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Black and Scholes (1973) proved that under certain assumptions about
the market place, the value of a European option, as a function of the cur-
rent value of the underlying asset and time, verifies a Cauchy problem.
We give new conditions for the existence and uniqueness of the value
of a European option by using semigroup theory. For this, we choose a
suitable space that verifies some conditions, what allows us that the op-
erator that appears in the Cauchy problem is the infinitesimal generator
of a C0-semigroup T(t). Then we are able to guarantee the existence and
uniqueness of the value of a European option and we also achieve an
explicit expression of that value.

1. Introduction

In this section we recall the basic concepts of options theory [10]. The
value of a European call option is a contract verifying that at a prescribed
time in the future, known as the expiry date, the owner of the option may
purchase a prescribed asset, known as the underlying asset or, briefly,
the underlying, for a prescribed amount, known as the exercise price or
strike price.

The trading options and their theoretical study have been known for
long, but only since the early 1970s they have experimented a spec-
tacular development. The main purpose in option studies is to find a
fair arbitrage free price for these instruments. The first solution to the
problem was given by Bachelier in 1900 [1, page 17]. However, in the
early 1970s a complete option valuation based on equilibrium theoretical
hypothesis for speculative prices was finally developed. The works of
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Black and Scholes [3] and Merton [7] were the culmination of this great
effort.

In [3], Black and Scholes proved that under certain natural assump-
tions about the market place, the value of a European option C, as a
function of the current value of the underlying asset, x, and time, t such
that C = C(x,t) verifies the following Cauchy problem:

∂C

∂t
+

1
2
σ2x2 ∂

2C

∂x2
+ rx

∂C

∂x
− rC = 0, x ≥ 0, t ∈ [0,T], (1.1)

with

C(0, t) = 0;

C(x,t) ∼ x as x −→∞;

C(x,T) = CT = max(x−E,0), x ∈ (0,∞),
(1.2)

where the value of the call option also depends on the volatility of the
underlying asset σ, the exercise price E, the expiry T , and the interest
rate r, where r and σ are constant in this work. Note that the present
study is for stocks without dividends.

An explicit solution for (1.1) and (1.2) can be found in [10]. Moreover,
in [6] some conditions are established for the existence and uniqueness
of the Cauchy problem (1.1) and (1.2), that is,

∂C

∂t
,
∂kC

∂xk
∈ C((0,∞)× (0,T)

)
, k = 0,1,2,

C(x,t) ∈ C((0,∞)× [0,T]
)
,∣∣C(x,t)∣∣ ≤ c1 exp

(
c2(lnx)2),

(1.3)

for some c1, c2 ≥ 0, and where C denotes the continuous functions (see [6,
Chapter 2, Theorem 10] for uniqueness and [6, Chapter 9, Theorem 2] for
existence).

Our purpose is to obtain new conditions that will guarantee the ex-
istence and uniqueness of the Cauchy problem (1.1) and (1.2) using the
semigroup theory.

Note that the results that we will obtain are also established for a put
option without more than changing the boundary and final conditions
of the Cauchy problem, that is,

∂P

∂t
+

1
2
σ2x2 ∂

2P

∂x2
+ rx

∂P

∂x
− rP = 0, x ≥ 0, t ∈ [0,T],

P(0, t) = Ee−r(T−t);
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P(x,t) −→ 0 as x −→∞;

P(x,T) = max(E−x,0), x ∈ (0,∞).

(1.4)

We recall that for a non-dividend-paying stock, the value of a Euro-
pean call with a certain exercise price and exercise date can be deduced
from the value of a European put with the same exercise price and date,
and vice versa (put-call parity).

The paper is organized as follows. In Section 2, we give an introduc-
tion to the semigroup theory, and using this theory, in Section 3 we ob-
tain a theorem for existence and uniqueness, besides getting an explicit
expression of the European option.

2. Semigroup theory

Now, we give an introduction to semigroup theory (see [2, 4, 8]).
Throughout this section X is a Banach space, with norm ‖ · ‖.

Definition 2.1. A one-parameter family T(t), 0 ≤ t <∞, of bounded linear
operators from X into X is a semigroup of bounded linear operator on
X if

(i) T(0) = I, (where I is the identity operator on X);
(ii) T(t+ s) = T(t)T(s) for every t,s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, T(t), is uniformly continu-
ous if

lim
t→0

∥∥T(t)− I
∥∥ = 0. (2.1)

From the definition, it is clear that if T(t) is a uniformly continuous semi-
group of bounded linear operators, then

lim
x→t

∥∥T(x)− T(t)
∥∥ = 0. (2.2)

The linear operator A, defined by

D(A) =

{
x ∈X : lim

t→0

T(t)x−x

t
exists

}
,

Ax = lim
t→0

T(t)x−x

t
=
d+T(t)x

dt

∣∣∣∣
t=0

,

(2.3)

is the infinitesimal generator of the semigroup T(t), D(A) is the domain
of A.
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Theorem 2.2. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

From Definition 2.1, it is clear that a semigroup T(t) has a unique in-
finitesimal generator. When T(t) is uniformly continuous, its infinitesi-
mal generator is a bounded linear operator.

