-valued function $u \in L^2_{\mathbb{R}}(C)$, the Padé-type approximant $\operatorname{Re}(m/(m+1))_u(z)$ to u(z) has the following integral representation:

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{C} u(\zeta) \operatorname{Re}\left\{\frac{4\pi \bar{G}_{m}(\zeta, z) - 1}{i\zeta}\right\} d\zeta \quad (|z| = 1),$$
(2.11)

or equivalently

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(e^{it}) = \int_{-\pi}^{\pi} u(e^{i\theta}) \cdot 2\operatorname{Re}\left\{\bar{G}_{m}(e^{i\theta}, e^{it}) - \frac{1}{4\pi}\right\} d\theta$$

$$= \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u(e^{i\theta}) \cdot \operatorname{Re}\left\{4\pi \cdot \bar{G}_{m}(e^{i\theta}, e^{it}) - 1\right\} d\theta,$$
(2.12)

where $-\pi \leq t \leq \pi$.

(b) Let $f \in L^2[-\pi,\pi]$ be a 2π -periodic real-valued function, with Fourier coefficients $\{c_v : v = \pm 0, \pm 1, \pm 2, \ldots\}$. Since $f(t) = \sum_{v=-\infty}^{\infty} c_v \cdot e^{ivt}$ in the L²-norm, the function f(t) can be viewed as a function of the unit circle, and therefore the Padé-type approximant $\operatorname{Re}(m/(m+1))_f(t)$ to f(t) has the following integral representation:

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{f}(t) = \int_{-\pi}^{\pi} f(\theta) \cdot 2\operatorname{Re}\left\{\bar{G}_{m}\left(e^{i\theta}, e^{it}\right) - \frac{1}{4\pi}\right\}d\theta$$
$$= \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}\left\{4\pi \cdot \bar{G}_{m}\left(e^{i\theta}, e^{it}\right) - 1\right\}d\theta \quad (-\pi \leq t \leq \pi).$$
(2.13)

Proof. We have

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(e^{it}) = 2\operatorname{Re}T_{u}(G_{m}(x,e^{it})) - u(0)$$

$$= 2\operatorname{Re}S_{u}(\bar{G}_{m}(x,e^{it})) - u(0)$$

$$= 2\operatorname{Re}\int_{-\pi}^{\pi}\bar{G}_{m}(e^{i\theta},e^{it})u(e^{i\theta}) d\theta - \frac{1}{2\pi}\int_{-\pi}^{\pi}u(e^{i\theta}) d\theta$$

$$= \frac{1}{2\pi}\int_{-\pi}^{\pi}u(e^{i\theta})\operatorname{Re}\left[4\pi\bar{G}_{m}(e^{i\theta},e^{it})\right] d\theta$$

$$- \frac{1}{2\pi}\int_{-\pi}^{\pi}u(e^{i\theta}) d\theta$$

$$= \frac{1}{2\pi}\cdot\int_{-\pi}^{\pi}u(e^{i\theta})\cdot\operatorname{Re}\left\{4\pi\bar{G}_{m}(e^{i\theta},e^{it}) - 1\right\} d\theta$$

$$= \int_{-\pi}^{\pi}u(e^{i\theta})\cdot2\operatorname{Re}\left\{\bar{G}_{m}(e^{i\theta},e^{it}) - \frac{1}{4\pi}\right\} d\theta \quad (-\pi \le t \le \pi).$$
(2.14)

Setting $z = e^{it}$ and $\zeta = e^{i\theta}$, we also have

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(e^{it})$$

$$= \operatorname{Re}\left[\frac{1}{2\pi i} \cdot \int_{-\pi}^{\pi} u(e^{i\theta}) \left\{\frac{4\pi \bar{G}_{m}(e^{i\theta}, e^{it}) - 1}{e^{i\theta}}\right\} i e^{i\theta} d\theta\right]$$

$$= \operatorname{Re}\left[\frac{1}{2\pi i} \cdot \int_{C} u(\zeta) \left\{\frac{4\pi \bar{G}_{m}(\zeta, z) - 1}{\zeta}\right\} d\zeta\right]$$

$$= \frac{1}{2\pi} \cdot \int_{C} u(\zeta) \operatorname{Re}\left\{\frac{4\pi \bar{G}_{m}(\zeta, z) - 1}{i\zeta}\right\} d\zeta \quad (|z| = 1).$$
(2.15)

This completes the proof of (a). The proof of (b) is exactly similar and is based on the identification between $L^2_{\mathbb{R}}(C)$ and the space of all 2π -periodic L^2 real-valued functions on $[-\pi,\pi]$ (every $u(z) = u(e^{it}) \in L^2_{\mathbb{R}}(C)$ can be interpreted as a 2π -periodic real-valued function $f(t) \in L^2[-\pi,\pi]$ and conversely).

