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We recast the Podleś spheres in the noncommutative physics context by
showing that they can be regarded as slices along the time coordinate of
the different regions of the quantum Minkowski space-time. The inves-
tigation of the transformations of the quantum sphere states under the
left coaction of the SOq(3) group leads to a decomposition of the trans-
formed Hilbert space states in terms of orthogonal subspaces exhibiting
the periodicity of the quantum sphere states.

1. Introduction

A great variety of works based on the quantum spheres have been
developed since the appearance of Podleś spheres [11] and their sym-
metries [12]. Most part of these studies have been done either in the
quantum bundle formalism where the quantum spheres provide con-
crete examples to test the different structures of this formalism [1, 5, 6]
or, more recently, in quantum field theories on quantum spheres which
should respect the SUq(2) quantum symmetries (see, e.g., [2, 3, 4, 10]
and the references therein).

On the other hand, the evolution of a free particle in the quantum
Minkowski space-time has been analysed in [8] and the transformations
of its quantum velocity under the Lorentz subgroup of boost transfor-
mations in [7].

In Section 2 of this paper, we pursue these studies by recasting the
quantum spheres in the noncommutative special relativity where we
show that we can regard them as quantum manifolds embedded into the
quantum Minkowski space-time. This embedding preserves the reality
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structure and the commutations rules of the quantum Minkowski space-
time coordinates. In particular, we show that in the time-like region of
the quantum Minkowski space-time the Hilbert spaceH(L) of states de-
scribing the noncommutative relativistic evolution of a free particle hav-
ing a quantum velocity of length |v|2q = (1 +Q2c(L)), c(L) = −1/(q(L+1) +
q−(L+1))2 with L ≥ 1 is an integer, q is the deformation parameter and
Q = q+ q−1 are precisely, for fixed time, the space of irreducible represen-
tations of the Podleś quantum spheres S2

qc with c = c(L). We also show
in this section that the Hilbert space of representations of the space-like
region of the quantum Minkowski space-time corresponds, for partic-
ular fixed time, to the Hilbert space of representations of the quantum
spheres S2

qc, where c ∈ [0,∞] or S2
q∞.

In Section 3, we show that the state transformations under the coac-
tion of the SOq(3) group exhibits the periodicity of the quantum sphere
states through a decomposition of the transformed Hilbert space in terms
of orthogonal subspaces, each describes the same quantum sphere.

2. The quantum spheres

Before embedding the different quantum spheres into the quantum
Minkowski space-time, we recall briefly some properties of the noncom-
mutative special relativity presented in [8]. First, it was shown in [9] that
the generators ΛN

M (N,M = 0,1,2,3) of quantum Lorentz group may be
written in terms of those of quantum SL(2,C) group as

ΛN
M =

1
Q
εγ̇δ̇σN

δ̇αMα
σσM

σρ̇Mβ̇
ρ̇εγ̇β̇, (2.1)

where Mα
β (α,β = 1,2) and Mα̇

β̇ = (Mα
β)� are the generators of the quan-

tum SL(2,C) group subject to the unimodularity conditions

εαβMγ
αMδ

β = εγδ, εγδMγ
αMδ

β = εαβ,

εα̇β̇Mγ̇
α̇Mδ̇

β̇ = εγ̇δ̇, εγ̇ δ̇Mγ̇
α̇Mδ̇

β̇ = εα̇β̇, Q = q+ q−1
(2.2)

and the spinor metrics are taken to be εαβ = −εβ̇α̇ =
( 0 −q−1/2

q1/2 0

)
, where q ∈

]0,1[ is a real deformation parameter. σN
αβ̇

are a set of four independent
matrices composed by the Pauli matrices σn

αβ̇
(n = 1,2,3) and the identity

matrix σ0
αβ̇

and

σ
Iα̇β
± = εα̇λ̇R−σρ̇λ̇νε

νβσI
σρ̇ = q1/2ελ̇ρ̇R−σλανενβσI

σρ̇. (2.3)
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The R-matrices are given by

R±δβαγ = δδ
αδ

β
γ + q±1εδβεαγ , Rα̇γ̇

±δ̇β̇ = δδ̇
α̇δ

β̇
γ̇ + q±1εδ̇β̇εα̇γ̇ (2.4)

satisfying R±δβαγR∓ρσδβ = δ
ρ
αδ

σ
γ and R±δ̇β̇α̇γ̇R∓ρ̇σ̇ δ̇β̇ = δ

ρ̇
α̇δ

σ̇
γ̇ . They induce the

commutation rules

Mα
ρMβ

σR±γδρσ = R±ρσαβMρ
γMσ

δ,

Mα̇
ρ̇Mβ̇

σ̇R±γ̇ δ̇ ρ̇σ̇ = R±ρ̇σ̇ α̇β̇Mρ̇
γ̇Mσ̇

δ̇.
(2.5)

The Lorentz group generators are real, (ΛN
M)� = ΛN

M, and generate
a Hopf algebra L endowed with a coaction ∆, a counit ε, and an an-
tipode S acting as ∆(ΛN

M) = ΛN
K ⊗ΛK

M, ε(ΛN
M) = δM

N , and S(ΛN
M) =

GNKΛL
KGLM, respectively. GNM is an invertible and hermitian quantum

metric given by

G IJ =
(

1
Q

)
εανσI

αβ̇σ
Jβ̇γ εγν =

(
1
Q

)
εν̇γ̇σ

Iγ̇ασJ
αβ̇ε

ν̇β̇. (2.6)

The form of the antipode of ΛN
M implies the orthogonality conditions

GNMΛL
NΛK

M = G LK and G LKΛL
NΛK

M = G NM of the generators of
the quantum Lorentz group.

