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Elastic wave propagation in weakly nonlinear elastic rods is considered
in the time domain. The method of wave splitting is employed to for-
mulate a standard scattering problem, forming the mathematical basis
for both direct and inverse problems. A quasi-linear version of the
Wendroff scheme (FDTD) is used to solve the direct problem. To solve
the inverse problem, an asymptotic expansion is used for the wave field;
this linearizes the order equations, allowing the use of standard numer-
ical techniques. Analysis and numerical results are presented for three
model inverse problems: (i) recovery of the nonlinear parameter in the
stress-strain relation for a homogeneous elastic rod, (ii) recovery of the
cross-sectional area for a homogeneous elastic rod, (iii) recovery of the
elastic modulus for an inhomogeneous elastic rod.

1. Introduction

Wave propagation in nonlinear elastic and viscoelastic materials has
been an area of interest for some time. There has been an extensive
amount of work done on the mathematical modeling of such materials
(e.g., [2, 10, 17, 19, 20, 23]), as well as on the analysis of the behavior of
specific materials (e.g., [11, 21, 26]). These efforts fall into two classes:
the modeling of the stress-strain relation, usually in conjunction with
curve fitting to experimental data, and the modeling of wave propaga-
tion in nonlinear media, both in the time domain and in the frequency
domain. A few application areas include seismic imaging for oil explo-
ration, structural dynamics, and nondestructive evaluation.
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Extensive work has been done on inverse problems for linear materi-
als [4, 5, 7, 9, 12]. However, the literature on inverse problems for non-
linear rods is sparse [8, 13, 18, 22, 24], especially in the time domain (al-
though there has been recent activity in nonlinear electromagnetic scat-
tering problems using wave splitting [1, 6, 16, 25]). But the time domain
is the natural place to study the propagation of short duration pulses,
nonperiodic waves and transients, which are important in many applica-
tions. Therefore, it is important to develop analytic and numerical tools
to examine the time dependent behavior of nonlinear elastic waves. A
program of such study was recently begun [8], and further developed in
[13].

It is convenient to begin the study of wave propagation in nonlinear
elastic media with the study of one-dimensional rods of finite length d,
as is done here. This makes the wave splitting analysis tractable, and still
provides insight into meaningful applications.

1.1. Goals of the paper

At present, it is not clear how best to solve inverse scattering problems
in nonlinear rods. An optimization approach was presented in [8]. This
paper presents an alternative, a simple asymptotic approach for weakly
nonlinear elastic rods. There are two goals here. First, the long range in-
tent is to determine, by numerical experimentation, the conditions for
which this approach yields reasonable results for some typical inverse
problems, in order to provide insight into how to approach inverse prob-
lems on any nonlinear rod. Indeed, the authors are beginning an exten-
sive program of study of inverse problems for nonlinear elastic and vis-
coelastic wave propagation in two-dimensional media, and work is cur-
rently underway to improve the numerical implementation of both the
optimization and asymptotic approaches, and to search for other feasible
methodologies. Second, the immediate intent is to develop an analytical
framework for the asymptotic approach so that higher-order corrections
can be incorporated into the analysis presented here. It is reasonable to
presume that including higher-order corrections could allow the asymp-
totic approach to resolve inverse problems involving stronger nonlinear-
ities, significantly enhancing the utility of the approach.

The remainder of the paper is organized as follows. Section 2 presents
the model problem under consideration. Section 3 outlines the mathe-
matical formulation of scattering problems using wave splitting. The
system of equations used in numerical work appears at the end of the
section. Section 4 describes the implementation of the direct algorithm.
Section 5 contains a brief description of the inverse problems to be con-
sidered. In Section 6, there appears the analysis and numerical results for
the case of the homogeneous nonlinear elastic rod; the inverse problem
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is to recover the value of the nonlinear parameter b1. Section 7 discusses
analysis and numerical results for the case of the homogeneous nonlin-
ear elastic rod with varying cross section. The inverse problem is to re-
cover the cross-sectional area. Section 8 contains analysis and numerical
results for the case of the inhomogeneous elastic rod. The inverse prob-
lem is to recover the elastic modulus. Section 9 contains a summary of
the techniques and results.

2. Physical model

Consider an infinite nonlinear rod with a slab of nonlinear elastic mate-
rial lying in x ∈ [0,d]. The material properties (density ρ, elastic modu-
lus E, and cross-sectional area A) are constant outside the slab, and vary
continuously for all x. In particular, there are no jump discontinuities at
x = 0 or x = d. The stress-strain relation is assumed to have the form

σ(x,t) = F
(
x,ε(x,t)

)
= E(x)

(
ε(x,t) + b1ε

2(x,t)
)

(2.1)

or

σ = F(ε) = E
(
ε + b1ε

2). (2.2)

For purposes of illustration, a quadratic nonlinearity (F(x,ε)=E(ε+b1ε
2))

is presented, although the analysis below could be generalized to other
forms of F(x,ε) if desired. An important assumption in this paper is
that the material is weakly nonlinear, which means that |b1| is small. The
value of b1 can be positive or negative, although for most elastic solids,
b1 is negative.

The equation of motion and the compatibility relation are

∂tv(x,t) =
1

ρ(x)A(x)
∂x
(
A(x)σ(x,t)

)
, ∂xv(x,t) = ∂tε(x,t), (2.3)

where v(x,t) is particle velocity. This leads to the system of equations

∂xv = ∂tε,

∂tv =
1
Aρ

(
A′σ +A

[
E′(ε+ b1ε

2)+E
(
∂xε + 2b1ε∂xε

)])
=

1
ρ

(
E
(
1+ 2b1ε

)
∂xε+

A′

A
F(ε) +E′(ε+ b1ε

2))

=
1
ρ
G(x,ε)∂xε+M(x,t),

(2.4)
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where M includes the effects of spatial inhomogeneity and G ultimately
affects the speed of waves traveling through the rod in nonlinear fashion

M(x,t) =
1

ρ(x)

(
A′(x)
A(x)

F
(
x,ε(x,t)

)
+E′(x)

[
ε(x,t) + b1ε(x,t)

])
,

G
(
x,ε(x,t)

)
= E(x)

(
1+ 2b1ε(x,t)

)
.