In order to simplify the formalism, we make use of the notation

$$\operatorname{Re}\left\{\frac{B_m(\zeta,z)}{i\zeta}\right\} := \operatorname{Re}\left\{\frac{4\pi \cdot \bar{G}_m(\zeta,z) - 1}{i\zeta}\right\},$$

$$\operatorname{Re}B_m(e^{i\theta}, e^{it}) := \operatorname{Re}\left\{4\pi \cdot \bar{G}_m(e^{i\theta}, e^{it}) - 1\right\}.$$
(2.16)

As it is well known, the function $\operatorname{Re}(m/(m+1))_u(z)$ (|z| = 1) is continuous (see [6]). Hence, the integral operator $\operatorname{Re}(m/(m+1))$ maps $L^2_{\mathbb{R}}(C)$ into $L^2_{\mathbb{R}}(C)$ and therefore, by the closed graph theorem, it is continuous (of course, under the assumption that $|\pi_{m,k}| < 1$ for all $k \le m$). The integral operator

$$\operatorname{Re}\left(\frac{m}{m+1}\right): L^{2}_{\mathbb{R}}(C) \longrightarrow L^{2}_{\mathbb{R}}(C);$$

$$u(z) \longrightarrow \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{C} u(\zeta) \cdot \operatorname{Re}\frac{B_{m}(\zeta, z)}{i\zeta} d\zeta$$

$$(2.17)$$

is called the Padé-type operator for $L^2_{\mathbb{R}}(C)$. Its adjoint operator is given by

$$\operatorname{Re}\left(\frac{m}{m+1}\right)^{*} : L^{2}_{\mathbb{R}}(C) \longrightarrow L^{2}_{\mathbb{R}}(C);$$

$$u(z) \longrightarrow \operatorname{Re}\left(\frac{m}{m+1}\right)^{*}_{u}(z) = \frac{1}{2\pi} \cdot \int_{C} u(\zeta) \cdot \operatorname{Re}\frac{B_{m}(z,\zeta)}{iz} d\zeta.$$
(2.18)

In fact, to $\operatorname{Re}(m/(m+1))$ there corresponds a unique operator $\operatorname{Re}(m/(m+1))^* : L^2_{\mathbb{R}}(C) \to L^2_{\mathbb{R}}(C)$ satisfying $\langle \operatorname{Re}(m/(m+1))_u, w \rangle = \langle u, \operatorname{Re}(m/(m+1))_w^* \rangle$, that is,

$$\int_{C} \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(\zeta) \cdot w(\zeta) \, d\zeta = \int_{C} u(z) \cdot \operatorname{Re}\left(\frac{m}{m+1}\right)_{w}^{*}(z) \, dz \qquad (2.19)$$

for all $u, w \in L^2_{\mathbb{R}}(C)$; since, by Fubini's theorem,

$$\int_{C} \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(\zeta) \cdot w(\zeta) d\zeta$$

$$= \int_{C} \frac{1}{2\pi} \int_{C} u(z) \cdot \operatorname{Re} \frac{B_{m}(z,\zeta)}{iz} dz w(\zeta) d\zeta \qquad (2.20)$$

$$= \int_{C} u(z) \cdot \left(\frac{1}{2\pi} \int_{C} w(\zeta) \cdot \operatorname{Re} \frac{B_{m}(z,\zeta)}{iz} d\zeta\right) dz,$$

we conclude that

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{w}^{*}(z) = \frac{1}{2\pi} \int_{C} w(\zeta) \cdot \operatorname{Re}\frac{B_{m}(z,\zeta)}{iz} d\zeta \quad \left(w \in L^{2}_{\mathbb{R}}(C)\right). \quad (2.21)$$

Similarly, as it is pointed out in [6], for any real-valued 2π -periodic function $f \in L^2[-\pi,\pi]$, the Padé-type approximant $\operatorname{Re}(m/(m+1))_f(t)$ is continuous, and, by construction, 2π -periodic. It follows that the integral operator $\operatorname{Re}(m/(m+1))$ maps the space $L^2_{\mathbb{R},(2\pi-\operatorname{per})}[-\pi,\pi]$ of real-valued 2π -periodic functions of $L^2[-\pi,\pi]$ into itself. Hence, by the closed graph theorem, the operator

$$\operatorname{Re}\left(\frac{m}{m+1}\right): L^{2}_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi] \longrightarrow L^{2}_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi];$$

$$f(t) \longrightarrow \operatorname{Re}\left(\frac{m}{m+1}\right)_{f}(t) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}B_{m}(e^{i\theta}, e^{it}) d\theta$$
(2.22)

is continuous and is called the *Padé-type operator* for $L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$. Its adjoint operator is then given by

$$\operatorname{Re}\left(\frac{m}{m+1}\right)^{*}: L^{2}_{\mathbb{R},(2\pi\text{-}\mathrm{per})}[-\pi,\pi] \longrightarrow L^{2}_{\mathbb{R},(2\pi\text{-}\mathrm{per})}[-\pi,\pi];$$

$$f(t) \longrightarrow \operatorname{Re}\left(\frac{m}{m+1}\right)^{*}_{f}(t) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}B_{m}(e^{it}, e^{i\theta}) \, d\theta.$$

$$(2.23)$$

In fact, to $\operatorname{Re}(m/(m+1))$ we associate the unique operator $\operatorname{Re}(m/(m+1))^* : L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi] \to L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]$ satisfying

$$\left\langle \operatorname{Re}\left(\frac{m}{m+1}\right)_{f},g\right\rangle = \left\langle f,\operatorname{Re}\left(\frac{m}{m+1}\right)_{g}^{*}\right\rangle,$$
 (2.24)