The quantum metric GNM can be considered as a metric of a quantum
Minkowski space-timeM4 equipped with real coordinates XN , (XN)� =
XN . X0 represents the time operator and Xi (i = 1,2,3) represent the
space right invariant coordinates, ∆R(XI) = XI ⊗ I, which transform un-
der the left coaction as

∆L

(
XI

)
= ΛI

K ⊗XK. (2.7)

From the hermiticity of the Minkowskian metric and the orthogonality
conditions, we can see that the four-vector length GNMXNXM = −τ2 is
real and invariant. It was also shown in [9] that τ2 is central; it commutes
with the Minkowski space-time coordinates and the quantum Lorentz
group generators. ΛN

M and XN are subject to the commutation rules
controlled by the RNM

PQ matrix as

ΛL
PΛK

QRNM
PQ =RPQ

LKΛP
NΛQ

M, (2.8)

XNXM =RPQ
NMXPXQ, (2.9)
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where the R-matrix of the Lorentz group is constructed out of those of
SL(2,C) group and satisfies the relationsRNM

KL GKL=GNM andRNM
KL GNM

= GKL which show the quantum symmetrization of the Minkowskian
metric GNM and its inverse.

To make an explicit calculation of the different commutation rules of
the generators of the quantum Lorentz group, we take the following
choice of Pauli hermitian matrices

σ0
αβ̇

=
(

1 0
0 1

)
, σ1

αβ̇
=
(

0 1
1 0

)
,

σ2
αβ̇

=
(

0 −i
i 0

)
, σ3

αβ̇
=
(
q 0
0 −q−1

)
.

(2.10)

This choice leads us to a quantum metric form GLK exhibiting two inde-
pendent blocks, one for the time index and the others for space compo-
nents indices (k = 1,2,3) whose nonvanishing elements are G00 = −q−3/2,
G11 = G22 = G33 = q1/2, G12 = −G21 = −iq1/2((q − q−1)/Q). The nonvanish-
ing elements of its inverse are G00 = −q3/2, G11 =G22 = q−1/2(Q2/4), G33 =
q−1/2, and G12 = −G21 = iq−1/2((q − q−1)Q/4). In the classical limit q = 1,
this metric reduces to the classical Minkowski metric with signature
(−,+,+,+). Explicitly, the length of the four-vector XN reads

GNMXNXM = −τ2 = −q−3/2X2
0 + q1/2

(
qXzXz + q−1XzXz

Q
+X2

3

)
, (2.11)

where Xz =X1 + iX2 and Xz =X1 − iX2. An explicit computation of (2.9)
gives

[
X0,XN

]
= 0,

X3Xz − q2XzX3 =
(
q− q−1)X0Xz,

X3Xz − q−2XzX3 = −q−2(q − q−1)X0Xz,

(2.12)

XzXz −XzXz =
(
q− q−1)Q(X2

3 + q−1X0X3
)
. (2.13)

The Pauli matrices satisfy σ0
α̇β = −σ0

αβ̇
= −δβ

α, σNα̇α = σN1̇1 +σN2̇2 = −Qδ0
N

and σNαα̇ = QδN
0 which make explicit the restriction of the quantum

Lorentz group to the quantum subgroup of the three-dimensional space
rotations by restricting the quantum SL(2,C) group generators to those
of the SU(2) group. In fact when we impose the unitarity conditions,
Mα̇

β̇ = S(Mβ
α), in (2.1) we get

ΛN
0 = δ0

N, ΛM
0 = δM

0 , (2.14)
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which lead us to the restriction of the Minkowski space-time transfor-
mations under the quantum Lorentz group to the orthogonal transfor-
mations group SOq(3). This subgroup leaves invariant the three-dimen-
sional quantum subspace R3 ⊂ M4 equipped with the real coordinate
system Xi (i = 1,2,3) and the Euclidean metric Gij . More precisely as a
consequence of (2.14), (2.7) reduces to

∆L

(
X0
)
= Λ0

0 ⊗X0 = I ⊗X0, ∆L

(
Xi

)
= Λi

j ⊗Xj, (2.15)

where ∆(L) is the restriction of (2.7) to the three-dimensional quantum
subspace R3 of M4. Λi

j = (1/Q)σiγ̇
αMα

σσj
σρ̇S(Mρ

β)εγ̇β̇ generate an
SOq(3) Hopf subalgebra L whose axiomatic structure is derived from
those of L as ∆(Λi

j) = Λi
k ⊗Λk

j , ε(Λi
j) = δi

j and S(Λi
j) = GiKΛL

KG Lj =
GikΛl

kG lj , where G ij is the restriction of G IJ satisfying G ikGkj = δi
j =

GjkG
ki, GijRkl

ij = Gkl and GklRkl
ij = Gij which are the quantum symmet-

rization of the Euclidean metric Gij and its inverse. The form of the an-
tipode S(Λi

j) implies the orthogonality properties of the generators of
the quantum subgroup SOq(3) as G ijΛi

lΛj
k = G lk and GlkΛi

lΛi
k = Gij .

The commutation rules of the coordinate Xi of R3 satisfy the same com-
mutation rules (2.13), where X0 is taken to be a constant parameter re-
calling that it commutes with the spacial coordinates Xi.