(2.5)

This system, along with suitable boundary and initial conditions (pre-
sented in the next section), forms the mathematical basis for scattering
problems on a nonlinear rod.

3. Problem formulation

In this section, the method of wave splitting is used to put the system
(2.4), into a form suitable for numerical computations. This methodol-
ogy was developed in [8], and is summarized here for convenience.

First, write (2.4) in matrix form as

(√
G/ρ∂tε

∂tv

)
=
(

0
√
G/ρ√

G/ρ 0

)(√
G/ρ∂xε

∂xv

)
+

(
0
M

)
. (3.1)

It must be assumed that G > 0. For sufficiently small strains, this is not
restrictive, since it is reasonable to expect the stress to increase as the
strain increases. The system is simplified by defining

g(x,ε) =
∫ε

0

√
G(x,ε′)
ρ(x)

dε′ =

√
E(x)
ρ(x)

∫ε

0

√
1+ 2b1ε′dε′

=
1

3b1r(x)
[(

1+ 2b1ε
)3/2 − 1

]
,

r(x) =

√
ρ(x)
E(x)

(3.2)

and introducing new dependent variables

u1(x,t) = g
(
x,ε(x,t)

)
, u2(x,t) = v(x,t). (3.3)
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For fixed x, g is strictly increasing with respect to ε, so there exists
an inverse g−1, interpreted as ε = g−1(x,u1) = (1/2)b1[(1+ 3b1ru1)2/3 − 1].
The system is now represented as

∂t

(
u1

u2

)
=
(

0 c
c 0

)
∂x

(
u1

u2

)
+

(
0
N

)
(3.4)

with N and wave speed c defined by

N =M− c∂xg =M− c
d

dx

(√
E

ρ

)∫ε

0

√
1+ 2b1ε′dε′,

c
(
x,u1

)
=

1
∂u1g

−1
(
x,u1

) = 1
r(x)

(
1+ 3b1r(x)u1

)1/3
.

(3.5)

It must be assumed that 1+ 3b1ru1 > 0 for the wave speed to be nonneg-
ative.

The wave splitting transformation is introduced in order to diagonal-
ize the wave speed matrix. New dependent variables are defined by

(
u+

u−

)
= P

(
u1

u2

)
,

(
u1

u2

)
= P−1

(
u+

u−

)
, (3.6)

where

P =
1
2

(
1 −1
1 1

)
, P−1 =

(
1 1
−1 1

)
. (3.7)

This final change of variables yields the quasi-linear equations of mo-
tion

∂tu
± ± c∂xu

± = ∓N
2
. (3.8)

If the material is spatially inhomogeneous, it is advantageous to intro-
duce travel time coordinates in order to straighten the curve for the lead-
ing edge in the space-time plane. This makes it easier to set up a discrete
grid for numerical work. The speed of the wave front is denoted cτ(x).
The travel time of the wave front for traversing the rod from x = 0 to
x = d is

� =
∫d

0

dx′

cτ(x′)
. (3.9)
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The travel time coordinate transformation is then

x̃(x) =
1
�

∫x

0

dx′

cτ(x′)
, t̃ =

t

�
. (3.10)

At this point, the dynamic equations can be nondimensionalized, drop-
ping tildes, as

∂tu
± ± cn∂xu

± = ∓N
2

(3.11)

with cn = c/cτ . Under this scaling, the wave speed along the leading
edge is normalized to 1. The explicit forms of the nondimensional co-
efficients are

cτ
(
x,u+,u−) = 1

r

(
1+ 3b1ru

+)1/3
,

cn
(
x,u+,u−) =(1+ 3b1r

[
u+ +u−]

1+ 3b1ru+

)1/3

,

N =
1
cτρ

[
A′

A
F(ε) +E′(ε + b1ε

2)+ ρcr ′
[
u+ +u−]
r

]
.

(3.12)

At x = 0, an incident velocity v(0, t) = f(t) is applied, so that the bound-
ary condition is f(t) = −u+(0, t) +u−(0, t). Casuality implies that all fields
vanish before the time of first arrival, so that u±(x,t) = 0 for x > t. This
is the formulation used for the direct and inverse scattering problems
considered below.

3.1. Summary of assumptions

In the analysis presented above, two assumptions are needed to ensure
that the formulation is physically meaningful. First, it is necessary that
G > 0 for the wave splitting variables to remain real. This means that 1+
2b1ε(x,t) > 0, which implies that the strain field ε remains small in mag-
nitude. The value of ε can be positive (the rod is in extension) or negative
(the rod is in compression). If b1 > 0, then ε > −1/2b1, which means the
rod can be in extension or slight compression. If b1 < 0, then ε < −1/2b1 =
1/2|b1|, which means the rod can be in compression or slight extension.

Second, it is necessary that (1 + 3b1ru1) > 0 for the wave speed to re-
main nonnegative. The split field u1 = u+ +u− = g can be positive or neg-
ative. If b1 > 0 then u1 > −1/(3b1r), while if b1 < 0 then u1 < 1/(3|b1|r).

The assumption that |b1| is small is not necessary here, but does make
these inequalities more easily satisfied; the assumption is used in later
sections to develop asymptotic algorithms for inverse problems.
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Figure 4.1. Numerical grid for the direct algorithm. Circles indicate
grid points, and the dynamic equations are applied at cell centers,
indicated by ×.