that is,

$$\int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{m}{m+1}\right)_{f}(t) \cdot g(t) \, dt = \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}\left(\frac{m}{m+1}\right)_{g}^{*}(\theta) \, d\theta \qquad (2.25)$$

for all $f, g \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$; it follows, from Fubini's theorem, that

$$\int_{-\pi}^{\pi} \operatorname{Re}\left(\frac{m}{m+1}\right)_{f}(t) \cdot g(t) dt$$

$$= \int_{-\pi}^{\pi} \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}B_{m}(e^{i\theta}, e^{it}) d\theta g(t) dt \qquad (2.26)$$

$$= \int_{-\pi}^{\pi} f(\theta) \cdot \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) \cdot \operatorname{Re}B_{m}(e^{i\theta}, e^{it}) dt\right) d\theta,$$

and consequently

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{g}^{*}(\theta)$$

$$=\frac{1}{2\pi}\cdot\int_{-\pi}^{\pi}g(t)\cdot\operatorname{Re}B_{m}(e^{i\theta},e^{it})\,dt\quad(g\in L^{2}_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]).$$
(2.27)

Summarizing, we have the following theorem.

THEOREM 2.4. If $m \ge 0$, then for any $u(z) \in L^2_{\mathbb{R}}(C)$ and any $f(t) \in L^2_{\mathbb{R},(2\pi-\mathrm{per})}[-\pi,\pi]$, there holds

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}^{*}(z) = \frac{1}{2\pi} \cdot \int_{C} u(\zeta) \cdot \operatorname{Re}\frac{B_{m}(z,\zeta)}{iz} d\zeta,$$

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{f}^{*}(t) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re}B_{m}(e^{it}, e^{i\theta}) d\theta.$$
(2.28)

The continuity of the Padé-type operators $\operatorname{Re}(m/(m+1))$ leads immediately to the following convergence results which can be considered as a first example of their application.

THEOREM 2.5. (a) If the sequence $\{u_n \in L^2_{\mathbb{R}}(C) : n = 0, 1, 2, ...\}$ converges to $u \in L^2_{\mathbb{R}}(C)$ in the L²-norm, then there holds $\lim_{n\to\infty} \operatorname{Re}(m/(m+1))_{u_n}(z) = \operatorname{Re}(m/(m+1))_u(z)$ in the L²-norm.

(b) If the sequence $\{f_n \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi] : n = 0,1,2,...\}$ converges to $f \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$ in the L²-norm, then there holds $\lim_{n\to\infty} \operatorname{Re}(m/(m+1))_{f_n}(t) = \operatorname{Re}(m/(m+1))_f(t)$ in the L²-norm.

COROLLARY 2.6. (a) If the series of functions $u(z) = \sum_{n=0}^{\infty} a_n \cdot u_n(z)$ (where $a_n \in \mathbb{R}$, $u_n \in L^2_{\mathbb{R}}(C)$) converges in the L²-norm, then $\operatorname{Re}(m/(m+1))_u(z) = \sum_{n=0}^{\infty} a_n \operatorname{Re}(m/(m+1))u_n(z)$ in the L²-norm.

(b) If the series of functions $f(t) = \sum_{n=0}^{\infty} a_n \cdot f_n(t)$ (where $a_n \in \mathbb{R}$, $f_n \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$) converges in the L²-norm then $\operatorname{Re}(m/(m+1))_f(t) = \sum_{n=0}^{\infty} a_n \operatorname{Re}(m/(m+1))_{f_n}(t)$ in the L²-norm.

Now we determine the conditions under which the integral operator $\operatorname{Re}(m/(m+1))$ is compact onto $L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$. Since, for each fixed $t \in [-\pi,\pi]$, the kernel function $\operatorname{Re} B_m(e^{i\theta},e^{it})$ is bounded in θ , it follows, from Tonelli's theorem, that the following theorem holds true.

THEOREM 2.7. If there is a constant $c_* < \infty$ such that

$$\int_{-\pi}^{\pi} \left| \operatorname{Re} B_m(e^{i\theta}, e^{it}) \right|^2 d\theta \le (2\pi)^2 \cdot c_*$$
(2.29)

for almost all $t \in [-\pi,\pi]$, then the Padé-type operator $\operatorname{Re}(m/(m+1))$: $L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi] \to L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]$ is compact. Moreover,

$$\left\|\operatorname{Re}\left(\frac{m}{m+1}\right)\right\| \le (2\pi)^{5/2} \cdot c_* \tag{2.30}$$

and $\operatorname{Re}(m/(m+1))^*$ is also compact.

It is readily seen that if the Padé-type operator $\operatorname{Re}(m/(m+1))$: $L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi] \to L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]$ is compact, then it is not one-toone. This follows from the fact that $\dim L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi] = \infty$ and therefore 0 must be an eigenvalue of $\operatorname{Re}(m/(m+1))$. However, it would be interesting to know a necessary and sufficient condition under which for any $h \in L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]$ there is an $f \in L^2_{\mathbb{R},(2\pi\operatorname{-per})}[-\pi,\pi]$ such that $\operatorname{Re}(m/(m+1))_f = h$. Of course, such a general condition is the inequality

Nicholas J. Daras 61

$$\left\|\operatorname{Re}\left(\frac{m}{m+1}\right)_{f}^{*}\right\|_{2} \ge c \cdot \|f\|_{2} \tag{2.31}$$

or alternatively,

$$\int_{-\pi}^{\pi} \left| f(t) \right|^2 dt \le c \cdot \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re} B_m(e^{it}, e^{i\theta}) \, d\theta \right|^2 dt \tag{2.32}$$

for some constant c > 0 and for every $f \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$. Obviously, this inequality is true if and only if

$$\left|f(t)\right| \le c \cdot \left|\int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re} B_m(e^{it}, e^{i\theta}) \, d\theta\right|$$
(2.33)

for almost all $t \in [-\pi, \pi]$, and thus we have proved the following theorem describing a sufficient condition under which every function in $L^2_{\mathbb{R},(2\pi-\mathrm{per})}[-\pi,\pi]$ is a Padé-type approximant.