Therefore, Λi
j = (1/Q)σiγ̇

αMα
σσj

σρ̇S(Mρ
β)εγ̇β̇ establishes a corre-

spondence between SUq(2), Mα
β =
(α −qγ�
γ α�

)
with the commutation rela-

tion

αα� + q2γγ� = 1, α�α+ γγ� = 1, γγ� = γ�γ,

αγ� = qγ�α, αγ = qγα
(2.16)

and SOq(3) group. In the three-dimensional space R3 spanned by the ba-
sis Xz, Xz, and X3, where the SOq(3) coacts, the generators Λi

j =
(1/Q)σiγ̇

αMα
σσj

σρ̇S(Mρ
β)εγ̇β̇ read

(
Λi

j) =

−2qγγ 2α�α� Qγα�

2αα −2qγ�γ� Qαγ�

−2αγ −2γ�α� 1− qQγγ�


 ∈M3 ⊗C

(
SUq(2)

)
, (2.17)

where the indices i, j run over z = 1+ i2, z = 1− i2 and 3.
In the case τ2 > 0, time-like region, it was shown in [8] that the evolu-

tion of a free particle in the Minkowski space-time is described by states
belonging to the Hilbert spaceH(L) whose basis is spanned by common
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eigenstate of X0 and X3

X0|t,L,n〉 = t|t,L,n〉, x3|t,L,n〉 = x
(L,n)
3 |t,L,n〉, (2.18)

where τ2 = q−3/2(t2/γ2(L)), x(L,n)
3 = q−1t(q−(L−2n)/γ (L) − 1), γ (L) = (q(L+1) +

q−(L+1))/Q, L = 0,1,2, . . . ,∞, and n runs by integer steps over the range
0 ≤ n ≤ L. Xz and Xz act on the basis elements ofH(L) as

Xz|t,L,n〉 = λ
q−1t

γ (L)
q−(L−n)

(
1− q2(n+1))1/2(1− q2(L−n))1/2|t,L,n+ 1〉, (2.19)

Xz|t,L,n〉 = λ
q−1t

γ (L)
q−(L−n+1)(1− q2n)1/2(1− q2(L−n+1))1/2|t,L,n− 1〉, (2.20)

respectively, where λλ = 1. In what follows, we will take λ = −1. The
length of velocity of the particle is given by |�v|2q = q2((qVzVz + q−1VzVz)/
Q+V 2

3 ) = 1− 1/γ2(L) ≤ 1.
The light-cone, τ2 = 0, corresponds to L =∞ leading to |�v|2q = 1 which

is the velocity of the light. In this region, the evolution of the particle is
described by states |t,n〉 (n = 0,1, . . . ,∞) satisfying

X0|t,n〉 = t|t,n〉,
X3|t,n〉 = q−1t

(
q2n+1Q− 1

)|t,n〉,
Xz|t,n〉 = −qntQ

(
1− q2(n+1))1/2|t,n+ 1〉,

(2.21)

Xz|t,n〉 = −q(n−1)tQ
(
1− q2n)1/2|t,n− 1〉. (2.22)

In what follows, we will take the length of the quantum three-vector as
| �X|2q = (qXzXz + q−1XzXz)/Q +X2

3. The quantum group SOq(3) acts on
the spatial coordinates Xi as (2.15) and lives invariant both X0 and τ2,
then q−2X2

0 − q−1/2τ2 =R2 =q−1/2GijXiXj =((qXzXz + q−1XzXz)/Q +X2
3)=

| �X|2q. For fixed t2, we have

R2(L)|L,n〉 = q−2t2
(

1− 1
γ2(L)

)
|L,n〉, (2.23)

and the relations (2.18) and (2.20) for finite L ≥ 1 and

R2|n〉 = q−2t2|n〉 (2.24)



M. Lagraa 321

and the relations (2.22) for L =∞, where the orthonormal states |L,n〉
and |n〉, 〈L,n′|L,n〉 = δn′,n, n′,n = 0,1, . . . ,L, and 〈n′|n〉 = δn′,n, n′,n =
0,1, . . . ,∞, denote the states satisfying (2.18), (2.20), and (2.22), respec-
tively. The unique state |t,0,0〉 corresponding to L = 0 describes a parti-
cle at rest at the origin of the spacial coordinate system, for t = 0, then
τ2 = 0 represents the origin of the four coordinate system of the quan-
tum Minkowski space-time, XN |0,0,0〉 = 0|0,0,0〉. Therefore, the (L+ 1)-
dimensional Hilbert subspace H(L) of states describing the evolution
of a free particle of a given length of the velocity in the noncommu-
tative Minkowski space-time can be identified, for fixed time, with the
Hilbert spaceH(L)

S2
q

of irreducible representations of the quantum spheres
of radius R(L) = q−1t(1 − 1/γ2(L))1/2. This observation leads us to state
the following theorem.

Theorem 2.1. The Podleś spheres S2
qλρ

are slices along the time coordinate of
the different regions of the quantum Minkowski space-timeM4

S2
qλρ =

{
XN ∈M4 |X0 = t0, τ

2 = τ2
0

}
. (2.25)

The quantum spheres S2
qc where c = c(n) = −1/(qn + q−n)2, n = 2,3, . . . ,∞, cor-

respond to slices at t0 = −q and τ2
0 = q1/2/γ2(L), where n = L+ 1, L ≥ 1.

The quantum spheres S2
qc where c ∈ [0,∞] correspond to slices at t0 = −q

and τ2
0 = −q1/2Q2c and S2

q∞ corresponds to a slice at t0 = 0 and τ2
0 = −q1/2Q2.

Proof. Due to the fact that X0 and τ2 commute with the spacial coordi-
nates Xz, Xz and X3, X0 and τ2 can be taken to be constants without
contradicting the commutation rules (2.13). If we set Xz =Qe1, X3 = e0,
Xz = Qe−1, λ = (q − q−1)X0 = (q − q−1)t and ρ = q−2t2 − q−1/2τ2 into (2.11)
and (2.13), we see that we recover the algebra generators of the quan-
tum sphere A(S2

q) given by [11, (2a)-(2b)].
For t0 = −q and τ2

0 = q1/2/γ2(L) ≥ 0, L ≥ 1, we have λ = 1 − q2 and ρ =
R2 = 1 − 1/γ2(L) =Q2c + 1 giving c = c(L) = −1/Q2γ2(L) = c(n) = −1/(qn +
q−n)2 where n = L + 1. These constraints correspond to slices of the past
time-like region for finite L or a slice of the past light-cone region for
L =∞. They fit with the quantum spheres S2

qc with c = c(n) ≤ 0 which
are described by states satisfying (2.18), (2.20), and (2.23) for finite L ≥ 1
and (2.22) and (2.24) for L =∞.