4. The direct problem

A quasi-linear version of the Wendroff scheme [3] is applied to the dy-
namic equations (3.11), in which the partial derivatives are discretized as

∂xu
±
i+1/2,j+1/2 =

1
2

(
u±
i+1,j+1 −u±

i,j+1

h
+
u±
i+1,j −u±

i,j

h

)
,

∂tu
±
i+1/2,j+1/2 =

1
2

(
u±
i+1,j+1 −u±

i+1,j

h
+
u±
i,j+1 −u±

i,j

h

)
.

(4.1)

For linear equations (cn is constant), the scheme is second order, with
error O(∆x2 +∆t2), and is unconditionally stable. There is no theory to
predict the stability properties of the quasi-linear form, but no numeri-
cal difficulties have appeared in the problems under consideration here
during extensive testing.

This discretization leads to an implicit scheme, the result of which is
a coupled system along each time line tj . The unknowns {u±

i,j , i = 1, . . . ,
j − 1} are obtained one row at a time. Leading edge values u±

jj are com-
puted earlier, as described below. Figure 4.1 shows the grid schematic
for an arbitrary row. The dynamic equations are applied at the cell cen-
ters, indicated by an ×, providing 2j − 2 equations. The system is closed
by including the boundary condition fj = −u+

0j + u−
0j and the directional

derivative of u− at the leading edge, obtained from the dynamic equation
for u− : u−

j−1,j = u−
j−1/2,j−1/2 + (h/2)Nj−1/2,j−1/2/2 = (h/4)Nj−1/2,j−1/2.



414 Inverse scattering on weakly nonlinear rods

The presence of the nonlinear factors N and cn complicates the anal-
ysis; these factors should be evaluated at cell centers (xi+1/2, tj+1/2), pre-
sumably by averaging the values of u+ and u− at the four surrounding
grid points. But this leads to a nonlinear system along time line t = tj
because u±

i,j and u±
i+1,j are unknown. Since the material is assumed to

be weakly nonlinear, this difficulty can be avoided by averaging the
known values of u+ and u− at the two lower grid points (i, j − 1) and
(i+ 1, j − 1).

The quasi-linear direct algorithm is used to create synthetic reflection
and transmission data to be used as inputs in the inverse problems pre-
sented below.

5. Three inverse problems

Three inverse problems considered in this paper are the following.
(1) The homogeneous elastic rod. The cross-sectional area A(x) = 1,

the constant density ρ, and constant elastic modulus E are known. The
goal is to recover the nonlinear parameter b1.

(2) The rod with varying cross section. The density, modulus, and
nonlinear parameter are known. The goal is to recover the cross-sectional
area A(x).

(3) The rod with varying modulus. The density, cross section, and
nonlinear parameter are known. The goal is to recover the modulus
E(x).

Figure 5.1 contains pictures of the rods and the computational do-
mains for each problem.

In general, we would expect these inverse problems for nonlinear ma-
terials to be ill-posed. However, if |b1| is sufficiently small, then each
of the inverse problems has a unique solution. Sketches of the proofs
are presented in the appropriate Sections 6.3, 7.4, and 8.3. Although the
details differ from one problem to another, there are two basic themes:
the linearized problem has a unique solution if the coefficients are suffi-
ciently smooth and the inputs are sufficiently small, and the higher-order
terms in the asymptotic expansion are continuous on the computational
domains (Figure 5.1) and so are uniformly bounded.

6. The homogeneous elastic rod

In this section, the inverse problem for the nonlinear homogeneous elas-
tic rod is formulated, a discussion on uniqueness of solution for the in-
verse problem is presented, the inverse algorithm is developed, and nu-
merical results are presented and discussed; this material was first de-
scribed in [13].
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Figure 5.1. Rod geometries and computational domains for the
three inverse problems under consideration. (a) Rod geometry for
the homogeneous rod and the rod with varying modulus. (b) Com-
putational domain for the homogeneous rod, {(x,t) | 0 ≤ x ≤ 1, x ≤
t ≤ x + 1}. (c) Rod geometry for the rod with varying cross-sectional
area. (d) Computational domain for the rod with varying cross-
sectional area and the rod with varying modulus, {(x,t) | 0 ≤ x, x ≤
t ≤ 2−x}.

6.1. Analytic formulation

The nonlinear homogeneous elastic rod is the simplest nonlinear rod.
The density ρ and modulus E are constant, so that r(x) can be scaled to 1.
Because there are no spatial inhomogeneities, the dynamic equations
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simplify, considerably,

∂t

(
u+

u−

)
=
(−cn(u+ +u−) 0

0 cn
(
u+ +u−)

)
∂x

(
u+

u−

)
. (6.1)

The nonlinear wave speed cn couples the two equations. However,
there is no local coupling between u+ and u− due to material inhomo-
geneities, so if no external left-going field (u−) is applied, then the field
is entirely right-going, so u− ≡ 0, and the dynamic equations reduce to a
scalar equation in u+ as

∂tu
+ + cn

(
u+)∂xu+ = 0. (6.2)

Note that the wave speed cn(u+) still depends on the field magnitude,
and hence the problem is still nonlinear. Also, the boundary condition
simplifies to u+(0, t) = −f(t) = −v(0, t).

It is convenient to devise a scattering experiment in which the applied
particle velocity at the boundary has the property that f(0) = 0; this im-
plies that u+ = 0 along the leading edge, so that the wave front speed cτ =
1 and cn = c = (1 + 3b1u

+)1/3. The incident velocity v(0, t) = f(t) = t2/2
was used in the numerical experiments presented in Section 6.5. This
function was chosen because it offers a smooth, linearly increasing ac-
celeration, which models a linearly increasing force applied to the end
of the rod. Because the time interval of interest is [0,1], there is no issue
with the fact that the velocity function is monotonically increasing.