THEOREM 2.8. If there is a constant c > 0 such that

$$\left|f(t)\right| \le c \cdot \left|\int_{-\pi}^{\pi} f(\theta) \cdot \operatorname{Re} B_m(e^{it}, e^{i\theta}) \, d\theta\right|$$
(2.34)

almost everywhere on $[-\pi,\pi]$, for every $f \in L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$, then the range of $\operatorname{Re}(m/(m+1))$ equals $L^2_{\mathbb{R},(2\pi\text{-per})}[-\pi,\pi]$.

Finally, we turn to integral representation formulas in the harmonic case. If *u* is harmonic and real-valued in the unit disk, then, for any $0 \le r < 1$, the restriction $u_r(t) = u(r \cdot e^{it})$ $(-\pi \le t \le \pi)$ of u(z) to the circle of radius *r* can be interpreted as a real-valued, 2π -periodic function in $L^2[-\pi,\pi]$. According to Theorem 2.3, the Padé-type approximant $\operatorname{Re}(m/(m+1))_{u_r}(t)$ to $u_r(t)$ is given by the integral representation formula

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u_{r}}(t) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u_{r}(\theta) \cdot \operatorname{Re}\left\{4\pi \cdot \bar{G}_{m}\left(r \cdot e^{i\theta}, r \cdot e^{it}\right) - 1\right\} d\theta$$
$$= \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} u_{r}\left(r \cdot e^{i\theta}\right) \cdot \operatorname{Re}\left\{4\pi \cdot \bar{G}_{m}\left(r \cdot e^{i\theta}, r \cdot e^{it}\right) - 1\right\} d\theta.$$
(2.35)

After a simple change of variables $z = r \cdot e^{it}$ and $\zeta = r \cdot e^{i\theta}$, we obtain

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta|=r} u(\zeta) \cdot \operatorname{Re}\left\{\frac{4\pi \cdot \bar{G}_{m}(\zeta, z) - 1}{\zeta i}\right\} d\zeta$$
$$= \frac{1}{2i} \cdot \int_{|\zeta|=r} u(\zeta) \cdot \operatorname{Re}\left\{\frac{B_{m}(\zeta, z)}{\zeta i}\right\} d\zeta,$$
(2.36)

and hence we can state the following theorem.

THEOREM 2.9. Let $M = (\pi_{m,k})_{m \ge 0, 0 \le k \le m}$ be an infinite triangular interpolation matrix with complex entries and, for any $m \ge 0$, let $G_m(x, z)$ be the unique polynomial of degree at most m which interpolates the function $(1 - x \cdot z)^{-1}$ at $x = \pi_{m,0}, \pi_{m,1}, \pi_{m,2}, \ldots, \pi_{m,m}$ (where z is fixed and $|\pi_{m,k}| < 1$ for each $k \le m$).

The Padé-type approximant $\operatorname{Re}(m/(m+1))_u(z)$ to the harmonic real-valued function u(z) in the disk is given by the following integral representation formula:

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta| = |z|} u(\zeta) \cdot \operatorname{Re}\left\{\frac{B_{m}(\zeta, z)}{i\zeta}\right\} d\zeta \quad (z \in D). \quad (2.37)$$

As it is mentioned in [5], the function $\text{Re}(m/(m+1))_u(z)$ is the real part of an analytic function in the unit disk, and therefore, it is a harmonic real-valued function in D (of course, under the assumption that $|\pi_{m,k}| < 1$ for all $k \le m$). If $H_{\mathbb{R}}(D)$ is the space of all harmonic real-valued functions in D, the integral operator

$$\operatorname{Re}\left(\frac{m}{m+1}\right) : H_{\mathbb{R}}(D) \longrightarrow H_{\mathbb{R}}(D);$$

$$u(z) \longrightarrow \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta| = |z|} u(\zeta) \cdot \operatorname{Re}\left\{\frac{B_{m}(\zeta, z)}{i\zeta}\right\} d\zeta$$
(2.38)

is said to be a *Padé-type operator* of $H_{\mathbb{R}}(D)$. It is easily seen that a Padé-type operator of $H_{\mathbb{R}}(D)$ is continuous. For, if $\{u_n \in H_{\mathbb{R}}(D) : n = 0, 1, 2, ...\}$ and if $\lim_{n\to\infty} u_n = u \in H_{\mathbb{R}}(D)$ compactly in the disk D, then, by the