We follow the same procedure presented in [8] to investigate the
Hilbert space Hs of space of representations of the space-like region of
the Minkowski space-time. The elements |t,n〉, n = 0,1, . . . ,∞, of the basis
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ofHs satisfy

X0|t,n〉 = t|t,n〉,

X3|t,n〉 =
(
q2n

(
Qt

2
±
(
Q2t2 − 4α

)1/2

2

)
− q−1t

)
|t,n〉,

Xz|t,n〉 = −q−1

(
q(2n+2)

(
Qt

2
±
(
Q2t2 − 4α

)1/2

2

)

×
(
Qt− q(2n+2)

(
Qt

2
±
(
Q2t2 − 4α

)1/2

2

))
−α
)1/2

|t,n+ 1〉,
(2.26)

Xz|t,n〉 = −q−1

(
q2n

(
Qt

2
±
(
Q2t2 − 4α

)1/2

2

)

×
(
Qt− q2n

(
Qt

2
±
(
Q2t2 − 4α

)1/2

2

))
−α
)1/2

|t,n− 1〉,
(2.27)

where τ2 = q−3/2α < 0. By substituting α = −Q2t2c, c ∈]0,∞[, we get

X3|t,n〉 = q−1t

(
q(2n+1)Q

(
1
2
±
(
c +

1
4

)1/2
)
− 1

)
|t,n〉,

Xz|t,n〉 = −q−1Qt

(
q(2n+2)

(
1
2
±
(
c+

1
4

)1/2
)

×
(

1− q(2n+2)

(
1
2
±
(
c+

1
4

)1/2
))

+C

)1/2

|t,n+ 1〉,
(2.28)

Xz|t,n〉 = −q−1Qt

(
q2n

(
1
2
±
(
c +

1
4

)1/2
)

×
(

1− q2n

(
1
2
±
(
c +

1
4

)1/2
))

+ c

)1/2

|t,n− 1〉.
(2.29)

If we put in (2.29) t = t0 = −q, the Hilbert space states Hs can be iden-
tified to the space of irreducible representations of the Podleś quantum
spheres S2

qc, where c ∈]0,∞[ and if we put in (2.27) t0 = 0 and α = −q2Q2,
we obtain the space of representations of the Podleś quantum sphere
S2
q∞. �
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We may also consider, as for the time-like region, that the Hilbert
spaceHs spanned by |t,n〉 satisfying (2.29) as space of states describing
the evolution in the space-like region of the quantum Minkowski space-
time of a free particle moving with an operator velocity of components
Vz =Xx/t, Vz =Xz/t, and V3 =X3/t. In this case, we obtain from (2.29) a
length of the velocity |�v|2q = −(Gij/G00)ViVj = 1+Q2c > 1 greater than the
velocity of the light |�v|2q = 1 [8].

Note that from (2.29), (2.18), (2.20), and (2.22), we have

lim
c→0
Hs −→H(∞)←− lim

L→∞
H(L). (2.30)

To investigate the transformations of the quantum sphere states under
the SOq(3) quantum group, we have to construct the Hilbert space states
HSOq(3), where the generators Λi

j act. Since the X′0 = ∆(L)(X0) = I ⊗X0

and X′i = ∆(L)(Xi) = Λi
j ⊗ Xj fulfil the same commutation rules (2.13)

the transformed states of the quantum sphere satisfy the same relations
(2.18) and (2.20) in the time-like region, (2.22) in the light-cone and
(2.27) in the space-like region. Since the coordinates Xi transform un-
der the tensorial product of SOq(3) and S2

q, the transformed states also
belong to the tensorial product HSOq(3) ⊗HS2

q
[8] which needs the con-

struction of the Hilbert spaceHSOq(3).
To construct HSOq(3), we are not obliged to compute explicitly the

complicated commutation rules (2.8) where we impose (2.14) but we
simply consider the action of the SUq(2) generators on the orthonormal
Hilbert space states; γ |n〉 = qn|n〉, γ�|n〉 = qn|n〉, α|n〉 = (1 − q2n)1/2|n − 1〉
and α�|n〉 = (1− q2(n+1))1/2|n+ 1〉 (n = 0,1,2, . . . ,∞) which, combined with
(2.17), give the action of the generators of SOq(3) on the basis |n〉 of the
Hilbert spaceHSOq(3) as

Λ3
3|n〉 = (1− q(2n+1)Q

)|n〉,
Λz

z|n〉 = −2q(2n+1)|n〉,
Λz

z|n〉 = −2q(2n+1)|n〉,
Λ3

z|n〉 = −2qn
(
1− q2n)1/2|n− 1〉,

Λ3
z|n〉 = −2q(n+1)(1− q2(n+1))1/2|n+ 1〉,

Λz
3|n〉 =Qq(n+1)(1− q2(n+1))1/2|n+ 1〉,

Λz
3|n〉 =Qqn

(
1− q2n)1/2|n− 1〉,

Λz
z|n〉 = 2

(
1− q2(n+1))1/2(1− q2(n+2))1/2|n+ 2〉,

Λz
z|n〉 = 2

(
1− q2n)1/2(1− q2(n−1))1/2|n− 2〉.

(2.31)
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Now, we are ready to investigate the transformations of the quantum
sphere states under the SOq(3) group.