The inverse problem here is to use transmission data, u+(1, t), to re-
cover the nonlinear parameter b1. For notational convenience, write u+

as u. Straightforward asymptotic expansions of u and c in terms of b1,

u = u0 + b1u1 + b2
1u2 + · · · ,

c(u) =
(
1+ 3b1u

)1/3 = 1+ b1u− b2
1u

2 + · · ·
(6.3)

can be applied, resulting in the order equations

O(1) : ∂tu0 + ∂xu0 = 0, (6.4)

O
(
b1
)

: ∂tu1 + ∂xu1 = −u0∂xu0, (6.5)

O
(
b2

1

)
: ∂tu2 + ∂xu2 = −u0∂xu1 −

(
u1 −u2

0

)
∂xu0. (6.6)

The important feature in each of these equations is that the wave speed
has been linearized; in fact, due to the nondimensionalization, the wave
speed is normalized to 1. This means that each field ui propagates along
a straight characteristic with slope 1 in space-time coordinates, so that
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the method of characteristics may be used to solve these equations ana-
lytically, making the inverse algorithm much more simple. In addition,
it should be noted that the cubic term b1u

3 was included in the asymp-
totic expansion, but it was found that this term is so small that it has a
negligible effect on the results.

Consider (6.4) for u0 along an arbitrary characteristic t = x + ξ. The
equation may be written as

du0

dt
= 0, u0(0, ξ) = −f(ξ) (6.7)

which has solution

u0(t− ξ, t) = −f(ξ). (6.8)

Using ξ = t−x, it is easy to see that partial derivatives of u0 with respect
to x on the curve t = x + ξ may be written as

∂xu0(t− ξ, t) = f ′(ξ). (6.9)

Consider (6.5) for u1 along the same characteristic t = x + ξ. The equa-
tion may be written as

du1

dt
= f(ξ)f ′(ξ), u1(0, ξ) = 0 (6.10)

which has solution

u1(t− ξ, t) = f(ξ)f ′(ξ)t. (6.11)

Using ξ = t−x, it is easy to see that partial derivatives of u1 with respect
to x on the curve t = x + ξ may be written as

∂xu1(t− ξ, t) = −[(f ′(ξ)
)2 + f(ξ)f ′′(ξ)

]
t. (6.12)

Consider (6.6) for u2 along the same characteristic t = x + ξ. The equa-
tion may be written as

du2

dt
= −[2f(ξ)(f ′(ξ)

)2 + f2(ξ)f ′′(ξ)
]
t+ f2(ξ)f ′(ξ), u2(0, ξ) = 0

(6.13)
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which has solution

u2(t− ξ, t) = −1
2
[
2f(ξ)

(
f ′(ξ)

)2 + f2(ξ)f ′′(ξ)
]
t2 + f2(ξ)f ′(ξ)t. (6.14)

The partial derivatives of u2 on the curve t = x + ξ may be obtained as
above if more terms in the asymptotic expansion of u are desired.

In principle, this process may be repeated to obtain analytic solutions
for higher-order terms, although the right side of the order equation be-
comes increasingly complicated.

6.2. Uniqueness of solution theorem

Suppose that the incident velocity v(0, t) = f(t) is smooth and its deriva-
tives are bounded for t ∈ [0,1]. Then for sufficiently small |b1|, the inverse
problem has a unique solution.

6.3. Sketch of proof

Suppose that there are two values of the nonlinear parameter, called b1

and b2, that yield identical transmission data D(t) given the same in-
cident velocity v(0, t) = f(t). Then there are two fields u(x,t) and v(x,t)
that satisfy ut + (1 + 3b1u)1/3ux = 0 and vt + (1 + 3b2v)1/3vx = 0 with
u(1, t) = D(t) = v(1, t). The fields may be expanded asymptotically as
u(x,t) = u0(x,t) + b1u1(x,t) + b2

1u2(x,t) + O(b3
1) and v(x,t) = v0(x,t) +

b2v1(x,t) + b2
2v2(x,t) +O(b3

2). From the formulation above, (6.8), (6.11),
and (6.14), it is evident that the form of the order functions is inde-
pendent of the nonlinear parameter, so that ui ≡ vi. It is also evident
that the source term in each order equation is continuous, so that each
ui = vi is uniformly bounded in the computational domain (Figure 5.1)
{(x,t) | 0 ≤ x, x ≤ t ≤ x+ 1}. This means that for sufficiently small |bi|, the
approximations D(t) ≈ u0(1, t) + b1u1(1, t) + b2

1u2(1, t) and D(t) ≈ v0(1, t) +
b2v1(1, t) + b2

2v2(1, t) can be made within any desired accuracy. Since ui ≡
vi, this implies that 0 = (b1 − b2)u1(1, t) + (b2

1 − b2
2)u2(1, t) + · · · . Because

this argument can be carried out to any order of asymptotic expansion, it
is clear that b1 = b2, so there is a unique solution to the inverse problem.

6.4. Inverse algorithm

The goal of this inverse problem is to recover the nonlinear parameter b1.
Since there is no reflection in this case, the inverse algorithm is based on
transmission data, u+(1, t) =D(t). This data is obtained by experiment or
by solving the corresponding quasi-linear direct problem as described
above, using the correct value of b1 as an input. The inverse algorithm is



S. Kim and K. L. Kreider 419

based on the least-squares curve fit approximation

D(t) ≈ u0(1, t) + b1u1(1, t) + b2
1u2(1, t). (6.15)

The transmission data is discretized at time steps tj , and is denoted Dj =
D(tj). These data points are added, leading to the sum

S
(
b1
)
=

M∑
j=0

(
Dj −

[
u0
(
1, tj
)
+ b1u1

(
1, tj
)
+ b2

1u2
(
1, tj
)])2

. (6.16)

Because analytic expressions for the ui are given in terms of the known
incident field f(t), the only unknown is b1, which can be obtained by a
standard least squares approach.