maximum principle for harmonic functions, we have

$$\sup_{|z|\leq r} \left| \operatorname{Re}\left(\frac{m}{m+1}\right)_{u_{n}}(z) - \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) \right| \\
= \sup_{|z|=r} \left| \operatorname{Re}\left(\frac{m}{m+1}\right)_{u_{n}}(z) - \operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) \right| \\
= \frac{1}{2\pi} \cdot \sup_{|z|=r} \left| \int_{|\zeta|=r} \left[u_{n}(\zeta) - u(\zeta) \right] \cdot \operatorname{Re}\left\{ \frac{B_{m}(\zeta,z)}{\zeta i} \right\} d\zeta \right| \quad (2.39) \\
\leq \frac{1}{2\pi r} \cdot 2\pi r \cdot \left\{ \sup_{|z|=r,|\zeta|=r} \left| \operatorname{Re}B_{m}(\zeta,z) \right| \right\} \cdot \left\{ \sup_{|\zeta|=r} \left| u_{n}(\zeta) - u(\zeta) \right| \right\} \\
\leq L(r,m) \cdot \left\{ \sup_{|\zeta|=r} \left| u_{n}(\zeta) - u(\zeta) \right| \right\}$$

for any r < 1, and the continuity of $\operatorname{Re}(m/(m+1)) : H_{\mathbb{R}}(D) \to H_{\mathbb{R}}(D)$ follows.

As for the L^2 -case, the continuity of the Padé-type operator for $H_{\mathbb{R}}(D)$ leads to the following convergence results.

THEOREM 2.10. If the sequence $\{u_n : n = 0, 1, 2, ...\}$ of harmonic real-valued functions in the open unit disk converges compactly to $u \in H_{\mathbb{R}}(D)$, then there holds

$$\lim_{n \to \infty} \operatorname{Re}\left(\frac{m}{m+1}\right)_{u_n}(z) = \operatorname{Re}\left(\frac{m}{m+1}\right)_u(z)$$
(2.40)

compactly in D.

COROLLARY 2.11. If the series of harmonic real-valued functions

$$u(z) = \sum_{n=0}^{\infty} a_n \cdot u_n(z) \quad \left(a_n \in \mathbb{R}, \ u_n \in H_{\mathbb{R}}(D)\right)$$
(2.41)

converges compactly in the disk, then

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \sum_{n=0}^{\infty} a_{n} \operatorname{Re}\left(\frac{m}{m+1}\right)_{u_{n}}(z), \qquad (2.42)$$

the convergence of the series being compact in D.

Remark 2.12. In [2], Brezinski showed that the (Hermite) interpolation polynomial $G_m(x,z)$ of $(1-xz)^{-1}$ at $x = \pi_{m,0}, \pi_{m,1}, \dots, \pi_{m,m}$ is given by

$$G_m(x,z) = \frac{1}{1-x\cdot z} \cdot \left(1 - \frac{\upsilon_{m+1}(x)}{\upsilon_{m+1}(z^{-1})}\right) \quad (z \neq \pi_{m,k}^{-1}, k = 0, 1, \dots, m), \quad (2.43)$$

where $v_{m+1}(x)$ is any generating polynomial $v_{m+1}(x) = \gamma \cdot \prod_{k=0}^{m} (x - \pi_{m,k})$ ($\gamma \neq 0$). We thus obtain the following expressions for the kernels Re{ $B_m(\zeta, z)/\zeta i$ } and Re $B_m(e^{i\theta}, e^{it})$:

$$\operatorname{Re}\left\{\frac{B_{m}(\zeta,z)}{\zeta i}\right\} = \operatorname{Re}\left\{\frac{-4i\zeta^{-1}}{1-\zeta\cdot\bar{z}}\left(1-\bar{z}^{m+1}\cdot\prod_{k=0}^{m}\frac{\zeta-\overline{\pi}_{m,k}}{1-\overline{z}\cdot\overline{\pi}_{m,k}}\right)-\zeta^{-1}\right\},$$

$$\operatorname{Re}B_{m}(e^{i\theta},e^{it}) = \operatorname{Re}\left\{\frac{4\pi}{1-e^{i(\theta-t)}}\left(1-\prod_{k=0}^{m}\frac{e^{i\theta}-\overline{\pi}_{m,k}}{e^{it}-\overline{\pi}_{m,k}}\right)-1\right\}.$$

$$(2.44)$$

If, for example, $\pi_{m,0} = \cdots = \pi_{m,m} = 0$, then for any $u \in L^2_{\mathbb{R}}(C)$, we have

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}(z) = \operatorname{Re}\left\{\frac{2}{\pi i} \cdot \sum_{v=0}^{m} \tilde{z}^{v} \int_{C} u(\zeta) \cdot \zeta^{v-1} d\zeta - \frac{2}{\pi i} \cdot \int_{C} u(\zeta) \cdot \zeta^{-1} d\zeta\right\} \quad (z \in C)$$

$$(2.45)$$

or

$$\operatorname{Re}\left(\frac{m}{m+1}\right)_{u}\left(e^{it}\right)$$

$$=2\cdot\int_{-\pi}^{\pi}u\left(e^{i\theta}\right)\cos\left(\theta-t\right)d\theta-2\cdot\int_{-\pi}^{\pi}u\left(e^{i\theta}\right)\cos\left[m-\left(\theta-t\right)\right]d\theta$$

$$=4\cdot\int_{-\pi}^{\pi}u\left(e^{i\theta}\right)\cdot\sin\left[\frac{\left(m+1\right)\theta-\left(m+1\right)t}{2}\right]$$

$$\cdot\sin\left[\frac{\left(m-1\right)\theta-\left(m-1\right)t}{2}\right]d\theta\quad\left(-\pi\leq t\leq\pi\right).$$
(2.46)