3. The transformations of the quantum sphere states

To investigate the transformed quantum sphere states under the SOq(3)
quantum group, we follow the study of the quantum boost transforma-
tions in noncommutative special relativity presented in [7]. We recall
that in the boost transformation the four coordinates transform by yield-
ing a change of the time operator X0, the length of the three spacial-
vector (qXzXz + q−1XzXz)/Q+X2

3 and the component X3 which leads to
a change of the quantum number L and n in the transformed states. Un-
der the SOq(3) transformations, the spacial coordinates transform but the
length | �X|q of the three-vector and the time operator X0 remain invari-
ant. Then under the SOq(3) group the quantum number L remains fixed
but n changes and, therefore, the transformed states |L,p〉, p = 0,1, . . . ,L
may be given either in the Hilbert subspace states H(L)

S2
q

or in the tenso-

rial productHSOq(3) ⊗H(L)
S2
q

. More precisely, if we consider the orthonor-

mal basis |m,L,n〉 = |m〉 ⊗ |L,n〉 of the Hilbert space HSOq(3) ⊗H(L)
S2
q

or

|m,n〉 = |m〉 ⊗ |n〉 of the Hilbert spaceHSOq(3) ⊗H(∞)
S2
q

, we have

〈
m′,L,n′ |m,L,n

〉
= δm′,mδn′,n,

m=∞∑
m=0

n=L∑
n=0

|m,L,n〉〈m,L,n| = 1
(3.1)

for finite L and 〈
m′,n′ |m,n

〉
= δm′,mδn′,n,

m=∞∑
m=0

n=∞∑
n=0

|m,n〉〈m,n| = 1
(3.2)

for L =∞ from which we deduce that under the coaction of SOq(3) quan-
tum group, the transformed sphere states may be written as

|L,p〉 =
m=∞∑
m=0

n=L∑
n=0

|m,L,n〉〈m,L,n | L,p〉, p = 0,1, . . . ,L (3.3)

for finite L and

|p〉 =
m=∞∑
m=0

n=∞∑
n=0

|m,n〉〈m,n | p〉, p = 0,1, . . . ,∞ (3.4)
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for L =∞. In the space-like region, we have the same relations (3.2) for
the Hilbert space HSOq(3) ⊗Hs

S2
q

and the same transformed states (3.4)
satisfying (2.27) or (2.29).

The transformations (2.15) of the coordinates act on the states (3.3) as

X′i|L,p〉 = ∆(L)
(
Xi

)|L,p〉
=

m=∞∑
m=0

n=L∑
n=0

(
Λi

j ⊗Xj

)|m,L,n〉〈m,L,n | L,p〉, (3.5)

where (Λi
j ⊗Xj)|m,L,n〉 = Λi

j |m〉 ⊗Xj |L,n〉. By using (2.18), (2.20), and
(2.31), we deduce from (3.5) the following relation:

X′3|L,p〉 = q−1t

(
q−(L−2p)

γ (L)
− 1
)
|L,p〉

=
q−1t

Qγ (L)

m=∞∑
m=0

n=L∑
n=0

〈
m,L,n | L,p〉

× ((1− q(2m+1)Q
)(
q−(L−2n)Q− q(L+1) − q−(L+1))|m,L,n〉

+Qq−(L−n−m+1)(1− q2m)1/2(1− q2n)1/2

× (1− q2(L−n+1))1/2|m− 1,L,n− 1〉
+Qq−(L−n−m−1)(1− q2(m+1))1/2(1− q2(n+1))1/2

× (1− q2(L−n))1/2|m+ 1,L,n+ 1〉),
(3.6)

X′z|L,p〉 = −
q−1t

γ (L)
q−(L−p)

(
1− q2(p+1))1/2(1− q2(L−p))1/2|L,p+ 1〉

=
q−1t

γ (L)

m=∞∑
m=0

n=L∑
n=0

〈
m,L,n | L,p〉

× (q(m+1)(1− q2(m+1))1/2

× (q−(L−2n)Q− q(L+1) − q−(L+1))|m+ 1,L,n〉
+ q−(L−n−2m)(1− q2n)1/2

× (1− q2(L−n+1))1/2|m,L,n− 1〉
− q−(L−n)(1− q2(m+1))1/2(1− q2(m+2))1/2

× (1− q2(n+1))1/2(1− q2(L−n))1/2|m+ 2,L,n+ 1〉),
(3.7)
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X′z|L,p〉 = −
q−1t

γ (L)
q−(L−p+1)(1− q2p)1/2(1− q2(L−p+1))1/2|L,p− 1〉

=
q−1t

γ (L)

m=∞∑
m=0

n=L∑
n=0

〈
m,L,n | L,p〉

× (qm(1− q2m)1/2(
q−(L−2n)Q− q(L+1) − q−(L+1))|m− 1,L,n〉

+ q−(L−n−2m−1)(1− q2(n+1))1/2(1− q2(L−n))1/2|m,L,n+ 1〉

− q−(L−n+1)(1− q2(m−1))1/2(1− q2m)1/2(1− q2n)1/2

× (1− q2(L−n+1))1/2|m− 2,L,n− 1〉).
(3.8)

By applying 〈m,L,n| from the left, we get, because of linear indepen-
dence, the following conditions on 〈m,L,n | L,p〉:

(
q2p − q2n − q2m(1− q2n)+ q(2m+2n+2)(1− q2(L−n)))〈m,L,n | L,p〉

= q(m+n+1)(1− q2(m+1))1/2(1− q2(n+1))1/2

× (1− q2(L−n))1/2〈
m+ 1,L,n+ 1 | L,p〉

+ q(m+n−1)(1− q2m)1/2(1− q2n)1/2

× (1− q2(L−n+1))1/2〈
m− 1,L,n− 1 | L,p〉

(3.9)

from (3.6),

− q−(L−p)(1− q2(p+1))1/2(1− q2(L−p))1/2〈
m,L,n | L,p+ 1

〉
= qm

(
1− q2m)1/2(

q−(L−2n)Q− q(L+1) − q−(L+1))〈m− 1,L,n | L,p〉
+ q−(L−n−2m−1)(1− q2(n+1))1/2(1− q2(L−n))1/2〈

m,L,n+ 1 | L,p〉
− q−(L−n+1)(1− q2(m−1))1/2(1− q2m)1/2(1− q2n)(1− q2(L−n+1))1/2

× 〈m− 2,L,n− 1 | L,p〉
(3.10)
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from (3.7), and