Definition 2.3. A semigroup T(t), 0 ≤ t <∞, of bounded linear operators
on X is a strongly continuous semigroup of bounded linear operators if

lim
t→0

T(t)x = x, (2.4)

for every x ∈X.
A strongly continuous semigroup of bounded linear operators on X

will be called a semigroup of class C0 or simply a C0-semigroup.

Now, we recall that if A is a linear, not necessarily bounded, operator
in X, the resolvent set ρ(A) of A is the set of all complex numbers λ for
which λI −A is invertible, that is, (λI −A)−1 is a bounded operator in X.
The family R(λ : A) = (λI −A)−1, λ ∈ ρ(A), of bounded linear operators
is called the resolvent of A.

The following theorem is very important in what follows and it is
known as Hille-Yosida’s theorem.

Theorem 2.4. A linear (unbounded) operator A is the infinitesimal generator
of a C0-semigroup of contractions T(t), t ≥ 0, if and only if

(i) A is closed and D(A) =X;
(ii) the resolvent set ρ(A) of A contains R

+ and for every λ > 0,

∥∥R(λ : A)
∥∥ ≤ 1

λ
. (2.5)

As a consequence of this theorem we obtain the following corollary.

Corollary 2.5. A linear operator A is the infinitesimal generator of a C0-
semigroup satisfying ‖T(t)‖ ≤ ewt if and only if

(i) A is closed and D(A) =X;
(ii) the resolvent set ρ(A) of A contains the ray {λ : Imλ = 0, λ > w} and

for every λ > 0,

∥∥R(λ : A)
∥∥ ≤ 1

λ−w
. (2.6)
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The previous results allow us to prove the following theorem espe-
cially useful in what follows.

Theorem 2.6. Let A be a densely defined linear operator with a nonempty
resolvent set ρ(A). The initial value

du(t)
dt

=Au(t), t > 0, u
(
t0
)
= x (x ∈X) (2.7)

has a unique solution u(t), which is continuously differentiable on [0,∞), for
every initial value x ∈D(A) if and only if A is the infinitesimal generator of a
C0-semigroup T(t).

3. A European call option

As we have seen in the introduction, the Black-Scholes equation and
boundary conditions for a European call option with value C(x,t) are

∂C

∂t
= −1

2
σ2x2 ∂

2C

∂x2
− rx

∂C

∂x
+ rC, (x,t) ∈ [0,∞)× (0,T), (3.1)

with

C(0, t) = 0;

C(x,t) ∼ x as x −→∞;

C(x,T) = CT = max(x−E,0), x ∈ (0,∞).
(3.2)

Note that the linear differential operator

∂

∂t
+

1
2
σ2x2 ∂2

∂x2
− rx

∂

∂x
− r (3.3)

has a financial interpretation as a measure of the difference between the
return hedged option portfolio (the first two terms) and the return on a
bank deposit (the last two terms).

The main objective, in this section, includes guaranteeing the exis-
tence and uniqueness of the solution of (3.1) and (3.2), and, furthermore,
obtaining an exact expression of the solution.

Consider the space Xα defined by

Xα =
{
f : xα+1f(x) ∈ C(0,∞), ‖f‖α∞ <∞}, (3.4)

where ‖ · ‖α∞ is the norm

‖f‖α∞ = sup
0≤x<∞

∣∣xα+1f(x)
∣∣. (3.5)
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The space (Xα,‖ · ‖α∞) is a Banach space.
We define the operator A : D(A) ⊂Xα →Xα such that

f(x) −→ (Af)(x) = −1
2
σ2x2d

2f

dx2
− rx

df

dx
+ rf(x) (3.6)

being D(A) = {f ∈Xα : Af ∈Xα}.
Then, we can establish the following result.

Theorem 3.1. The differential operator A is the infinitesimal generator of a
C0-semigroup T(t).

Proof. We denote by C∞
0,α (α ∈ R), the space C∞

0,α = {f : xα+1f(x) ∈ C∞
0 }.