3. Integral representations and composed Padé-type approximation

We are now in a position to generalize the definitions and results of Section 2 to the context of composed Padé-type approximation. Recall that a composed Padé-type approximant to a harmonic complex-valued function $u = u_1 + iu_2$ in the disk *D* (resp., to an L^p complex-valued

function $u = u_1 + iu_2$ on the circle *C* or to a 2π -periodic complex-valued function $f = f_1 + if_2 \in L^p[-\pi,\pi]$) is a coordinate approximant given by the formula

$$\left(\frac{m}{m+1}\right)_{u}(z) = \operatorname{Re}\left(\frac{m_1}{m_1+1}\right)_{u_1}(z) + i\operatorname{Re}\left(\frac{m_2}{m_2+1}\right)_{u_2}(z) \quad (z \in D), \quad (3.1)$$

respectively, by the formula

$$\left(\frac{m}{m+1}\right)_{u}(z) = \operatorname{Re}\left(\frac{m_{1}}{m_{1}+1}\right)_{u_{1}}(z) + i\operatorname{Re}\left(\frac{m_{2}}{m_{2}+1}\right)_{u_{2}}(z) \quad (z \in C) \quad (3.2)$$

or

$$\left(\frac{m}{m+1}\right)_{f}(t) = \operatorname{Re}\left(\frac{m_{1}}{m_{1}+1}\right)_{f_{1}}(z) + i\operatorname{Re}\left(\frac{m_{2}}{m_{2}+1}\right)_{f_{2}}(t),$$
 (3.3)

where $-\pi \le t \le \pi$ (see [7]). Set

$$L^p_{\mathbb{C}}(C) := \{ u \in L^p(C) : u \text{ is complex-valued} \},\$$

 $L^p_{\mathbb{C},(2\pi\text{-per})}[-\pi,\pi] := \{ f \in L^p[-\pi,\pi] : f \text{ is complex-valued and} \}$

 2π -periodic $(f(-\pi) = f(\pi))$ },

 $H_{\mathbb{C}}(D) := \{ u : D \longrightarrow \mathbb{C} : u \text{ is harmonic and complex-valued} \}.$ (3.4)

From Theorems 2.3 and 2.9, the following theorem follows immediately.

THEOREM 3.1. For j = 1, 2, let $M^{(j)} = (\pi_{m_j,k}^{(j)})_{m_j \ge 0, 0 \le k \le m_j}$ be an infinite triangular interpolation matrix with complex entries $\pi_{m_j,k}^{(j)} \in D$, and, for any $m_j \ge 0$, let $G_{m_j}^{(j)}(x, z)$ be the unique polynomial of degree at most m_j which interpolates the function $(1 - xz)^{-1}$ at $x = \pi_{m_j,0}^{(j)}, \pi_{m_j,1}^{(j)}, \dots, \pi_{m_j,m_j}^{(j)}$ (where z is regarded as a parameter).

If
$$G_{m_j}^{(j)}(x,z) = \sum_{v=0}^{m_j} g_v^{(j,m_j)}(z) \cdot x^v$$
, denote by $\overline{G_{m_j}^{(j)}}(x,z)$ the polynomial

$$\sum_{v=0}^{m_j} \overline{g_v^{(j,m_j)}(z)} \cdot x^v.$$
(3.5)

Put

$$B_{m_j}^{(j)}(x,z) = 4\pi \cdot \overline{G_{m_j}^{(j)}}(x,z) - 1.$$
(3.6)

(a) For any $u = u_1 + i \cdot u_2 \in L^2_{\mathbb{C}}(\mathbb{C})$, the corresponding composed Padé-type approximant $(m/(m+1))_u(z)$ to u(z) has the following integral representation

$$\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{C} \left\{ u_{1}(\zeta) \cdot \operatorname{Re}\left[\frac{B_{m_{1}}^{(1)}(\zeta, z)}{\zeta i}\right] + i \cdot u_{2}(z) \cdot \operatorname{Re}\left[\frac{B_{m_{2}}^{(2)}(\zeta, z)}{i\zeta}\right] \right\} d\zeta \quad (|z|=1),$$
(3.7)

or equivalently

$$\left(\frac{m}{m+1}\right)_{u}\left(e^{it}\right) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \left\{u_{1}\left(e^{i\theta}\right) \cdot \operatorname{Re}B_{m_{1}}^{(1)}\left(e^{i\theta}, e^{it}\right) + i \cdot u_{2}\left(e^{i\theta}\right) \cdot \operatorname{Re}B_{m_{2}}^{(2)}\left(e^{i\theta}, e^{it}\right)\right\} d\theta \quad (-\pi \le t \le \pi).$$
(3.8)