− q−(L−p+1)(1− q2p)1/2(1− q2(L−p+1))1/2〈
m,L,n | L,p− 1

〉
= q(m+1)(1− q2(m+1))1/2(

q−(L−2n)Q− q(L+1) − q−(L+1))〈m+ 1,L,n | L,p〉
+ q−(L−n−2m)(1− q2n)1/2(1− q2(L−n+1))1/2〈

m,L,n− 1 | L,p〉
− q−(L−n)(1− q2(m+1))1/2(1− q2(m+2))1/2(1− q2(n+1))(1− q2(L−n))1/2

× 〈m+ 2,L,n+ 1 | L,p〉
(3.11)

from (3.8). The relations (3.9), (3.10), and (3.11) are the recursion for-
mulas which permit to compute the coefficients 〈m,L,n | L,p〉 giving the
transformed states |L,p〉 in terms of basis elements of the Hilbert space
statesHSOq(3) ⊗H(L)

S2
q

.

To investigate the different coefficients 〈m,L,n | L,p〉, we start by in-
serting 〈0,L,n | L,0〉, and then 〈m,L,0 | L,0〉 into (3.9), the result can be
iterated K times to get

〈
K,L,n+K | L,0〉 = qK(n+K)

k=K∏
k=1

( (
1− q2(L+1−n−k))1/2

(
1− q2k

)1/2(1− q2(n+k)
)1/2

)

× 〈0,L,n | L,0〉, 0 ≤ n+K ≤ L,

〈
m+K,L,K | L,0〉 = qK(m+K)

k=K∏
k=1

( (
1− q2(L+1−k))1/2

(
1− q2k

)1/2(1− q2(m+k)
)1/2

)

× 〈m,L,0 | L,0〉, 0 ≤K ≤ L.

(3.12)

By combining the relations (3.10) and (3.11) with (3.9), we can deduce
by a recursive way the coefficients 〈m+K,L,K | L,p+ 1〉, 〈K,L,n+K | L,
p + 1〉, 〈m+K,L,K | L,p − 1〉, and 〈K,L,n+K | L,p − 1〉 in terms of those
of the development of |L,p〉 as

〈
m,L,n | L,p+ 1

〉
= −q(n−p+1)

(
1− q2(n+1))1/2(1− q2(L−n))1/2

(
1− q2(p+1)

)1/2(1− q2(L−p))1/2

〈
m,L,n+ 1 | L,p〉

− q−(m+p−1)

(
1− q2m)1/2(

q2p − qn)(
1− q2(p+1)

)1/2(1− q2(L−p))1/2

〈
m− 1,L,n | L,p〉,
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〈
m,L,n | L,p− 1

〉
= −q(n−p+1)

(
1− q2n)1/2(1− q2(L−n))1/2

(
1− q2p

)1/2(1− q2(L+1−p))1/2

〈
m,L,n− 1 | L,p〉

− q−(m+p+1)

(
1− q2(m+1))1/2(

q2p − qn)(
1− q2p

)1/2(1− q2(L+1−p))1/2

〈
m− 1,L,n | L,p〉.

(3.13)

Therefore all the coefficients in the development (3.3) of states can be
obtained in terms of 〈m,L,0 | L,0〉 and 〈0,L,n | L,0〉.

Now we are in position to state the following theorem.

Theorem 3.1. The Hilbert spaceHSOq(3) ⊗H(L)
S2
q

admits the decomposition

HSOq(3) ⊗H(L)
S2
q
=

m=∞∑
m=−L

⊕H(L,m), (3.14)

where the (L+ 1)-dimensional Hilbert subspacesH(L,m) are spaces of represen-
tations of the same quantum spheres S2

qc, where c = c(L).

Proof. First, we may see that

P(L,m) =
K=L∑
K=0

|m+K,L,K〉〈m+K,L,K|, m = −L, . . . ,∞ (3.15)

are projectors, P†(L,m) = P(L,m) and P(L,m)P(L,m′) = δm,m′P(L,m), leading to
the decomposition

HSOq(3) ⊗H(L)
S2
q
=

m=∞∑
m=−L

⊕H(L,m). (3.16)

For m < 0 the sum starts from K = −m because for K +m < 0 the states
|m +K,L,K〉 vanish implying that the dimension of H(L,m) is L + 1 +m
for −L ≤m < 0. In this case, we have

|L,p〉(n) =
L−n∑
K=0

|K,L,n+K〉〈K,L,n+K | L,p〉

=
L∑

K=n

|K −n,L,K〉〈K −n,L,K | L,p〉 ∈H(L,n), n = (1,2, . . . ,L),

(3.17)

where n = −m.
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Now let in the Hilbert spacesH(L,m) the states

|L,p〉(m) =
K=L∑
K=0

|m+K,L,K〉〈m+K,L,K | L,p〉. (3.18)

The normalization condition of these states |L,0〉n, 0 ≤ n ≤ L, and |L,0〉m,
m ≥ 0, gives from (3.12)

(〈
0,L,n | L,0〉)2

(
K=L−n∑
K=0

q2K(n+K)
k=K∏
k=1

( (
1− q2(L+1−n−k))1/2

(
1− q2k

)1/2(1− q2(n+k)
)1/2

))
= 1,

(3.19)