Then we can see that A is a closed operator and D(A) is dense in Xα

because D(A) contains C∞
0,α which is dense in Xα.

Therefore we should study the resolvent set ρ(A). We must find a
function g in D(A) such that

(λI −A)g(x) = f(x), (3.7)

that is,

(λ− r)g(x) + rx
dg

dx
+

1
2
σ2x2d

2g

dx2
= f(x), (3.8)

that we write in the following way

(λ− r)g(x) +
(
r − 1

2
σ2
)
x
dg

dx
+

1
2
σ2
(
x

d

dx

)2

g(x) = f(x). (3.9)

To solve (3.9) we use the Mellin transform, that is,

M(g(x))(s) = ∫∞

0
xs−1g(x)dx (Res > 0) (3.10)

and we take into account (see [5, (11), page 307]) that

M
((

x
d

dx

)2

g(x)

)
(s) = s2G(s),

M
(
x

d

dx
g(x)

)
(s) = −sG(s),

(3.11)

where G(s) =Mg(s).
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By (3.11), (3.9) transforms to

(λ− r)G(s)−
(
r − 1

2
σ2
)
sG(s) +

1
2
σ2s2G(s) = F(s), (3.12)

obtaining G(s)

G(s) =
F(s)

(1/2)σ2s2 − (r − (1/2)σ2
)
s− r +λ

=
2
σ2

F(s) · 1
s2 − (2r/σ2 − 1

)
s− (2(r −λ)/σ2

)
=

2
σ2

F(s) · 1(
s− s1

)(
s− s2

) ,
(3.13)

where s1,2 = r/σ2 − 1/2 ±
√
(r/σ2 + 1/2)2 − 2λ = α ±

√
β2 − 2λ, being α =

r/σ2 − 1/2; β = (r/σ2 + 1/2)2.
We consider the case r > (1/2)σ2, the other case is proved in a similar

way using [5, (9), page 342].
If we apply in (3.13) the inverse Mellin transform, we have by virtue

of [5, (7), page 341]

g(x) =


f(x) ∗

{(
s1 − s2

)−1 · (xs1 −xs2
)}

, 0 < x < 1,

0, 1 < x <∞,
(3.14)

where ∗ represents the Mellin convolution [9], that is,

f ∗ g(x) =
∫∞

0
f

(
x

y

)
g(y)

1
y
dy. (3.15)

Then, for 0 < y < 1,

g(x) = R(z : A)f

=

√
β2 − 2λ

σ2
(
2λ− β2

) ∫∞

0
f

(
x

y

)
· 1
y

[
y−α+

√
β2−2λ −y−α−

√
β2−2λ

]
dy.

(3.16)

On the other hand, using (3.16) and making the change of variables
x/y = u gives
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∣∣xα+1g(x)
∣∣ ≤ c1

∣∣∣∣∣∣∣
√
β2 − 2λ

σ2

∣∣∣∣∣∣∣
1

2λ− β2
‖f‖α∞

·
∣∣∣∣∣∣x

∫∞

x

(
x

u

)√β2−2λ

u−2du−
∫∞

x

(
x

u

)−
√

β2−2λ

u−2du



∣∣∣∣∣∣ ,

(3.17)

where c1 is a positive constant.
Thus, evaluating the two integrals we obtain

∣∣xα+1g(x)
∣∣ ≤ c2

1
λ− β2/2

‖f‖α∞, (3.18)

and therefore,

‖g‖α∞ ≤ c2
1

λ− β2/2
‖f‖α∞, (3.19)

where c2 is a positive constant and Reλ > β2/2 = (1/2)(r/σ2 + 1/2)4.
Then by Corollary 2.5, A generates a C0-semigroup T(t), where

T(t)f(x)

=
1

2πi

∫ c+i∞

c−i∞
eλx
[
R(λ : A)f

]
(x)dλ

=
1

2πiσ2

∫ c+i∞

c−i∞
eλx ·


∫∞

x

f(u)x−α−1uα+1

·

(x

u

)√β2−2λ

−
(
x

u

)−
√

β2−2λ

 x

u2
du



√
β2 − 2λ(

2λ− β2
) dλ,
(3.20)

for Reλ > β2/2. �

By Theorems 2.6 and 3.1, we can guarantee the existence and unique-
ness of problem (3.1) with conditions (in this case, C ∈Xα) different from
those given in [6] and obtain the explicit expression in a way different
from [10, Chapter 5, pages 97–100], that is, we have the following theo-
rem.
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Theorem 3.2. There is a unique solution C(x,t) of (3.1) and (3.2) in the space
Xα, and

C(x,t) = T(t)CT. (3.21)
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