(b) For any $f = f_1 + i \cdot f_2 \in L^2_{\mathbb{C},(2\pi-\text{per})}[-\pi,\pi]$, the corresponding composed Padé-type approximant $(m/(m+1))_f(t)$ to f(t) has the following integral representation:

$$\left(\frac{m}{m+1}\right)_{f}(t) = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \left\{ f_{1}(\theta) \cdot \operatorname{Re} B_{m_{1}}^{(1)}(e^{i\theta}, e^{it}) + i \cdot f_{2}(\theta) \cdot \operatorname{Re} B_{m_{2}}^{(2)}(e^{i\theta}, e^{it}) \right\} d\theta \quad (-\pi \le t \le \pi).$$
(3.9)

(c) For any $u = u_1 + i \cdot u_2 \in H_{\mathbb{C}}(D)$, the corresponding composed Padé-type approximant $(m/(m+1))_u(z)$ to u(z) has the following integral representation:

$$\left(\frac{m}{m+1}\right)_{u}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta|=|z|} \left\{ u_{1}(z) \cdot \operatorname{Re}\left[\frac{B_{m_{1}}^{(1)}(\zeta,z)}{\zeta i}\right] + i \cdot u_{2}(\zeta) \cdot \operatorname{Re}\left[\frac{B_{m_{2}}^{(2)}(\zeta,z)}{\zeta i}\right] \right\} d\zeta \quad (|z|<1).$$
(3.10)

In particular, since any Padé-type approximant in the ordinary sense is a composed Padé-type approximant, we can give integral representation for the classical Padé-type approximants to analytic functions.

COROLLARY 3.2. Let $M = (\pi_{m,k})_{m \ge 0, 0 \le k \le m}$ be an infinite triangular interpolation matrix with complex entries $\pi_{m,k} \in D$, and, for any $m \ge 0$, let $G_m(x,z)$ be the unique polynomial of degree at most m which interpolates the function

 $(1-xz)^{-1}$ at $x = \pi_{m,0}, \pi_{m,1}, \dots, \pi_{m,m}$ (z is regarded as a parameter). If $\underline{G_m(x,z)} = \sum_{v=0}^m g_v^{(m)}(z) \cdot x^v$, denote by $\bar{G}_m(x,z)$ the polynomial $\sum_{v=0}^{m} \overline{g_v^{(m)}(z)} \cdot x^v$, and put

$$B_m(x,z) = 4\pi \cdot \bar{G}_m(x,z) - 1.$$
(3.11)

For any $f \in O(D)$, the corresponding Padé-type approximant (m/(m +1)) $_{f}(z)$ to f(z) (in the Brezinski's sense of [1]) has the following integral representation:

$$\left(\frac{m}{m+1}\right)_{f}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta| = |z|} f(\zeta) \cdot \operatorname{Re}\left[\frac{B_{m}(\zeta, z)}{\zeta i}\right] d\zeta \quad (|z| < 1).$$
(3.12)

Under the assumptions of Theorem 3.1, the integral operators

$$\begin{pmatrix} \frac{m}{m+1} \end{pmatrix} : L^{2}_{\mathbb{C}}(\mathbb{C}) \longrightarrow L^{2}_{\mathbb{C}}(\mathbb{C});$$

$$u = u_{1} + iu_{2} \longmapsto \left(\frac{m}{m+1}\right)_{u}(z)$$

$$= \frac{1}{2i} \cdot \int_{\mathbb{C}} \left\{ u_{1}(\zeta) \cdot \operatorname{Re}\left[\frac{B^{(1)}_{m_{1}}(\zeta, z)}{\zeta i}\right] + i \cdot u_{2}(\zeta) \cdot \operatorname{Re}\left[\frac{B^{(2)}_{m_{2}}(\zeta, z)}{\zeta i}\right] \right\} d\zeta,$$

$$\begin{pmatrix} \frac{m}{m+1} \end{pmatrix} : L^{2}_{\mathbb{C},(2\pi\text{-}\mathrm{per})}[-\pi,\pi] \longrightarrow L^{2}_{\mathbb{C},(2\pi\text{-}\mathrm{per})}[-\pi,\pi];$$

$$f = f_{1} + i \cdot f_{2} \longmapsto \left(\frac{m}{m+1}\right)_{f}(t)$$

$$= \frac{1}{2\pi} \cdot \int_{-\pi} \left\{ f_{1}(\theta) \cdot \operatorname{Re}B^{(1)}_{m_{1}}(e^{i\theta}, e^{it}) + i \cdot f_{2}(\theta) \cdot \operatorname{Re}B^{(2)}_{m_{2}}(e^{i\theta}, e^{it}) \right\} d\theta,$$

$$\begin{pmatrix} \frac{m}{m+1} \end{pmatrix} : H_{\mathbb{C}}(D) \longrightarrow H_{\mathbb{C}}(D);$$

$$u = u_{1} + iu_{2} \longmapsto \left(\frac{m}{m+1}\right)_{u}(z)$$

$$= \frac{1}{2\pi} \cdot \int_{|\zeta|=|z|} \left\{ u_{1}(\zeta) \cdot \operatorname{Re}\left[\frac{B^{(1)}_{m_{1}}(\zeta, z)}{\zeta i}\right] \right\} d\zeta$$

$$(3.13)$$

are called *composed Padé-type operators* for $L^2_{\mathbb{C}}$, $L^2_{\mathbb{C},(2\pi\text{-per})}[-\pi,\pi]$, and $H_{\mathbb{C}}(D)$, respectively. Under the assumptions of Corollary 3.2, the integral operator

$$\left(\frac{m}{m+1}\right): O(D) \longrightarrow O(D);$$

$$f \longmapsto \left(\frac{m}{m+1}\right)_{f}(z) = \frac{1}{2\pi} \cdot \int_{|\zeta| = |z|} f(\zeta) \cdot \operatorname{Re}\left[\frac{B_{m}(\zeta, z)}{\zeta i}\right] d\zeta$$
(3.14)

is called a *Padé-type operator* for O(D).