6.5. Numerical results

A set of numerical experiments was used to gauge the algorithm’s over-
all performance.

Test 1. How much of the transmission data should be used?

Notice that the asymptotic approximation (6.15) to D(t) is quadratic
in time, due to the t2 factor in u2, so the least-squares fit will work best
in the short time, where D(t) is roughly quadratic. Under the travel time
scaling, the wave travels through the material in scaled time t ∈ [0,1],
and transmission data is obtained for this time interval. Let τ denote the
fraction of this data that is used by the inverse algorithm. A numerical
examination of a variety of cases, with b1 ranging from −20 to 20, indi-
cates that the best recovery of b1 occurs when τ < .05 (i.e., less than 5% of
the data for one travel time is used), although for smaller values of |b1|,
the value of τ does not appear to be crucial. A reasonable rule of thumb
is to let τ = .04 for the inverse algorithm to give meaningful results.

Test 2. What is the effect of finite difference discretization error?

The inverse algorithm was run for a variety of b1 values using τ = .04
with a spatial grid of n subintervals. Table 6.1 shows the computed val-
ues of b1 for a variety of grids for actual values of b1 = ±.01,±.1,±1,±10.
The results indicate that finer grids do provide better results, but when
computation time is taken into account, the marginal cost is too high. The
recommended n value is 2048 for smaller |b1| values (roughly speaking,
b1 ∈ (−5,5)), while it may be advantageous to use n = 4096 if |b1| is larger.

Test 3. What range of b1 values can be recovered?
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Table 6.1. The effect of discretization error on the recovery of b1. In
each section, the actual b1 value is given above, and the values below
are the computed values of b1 using the indicated number n of spatial
grid points.

n b1 = −.01 b1 = −.1 b1 = −1 b1 = −10

128 −.0078 −.0779 −.7805 −9.5911
256 −.0086 −.0864 −.8657 −10.2594
512 −.0091 −.0913 −.9150 −10.6110
1024 −.0094 −.0939 −.9416 −10.7973
2048 −.0095 −.0953 −.9552 −10.7825
4096 −.0096 −.0959 −.9621 −10.7733

n b1 = +.01 b1 = +.1 b1 = +1 b1 = +10

128 .0078 .0780 .7809 9.0220
256 .0086 .0864 .8652 10.2093
512 .0091 .0913 .9140 10.8994
1024 .0094 .0939 .9403 11.2826
2048 .0095 .0953 .9538 11.5448
4096 .0096 .0959 .9606 11.6797

The inverse algorithm was run with n = 2048 and τ = .04 to determine
the range of b1 values for which the relative error is less than 5% or 10%.
To stay within a 10% error bound, the value of b1 must be in the interval
(−12.25,8.75), and to stay within a 5% error bound, the value of b1 must
be in the interval (−5.5,7.25).

These results clearly indicate that the methodology is useful only for
small values of b1, and a different technique must be used to analyze
strongly nonlinear materials.

Because this problem requires derivatives of the incident field f(t),
care must be exercised in specifying a continuous, differentiable inci-
dent field. Jumps in f or its derivatives can significantly affect the perfor-
mance of the algorithm. For example, with the actual value b1 = −.1, and
n = 512 and τ = .40, the algorithm yields the computed value b1 = −.0838
for the incident field f(t) = −t2/2. When this incident field is modified
to be equal to .02 for t > .2 (so that f is continuous but f ′ has a jump at
t = .2), the computed result is b1 = −.0804, a slight degradation in solu-
tion. When a jump is introduced into the incident field (f(t) = t2/2 for
t < .2 and f(t) = .5 for t ≥ .2), the algorithm yields b1 = 1.831, which is
clearly unacceptable.
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Overall, the three tests indicate that the recovery of b1 is reasonable
for small values of b1, but that this algorithm has a limited usefulness in
general.

7. An inverse problem for the elastic rod with varying cross section

In this section, the inverse problem for the nonlinear homogeneous elas-
tic rod with varying cross-sectional area is formulated, the inverse al-
gorithm is developed, a discussion of uniqueness of solution for the in-
verse problem is presented, and numerical results are presented and dis-
cussed; this was first described in [13].

7.1. Analytic formulation

For this problem, the stress-strain relation is again taken to be

σ = F(x,ε) = E(x)
(
ε + b1ε

2), (7.1)

where |b1| < 1 and the scalings ρ = 1, E = 1 are used. The dynamic equa-
tions take the form

∂t

(
u+

u−

)
=

(
−cn
(
u++u−) 0
0 cn

(
u++u−)

)
∂x

(
u+

u−

)
+

(
−α(x)F(ε)
α(x)F(ε)

)
,

(7.2)

where α(x) = (1/2)A′(x)/A(x), and the nonlinear wave speed cn and
nonlinear source term F couple the two equations. The leading terms of
the asymptotic expansion of u+ and u− satisfy

∂tu
+
0 + ∂xu

+
0 = −α(u+

0 +u−
0

)
, (7.3)

∂tu
−
0 − ∂xu

−
0 = +α

(
u+

0 +u−
0

)
. (7.4)

As in the previous example, the wave speed has been linearized, but
the equations remained coupled. This means that the inverse algorithm
for the homogeneous rod cannot be used, because analytic expressions
for u±

0 are no longer available. A different approach must be taken.

7.2. Inverse algorithm

Consider the recovery of A(x) from reflection data u−(0, t) =D(t) with-
out knowledge of b1. The reflection data is obtained by solving the direct
problem, using the correct values of b1 and A(x) as inputs. Then, the
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leading order equations (7.3) and (7.4) are solved numerically to obtain
the values of A(xi) at each spatial grid point. The main source of error
in this algorithm, which is described below, is that the input data D(t)
has not been linearized. Therefore, the method is appropriate only for
weakly nonlinear materials, for which the correction terms (u1, u2,...)
may be safely ignored.