(〈
m,L,0 | L,0〉)2

(
K=L∑
K=0

q2K(m+K)
k=K∏
k=1

( (
1− q2(L+1−k))1/2

(
1− q2k

)1/2(1− q2(m+k)
)1/2

))
= 1,

(3.20)

respectively. The restriction of (3.6) to the states (3.18) gives

∆L

(
X3
)|L,p〉(m)

=
q−1t

γ (L)Q

K=L∑
K=0

〈
m+K,L,K | L,p〉

× ((1− q2(m+K)+1Q
)

× (q−(L−2K)Q− q(L+1) − q−(L+1))|m+K,L,K〉

+Qq−(L−m−2K+1)(1− q2(m+K))1/2

× (1− q2K)1/2(1− q2(L−K+1))1/2|m+K − 1,L,K − 1〉

+Qq−(L−m−2K−1)(1− q2(m+K+1))1/2(1− q2(K+1))1/2

× (1− q2(L−K))1/2|m+K + 1,L,K + 1〉).
(3.21)

We evaluate this sum by parts. Each part contains a sum constructed by
setting K in the first term of the second hand, K + 1 in the second term
and K − 1 in the third term and gives the same state |m +K,L,K〉 with
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coefficient

q−1t

γ (L)Q

((
1− q2(m+K)+1Q

)(
q−(L−2K)Q− q(L+1) − q−(L+1))〈m+K,L,K | L,p〉

+Qq−(L−m−2K−1)(1− q2(m+K+1))1/2(1− q2(K+1))1/2

× (1− q2(L−K))1/2〈
m+K + 1,L,K + 1 | L,p〉

+Qq−(L−m−2K+1)(1− q2(m+K))1/2(1− q2K)1/2

× (1− q2(L−K+1))1/2〈
m+K − 1,L,K − 1 | L,p〉).

(3.22)

For m =m+K and n =K, (3.9) reduces to the relation

(
q2p − q2K − q2(m+K)(1− q2K)+ q(2m+4K+2)(1− q(L−2K)))〈m+K,L,K | L,p〉

= q(m+2K+1)(1− q2(m+K+1))1/2(1− q2(K+1))1/2

× (1− q2(L−K))1/2〈
m+K + 1,L,K + 1 | L,p〉

+ q(m+2K−1)(1− q2(m+K))1/2(1− q2K)1/2

× (1− q2(L−K+1))1/2〈
m+K − 1,L,K − 1 | L,p〉

(3.23)

which, used into (3.22), leads to the same proportionality coefficient of
the state |m+K,L,K〉 given by

q−1t

γ (L)Q

(
1− q2(m+K)+1Q

)(
q−(L−2K)Q− q(L+1) − q−(L+1))

+Qq−L
(
q2p − q2K − q2(m+K)(1− q2K)

+ q(2m+4K+2)(1− q2(L−K)))〈m+K,L,K | L,p〉
= q−1t

(
q−(L−2p)

γ (L)
− 1

)〈
m+K,L,K | L,p〉

(3.24)

which leads to

∆L

(
X3
)|L,p〉(m) = q−1t

(
q−(L−2p)

γ (L)
− 1

)
K=L∑
K=0

|m+K,L,K〉〈m+K,L,K | L,p〉

= q−1t

(
q−(L−2p)

γ (L)
− 1

)
|L,p〉(m).

(3.25)
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Now if we apply ∆(Xz) on the states (3.18), we obtain

∆(Xz)|L,p〉(m)

=
q−1t

γ (L)

K=L∑
K=0

〈
m+K,L,K | L,p〉

× (q(m+K+1)(1− q2(m+K+1))1/2

× (q−(L−2K)Q− q(L+1) − q−(L+1))|m+K + 1,L,K〉

+ q−(L−2m−3K)(1− q2K)1/2(1− q2(L−K+1))1/2|m+K,L,K − 1〉

− q−(L−K)(1− q2(m+K+1))1/2(1− q2(m+K+2))1/2

× (1− q2(K+1))1/2(1− q2(L−K))1/2|m+K + 2,L,K + 1〉).
(3.26)

The computation of each part of this sum corresponding to K for the first
term of the right-hand side of (3.26), K + 1 for the second term and K − 1
for the third term leads to a proportionality coefficient of a same state
|m+ 1+K,L,K〉 given by

q−1t

γ (L)
q(m+K+1)(1− q2(m+K+1))1/2(

q−(L−2K)Q− q(L+1) − q−(L+1))

× 〈m+ 1+K − 1,L,K | L,p〉+ q−(L−2m−3K−3)(1− q2(K+1))1/2

× (1− q2(L−K))1/2〈
m+ 1+K,L,K + 1 | L,p〉

− q−(L−K+1)(1− q2(m+K))1/2(1− q2(m+K+1))1/2(1− q2K)1/2

× (1− q2(L+1−K))1/2〈
m+ 1+K − 2,L,K − 1 | L,p〉.

(3.27)

By replacing into (3.10) m by m + 1 +K and n by K, we see that (3.27)
reduces to

−q
−1t

γ (L)
q−(L−p)

(
1− q2(p+1))1/2(1− q2(L−p))1/2〈

m+ 1+K,L,K | L,p〉 (3.28)
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which shows that (3.26) reads

∆L

(
Xz

)|L,p〉(m) = −q
−1t

γ (L)
q−(L−p)

(
1− q2(p+1))1/2(1− q2(L−p))1/2

×
K=L∑
K=0

|m+ 1+K,L,K〉〈m+ 1+K,L,K | L,p+ 1
〉

= −q
−1t

γ (L)
q−(L−p)

(
1− q2(p+1))1/2(1− q2(L−p))1/2|L,p+ 1〉(m+1).