The continuity of these integral operators follows directly from the arguments of Section 2 and leads to the following result.

THEOREM 3.3. Under the assumptions and notations of Theorem 3.1 and Corollary 3.2,

- (a) if the sequence $\{u_n \in L^2_{\mathbb{C}}(C) : n = 0, 1, 2, ...\}$ converges to $u \in L^2_{\mathbb{C}}(C)$ in the L^2 -norm, then $\lim_{n\to\infty} (m/(m+1))_{u_n}(z) = (m/(m+1))_u(z)$ in the L^2 -norm;
- (b) if the sequence $\{f_n \in L^2_{\mathbb{C},(2\pi\text{-per})}[-\pi,\pi] : n = 0,1,2,...\}$ converges to $f \in L^2_{\mathbb{C},(2\pi\text{-per})}[-\pi,\pi]$, with respect to the L²-norm, then $\lim_{n\to\infty}(m/(m+1))_{f_n}(t) = (m/(m+1))_f(t)$ in the L²-norm;
- (c) if the sequence $\{u_n \in H_{\mathbb{C}}(D) : n = 0, 1, 2, ...\}$ converges to $u \in H_{\mathbb{C}}(D)$ compactly in D, then $\lim_{n\to\infty} (m/(m+1))_{u_n}(z) = (m/(m+1))_u(z)$ compactly in D;
- (d) if the sequence $\{f_n \in O(D) : n = 0, 1, 2, ...\}$ converges to $f \in O(D)$ compactly in D, then $\lim_{n\to\infty} (m/(m+1))_{f_n}(z) = (m/(m+1))_f(z)$ compactly in D.

Especially, for series of functions, there is an obvious consequence of this theorem.

COROLLARY 3.4. Under the assumptions of Theorem 3.1 and Corollary 3.2,

- (a) if the series of functions $u(z) = \sum_{n=0}^{\infty} a_n \cdot u_n(z)$ $(a_n \in \mathbb{C}, u_n \in L^2_{\mathbb{C}}(\mathbb{C}))$ converges in the L²-norm, then $(m/(m+1))_u(z) = \sum_{n=0}^{\infty} a_n \cdot (m/(m+1))_{u_n}(z)$ in the L²-norm;
- (b) if the series of functions $f(t) = \sum_{n=0}^{\infty} a_n \cdot f_n(t)$ (where $a_n \in \mathbb{C}$, $f_n \in L^2_{\mathbb{C},(2\pi-\text{per})}[-\pi,\pi]$) converges in the L²-norm, then $(m/(m+1))_f(t)\sum_{n=0}^{\infty} a_n \cdot (m/(m+1))_{f_n}(t)$ in the L²-norm;
- (c) if the series of functions $u(z) = \sum_{n=0}^{\infty} a_n \cdot u_n(z)$ $(a_n \in \mathbb{C}, u_n \in H_{\mathbb{C}}(D))$ converges compactly in the disk D, then $(m/(m+1))_u(z) = \sum_{n=0}^{\infty} a_n \cdot (m/(m+1))_{u_n}(z)$ compactly in D;

(d) if the series of analytic functions $f(z) = \sum_{n=0}^{\infty} a_n \cdot f_n(z)$ $(a_n \in \mathbb{C}, f_nO(D))$ converges compactly in D, then $(m/(m+1))_f(z) = \sum_{n=0}^{\infty} a_n \cdot (m/(m+1))_{f_n}(z)$ compactly in D.

Remark 3.5. Padé and Padé-type approximants to arbitrary series of functions were first considered by Brezinski in [1, 2].

References

- C. Brezinski, *Rational approximation to formal power series*, J. Approx. Theory 25 (1979), no. 4, 295–317.
- [2] _____, Padé approximants: old and new, Yearbook: Surveys of Mathematics 1983, Bibliographisches Institut, Mannheim, 1983, pp. 37–63.
- [3] _____, Duality in Padé-type approximation, J. Comput. Appl. Math. 30 (1990), no. 3, 351–357.
- [4] N. J. Daras, Continuity of distributions and global convergence of Padé-type approximants in Runge domains, Indian J. Pure Appl. Math. 26 (1995), no. 2, 121–130.
- [5] _____, Rational approximation to harmonic functions, Numer. Algorithms 20 (1999), no. 4, 285–301.
- [6] _____, Padé and Padé-type approximation for 2π-periodic L^p functions, Acta Appl. Math. 62 (2000), no. 3, 245–343.
- [7] _____, Composed Padé-type approximation, J. Comput. Appl. Math. 134 (2001), no. 1-2, 95–112.

Nicholas J. Daras: Department of Mathematics, Hellenic Air Force Academy, Dekeleia Attikis, Greece

Current address: Jean Moreas 19, 152 32 Chalandri, Athens, Greece *E-mail address*: njdaras@myflash.gr