For notational convenience, denote u±
0 as u±. The inverse problem is

specified as follows: the dynamic equations (7.3) and (7.4) are combined
with boundary conditions

u+(0, t) =D(t)− f(t), u−(0, t) =D(t) (7.5)

and leading edge conditions

u+(x,x+) = −A1/2(0)
A1/2(x)

f(0), (7.6)

u−(x,x+) = 0, (7.7)

where f(t) = v(0, t) is the known incident field and D(t) is the reflec-
tion data, to form a well-posed problem. Note that it is necessary that
f(0) 	= 0 because the leading edge condition is used to recover A(x). For
this reason, the initial velocity v(0, t) = f(t) = 1 + t was chosen for this
case, as a matter of convenience.

The leading edge conditions are derived from a propagation of dis-
continuities argument. First, the curve t = x is not a characteristic for u−,
so u− cannot admit a discontinuity along that curve. Since u− = 0 for x > t
by causality, it must therefore be zero along the leading edge. However,
t = x is a characteristic for u+, so there may be a discontinuity in u+ along
the leading edge. Consider (7.3) for t = x+ and t = x−, and subtract the
two to get an equation for the jump in u+, denoted [u+]

d

dx

[
u+] = −α(x)([u+]+ [u−]). (7.8)

Along t = x, this is an ordinary differential equation with [u−] = 0, which
has solution given by (7.6).

The inverse algorithm is a finite difference approach to the method
of characteristics. First, discretize the domain by letting ∆x = h, ∆t = 2h,
with h = 1/N for some integer N, so that xi = (i− 1)h for i = 1, . . . ,N + 1,
and tj = 2(j − 1)h for j = 1, . . . ,N + 1. Note that tj is measured in wave
front time; that is, it is the time after the first arrival of the wave front.
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The absolute time at spatial location xi is given by xi + tj . The grid points
are numbered so that the leading edge corresponds to j = 1, with higher
values of j representing later right-moving characteristics, given by t =
x + tj . This grid should be consistent with that used in the direct problem,
so that the values D(tj) are easily accessible.

To obtain equations valid at grid location (i, j), apply forward differ-
encing at (i− 1, j) and backward differencing at (i, j) to the u+ equation,
(7.3), and add, to obtain

2
h

(
u+
i,j −u+

i−1,j

)
= −αi−1

(
u+
i,j +u−

i−1,j

)−αi

(
u+
i,j +u−

i,j

)
. (7.9)

Then apply forward differencing at (i − 1, j + 1) and backward differ-
encing at (i, j) to the u− equation, (7.4), and add, to obtain

2
h

(
u−
i,j −u−

i−1,j+1

)
= −αi−1

(
u+
i−1,j+1 +u−

i−1,j+1

)−αi

(
u+
i,j +u−

i,j

)
. (7.10)

Taking values at spatial location i − 1 to be known, (7.9) and (7.10)
form a 2× 2 system in unknowns u+

i,j and u−
i,j , which can be easily solved

to give

(
u+
i,j

u−
i,j

)
=

1
(2/h)

(
2/h+ 2αi

)



2
h
+αi −αi

−αi
2
h
+αi



(
R1

R2

)
, (7.11)

where

R1 =
(

2
h

)
u+
i−1,j −αi−1

(
u+
i−1,j +u−

i−1,j

)
,

R2 =
(

2
h

)
u−
i−1,j+1 −αi−1

(
u+
i−1,j+1 +u−

i−1,j+1

)
.

(7.12)

Equation (7.11) is valid at any interior point in the grid (not on the
boundary i = 1 or the leading edge j = 1).

To determine the leading edge conditions at j = 1, use (7.4). Apply
backward differencing at (i,1) to u− equation to obtain

1
h

(
u−
i,1 −u−

i−1,2

)
= −αi

(
u+ +u−), (7.13)
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where αi = (1/2)A′
i/Ai and A′

i = (Ai −Ai−1)/h. Since u−
0 = 0, then (7.13)

becomes

u−
i−1,2 =

Ai −Ai−1

2A3/2
i

. (7.14)

All terms are known except Ai, therefore, Ai can be solved numerically
in the equation below using Newton’s method.

2u−
i−1,2A

3/2
i −Ai +Ai−1 = 0. (7.15)

The inverse algorithm proceeds as follows.
(1) The value of A1 has been scaled to 1, so begin with the back char-

acteristic t = t2 −x, denoted by k = 2. There are two grid points along this
line, one on the boundary i = 1 and one on the leading edge j = 1, so the
boundary condition and leading edge equation are used to obtain A2.

(2) Move up to the next back characteristic t = tk − x for k = 3,4, . . . ,
N + 1. The boundary condition provides values for u+ and u− at i = 1,
so use (7.11) for i = 2,3, . . . ,k − 1 to obtain u+ and u− at the interior grid
points along the characteristic. Then for i = k, the leading edge, (7.15) is
used to obtain Ak. The algorithm proceeds until k = N + 1, so that the
cross-sectional area is obtained at each grid point. Data D(t) is required
for t ∈ [0,2], so that the incident wave can travel through the rod and
reflect back from the far end.

7.3. Uniqueness of solution theorem

Suppose that α(x) =A′(x)/2A(x) is smooth, that |b1| is sufficiently small,
and that the reflection data D(t) = u−(0, t) is sufficiently small in magni-
tude. Then the inverse problem, to recover A(x) from the reflection data,
has a unique solution.