(3.29)

The same way gives

∆L

(
Xz

)|L,p〉(m) = −q
−1t

γ (L)
q−(L−p+1)(1− q2p)1/2(1− q2(L−p+1))1/2

×
K=L∑
K=0

|m− 1+K,L,K〉〈m− 1+K,L,K | L,p− 1
〉

= −q
−1t

γ (L)
q−(L−p+1)(1− q2p)1/2(1−q2(L−p+1))1/2|L,p−1〉(m−1).

(3.30)

By using (3.25), (3.29), and (3.30), we can show from a straightforward
computation that the states |L,p〉(m), m=−L,−L+1, . . . ,∞, are eigenstates
of (qXz + q−1Xz)/Q +X2

3 with the same eigenvalue q−2t2(1 − 1/γ2(L)) =
R2(L).

Note that for m = 0 and n = L (3.9) gives (q2p − 1)〈0,L,L | L,p〉 = 0
yielding

〈
0,L,L | L,p〉 = 0 if p > 0. (3.31)

On the other hand, (3.19) leads to

(〈
0,L,L | L,0〉)2 = 1 (3.32)

yielding 〈0,L,L | L,0〉 = λ with λλ = 1. If we take λ = 1, we get

|L,0〉(L) = |0,L,L〉〈0,L,L | L,0〉 = |0,L,L〉 (3.33)
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which is the unique state of the one-dimensional Hilbert subspace
H(L,−L). On the other hand, for m = 0, (3.13) gives

〈
0,L,n | L,p+ 1

〉
= −q(n−p+1)

(
1− q2(n+1))1/2(1− q2(L−n))1/2

(
1− q2(p+1)

)1/2(1− q2(L−p))1/2

〈
0,L,n+ 1 | L,p〉

(3.34)

which shows that 〈0,L,L− 1 | L,p + 1〉 = 0 if p > 0 or 〈0,L,L− 1 | L,p〉 = 0
if p > 1. By iteration, we get from (3.34)

〈
0,L,L− k | L,p〉 = 0 if p > k. (3.35)

Now by substituting (3.35) into the left-hand side of (3.9), we get

〈
K,L,L− k +K | L,p〉 = 0 if p > k (3.36)

and by setting L− k = n, we obtain

〈
K,L,n+K | L,p〉 = 0 =⇒ |L,p〉(n) = 0 for L−n < p ≤ L. (3.37)

Then the Hilbert subspace states H(L,m), −L ≤ m ≤ 1, do not describe
the whole of the quantum sphere but only its parts described by the
states |L,0〉, . . . , |L,L +m〉. Equations (3.29) and (3.30) show that Xz is a
linear mapping Xz :H(L,m) →H(L,m+1) and Xz is a linear mapping Xz :
H(L,m) →H(L,m−1). To obtain the Hilbert space of representations, we
consider the orthogonal subspacesH(L,m) m = −L, . . . ,∞ spanned by the
bases |L,p〉(m+p) with p = 0,1, . . . ,L which are the Hilbert subspaces in the
decomposition (3.14). The (L + 1)-dimensional subspaces H(L,m) are ir-
reducible space representations of the same quantum sphere S2

qc, where
c = c(L). �

Note that by using the eigenstate relations (2.22) and the relations
(2.31), the same procedure shows that in the light-cone (L = ∞), the
states

|p〉(m) =
K=∞∑
K=0

|m+K,K〉〈m+K,K | p〉, m+K ≥ 0 (3.38)
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satisfy

∆L

(
X3
)|p〉(m) = q−1t

(
q(2p+1)Q− 1

)K=∞∑
K=0

|m+K,K〉〈m+K,K | p〉
= q−1t

(
q(2p+1)Q− 1

)|p〉(m),

∆L

(
Xz

)|p〉(m) = −q−1tQq(p+1)(1− q2(p+1))1/2
K=∞∑
K=0

|m+ 1+K,K〉

× 〈m+ 1+K,K | p+ 1
〉

= −q−1tQq(p+1)(1− q2(p+1))1/2|p+ 1〉(m+1),

∆L

(
Xz

)|p〉(m) = −q−1tQqp
(
1− q2p)1/2

K=∞∑
K=0

|m− 1+K,K〉

× 〈m− 1+K,K | p− 1
〉

= −q−1tQqp
(
1− q2p)1/2|p− 1〉(m−1).

(3.39)

The states |p〉(m) are eigenstates of (qXz + q−1Xz)/Q +X2
3 with the same

eigenvalue q−2t2. In this case, we consider, in the decomposition (3.14)
the subspaces H(m) spanned by the bases |p〉(m+p) p = 0,1, . . . ,∞. The
same procedure may be done in the space-like region for the Hilbert
spaceHs

S2
q
.

4. Conclusion

In this paper, we showed that the different Podleś spheres can be ob-
tained as slices along the time coordinate of the different regions
(light-cone, time-like or space-like) of the quantum Minkowski space-
time. The representation of the coaction of the SOq(3) quantum group
on the quantum spheres S2

qc in the Hilbert space states exhibits the peri-
odicity of the quantum sphere states through a decomposition (3.14) of
the Hilbert space transformed states in terms of orthogonal Hilbert sub-
spaces, each of them being a space of states of a same quantum sphere.
The state transformations in time-like region (finite L) or light-cone
(L = ∞) may also be regarded as transformations under the SOq(3)
quantum subgroup of the Lorentz group of states describing the evo-
lution in the quantum Minkowski space-time of a free particle moving
with a velocity of the length |�v|q = (1 − 1/γ2(L))1/2 and of component
v
(L,n)
3 = q−1(q−(L−2n)/γ (L) − 1) for finite L and of the length |�v|q = 1, ve-

locity of the light, and of component v(n)
3 = q−1(q(2n+1)Q− 1) for L =∞.
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