7.4. Sketch of proof

Suppose that there exist two smooth cross-sectional areas A(x) and B(x)
that yield the same reflection data D(t) = u−(0, t). Let α(x) =A′(x)/2A(x)
and β(x) = B′(x)/2B(x). The goal is to show that α ≡ β.

The key step is to establish that the linear problem, (7.3) and (7.4),
has a unique solution under appropriate conditions. Such a result has
been verified for a similar linear system. In [14, 15], it is shown that if
the reflection and transmission data are sufficiently small, then there is
a unique solution to the inverse problem of recovering C(x) and D(x)
from that data for uxx − utt +C(x)ux +D(x)ut = 0. It is assumed that C
and D are continuously differentiable. When wave splitting is applied
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to this equation, the result is the system ∂xu
± = ∓∂tu± + (1/2)(D ∓C)u+ +

(1/2)(−D ∓C)u−. System (7.3) and (7.4) has a similar but simpler form;
in particular, it has only one unknown parameter, so transmission data is
not required. At any rate, the argument used in [15] can be used success-
fully here to verify that the inverse problem for the linear system, (7.3)
and (7.4), has a unique solution as long as α is smooth and the reflection
data D(t) is sufficiently small in magnitude.

Suppose that an initial velocity f(t) is applied to the rod at x = 0,
and that cross-sectional areas A(x) and B(x) yield the fields u±(x,t) and
v±(x,t), respectively, as solutions to (7.2). Expand both fields asymptoti-
cally to obtain u±(x,t) = u±

0 (x,t) + b1u
±
1 (x,t) +O(b2

1) and v±(x,t) = v±
0 (x,t)

+ b1v
±
1 (x,t) + O(b2

1). Also, expand α(x) = α0(x) + b1α1(x) + O(b2
1) and

β(x) = β0(x) + b1β1(x) +O(b2
1). Then u±

0 and v±
0 both satisfy (7.3) and (7.4)

with α being replaced by α0 and β0, respectively. Let w±(x,t)=u±(x,t)−
v±(x,t), and expand w± as w±(x,t) =w±

0 (x,t) + b1w
±
1 (x,t) +O(b2

1). Then
w±

0 satisfies the linear system

∂tw
±
0 ± ∂xw

±
0 ±
[
α0
(
w+

0 +w−
0

)
+
(
α0 − β0

)(
v+

0v
−
0

)]
= 0. (7.16)

Also, w−
0 (0, t) = 0 because both A(x) and B(x) yield the same reflection

data, and w+
0 (0, t) = 0 because both u± and v± are generated using the

same initial velocity. By the uniqueness of the linear problem, w±
0 (x,t) ≡

0, so u±
0 (x,t) = v±

0 (x,t). Then, since v+
0 +v−

0 	≡ 0, the system for w±
0 reduces

to 0 = ±(α0 − β0)(v+
0v

−
0 ), so α0(x) = β0(x).

A similar argument is used to show that α1(x) = β1(x). The only differ-
ence here is that the source for u±

1 , v±
1 includes ∂xu

±
0 , ∂xv±

0 , respectively,
so it is necessary to have u±

0 and v±
0 sufficiently smooth to be able to

claim that u±
1 and v±

1 are continuous, which in turn is needed to be able
to invoke the uniqueness of the linear problem. Since α(x) and β(x) are
smooth, it is true that u±

0 and v±
0 are smooth inside the computational

domain.
The argument can be extended to the higher-order asymptotic terms;

for |b1| sufficiently small, the asymptotic approximation of u± can be
made arbitrarily close to the actual value, so that the uniqueness of the
linear problem can be extended to the weakly nonlinear case.

It should be noted that the condition that the reflection data be small is
sufficient but not necessary for uniqueness—in fact, an explicit example
is given in [15]. As is often the case, the numerical algorithms perform
much better in practice than the theory guarantees.

7.5. Numerical results

The inverse algorithm was tested using a variety of cross-sectional area
profiles, with n = 128 and b1 = ±.01, .1, .2. The profiles were chosen with
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1.2
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1.5

Exact A(x)
A(x) with b1 = −.01
A(x) with b1 = −.1
A(x) with b1 = −.2

A(x) with b1 = +.01
A(x) with b1 = +.1
A(x) with b1 = +.2

Figure 7.1. The reconstructed cross-sectional area A(x) = 1+ .5x for
various b1 values using n = 128 grid points.

10.80.60.40.20
0.5

1

1.5

2

2.5

Exact A(x)
A(x) using b1 = −.01
A(x) using b1 = −.1
A(x) using b1 = −.2

A(x) using b1 = +.01
A(x) using b1 = +.1
A(x) using b1 = +.2

Figure 7.2. The reconstructed cross-sectional area A(x) = 1 +
arctan(10)/π + arctan(20(x − .5))/π for various b1 values using n =
128 grid points.
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10.80.60.40.20
0.5

1

1.5

Exact A(x)
A(x) with b1 = −.01
A(x) with b1 = −.1
A(x) with b1 = −.2

A(x) with b1 = +.01
A(x) with b1 = +.1
A(x) with b1 = +.2

Figure 7.3. The reconstructed cross-sectional area A(x) = 1 +
.3sin(2πx) for various b1 values using n = 128 grid points.

strong gradients to challenge the algorithm as fully as possible:

A1(x) = 1+ .5x,

A2(x) = 1+ arctan(10)/π + arctan
(
20(x − .5)

)
/π,

A3(x) = 1+ .3sin(2πx).

(7.17)

Results for each profile appear in Figures 7.1, 7.2, and 7.3. Some gen-
eral observations can be made. First, in each case, the reconstructions are
nearly perfect for the smallest values of |b1|. As |b1| increases, the qual-
ity of the reconstructions erodes drastically, although in each case there
is an interval starting at x = 0 where the reconstruction is accurate; as
|b1| increases, this interval shrinks. The reconstructions are worse when
b1 is positive than when it is negative. This is due to the expression for
the wave speed c = (1 + 3b1ru1)1/3/r; since u1 < 0, it is possible for c to
become negative when |3b1ru1| is large enough. When this happens, the
formulation breaks down and the algorithm fails. In the figures, this oc-
curs for b1 = +.2 in each of the three cases, and for b1 = +.1 in Figure 7.2;
the profiles are truncated to avoid needless clutter.

Tests were also conducted for A(x) = 1− .5x, A(x) = 2− arctan(10)/π−
arctan(20(x − .5))/π , and A(x) = 1 − .3sin(2πx). The resulting graphs
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10.80.60.40.20
0.6

0.8

1

1.2

Exact A(x)
A(x) using n = 128
A(x) using n = 256

Figure 7.4. Discretization has much less effect than linearization
on the reconstructions. Here, results using n = 128 and n = 256 grid
points are nearly identical. In this case, A(x) = 1 − .3sin(2πx) and
b1 = −.1.

are not included because the results are similar in nature to those pre-
sented.

Using n = 128 grid points in these examples is sufficient. Testing in-
dicates that increasing the number of grid points has very little effect
on the results. A typical case is shown in Figure 7.4, where A(x) = 1 −
.1sin(2πx) with b1 = +.1. It should be noted that the inverse algorithm is
virtually instantaneous, taking less than 1 second of CPU time on a Pen-
tium III at 600 Mhz, using the g77 compiler on a FORTRAN code in Red
Hat Linux. The generation of synthetic data using the data algorithm
takes at most a few minutes.

Overall, the results are not as good as we would like, because the in-
verse algorithm requires very small magnitudes of b1 to provide reason-
able results. However, the inverse algorithm is extremely fast, and does
provide good results for weakly nonlinear rods.

8. An inverse problem for the elastic rod with varying modulus

In this section, the inverse problem for the nonlinear elastic rod with
varying modulus of elasticity is formulated, the inverse algorithm is de-
veloped, a discussion of uniqueness of solution for the inverse problem
is presented, and numerical results are presented and discussed.
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8.1. Analytic formulation

For this problem, the stress-strain relation is again taken to be

σ = F(x,ε) = E(x)
(
ε + b1ε

2), (8.1)

where b1 
 1 and the scalings ρ = 1, A = 1 are used. The dynamic equa-
tions take the form

∂t

(
u+

u−

)
=

(
−cn 0

0 cn

)
∂x

(
u+

u−

)
+




−1
2
N

1
2
N


 , (8.2)

where, for this case,

N =
1
cτ

(
∂xF − c∂xg

)
=
dE/dx

cτ

(
ε + b1ε

2 − c
(
u+ +u−)

2E

)
. (8.3)

The nonlinear source term F, as well as the wave speeds, couple the
two equations. The leading order asymptotic expansion of the dynamic
equations yields

∂tu
+
0 +E(x)1/2∂xu

+
0 = −dE/dx

4E
(
u+

0 +u−
0

)
,

∂tu
−
0 −E(x)1/2∂xu

−
0 =

dE/dx

4E
(
u−

0 +u−
0

)
.

(8.4)

It is convenient to apply the travel time coordinate transformation

� =
∫d

0
E−1/2(x′)dx′, z =

1
�

∫x

0
E−1/2(x′)dx′, s =

t

�
(8.5)

which converts (8.4) into the computational forms

∂sv
+ + ∂zv

+ = − H ′

4H3/2

(
v+ +v−),

∂sv
− − ∂zv

− =
H ′

4H3/2

(
v+ +v−).

(8.6)

Here, H(z) = E(x(z)), H ′ = dH/dz, and v±(z,s) = u±(x,t).
Again, the wave speed has been linearized and the equations remain

coupled. The dynamic equations may be solved using the method of
characteristics.



430 Inverse scattering on weakly nonlinear rods

8.2. Inverse algorithm

Consider the recovery of H(z) from reflection data v−(0, s) =D(s) with-
out knowledge of b1. The reflection data is obtained by solving the direct
problem, using the correct values of b1 and H(z) as inputs. Then, the
leading order equations (8.6) are solved numerically to obtain the val-
ues of H(zi) at each spatial grid point. Then the travel time transforma-
tion is used to obtain the value of physical value of xi associated with
each computational value zi. As with the varying cross-sectional area,
the method is appropriate only for very weakly nonlinear materials.

The inverse problem is specified as follows: the dynamic equations
(8.6) are combined with boundary conditions

v+(0, s) =D(s)− f(s), v−(0, s) =D(s) (8.7)

and leading edge conditions

v+(z,z+) = −f(0)exp
((
H−1/2(z)− 1

)
/2
)
, (8.8)

v−(z,z+) = 0, (8.9)

where f(s) is the known applied velocity at the left boundary and D(s)
is the reflection data, to form a well-posed problem. Equation (8.8) is
obtained in the same manner as (7.6).

At this point, the inverse algorithm is the same as that for the varying
cross-sectional area, with one difference. The algorithm provides discrete
values of Hi at the points zi. These values must be converted to physical
coordinates to obtain the desired E(xi) values. These values are obtained
by discretizing the travel time transformation equation and solving iter-
atively for xi:

h = zi − zi−1 =
1
σ

∫xi

xi−1

E−1/2(x′)dx′

≈ 1
σ

xi −xi−1

2
(
E−1/2
i +E−1/2

i−1

)
=

1
σ

xi −xi−1

2
(
H−1/2

i +H−1/2
i−1

)
.

(8.10)

8.3. Uniqueness of solution theorem

Suppose that H ′(z)/4H3/2(z) is smooth, that |b1| is sufficiently small,
and that the reflection data D(s) = u−(0, s) is sufficiently small in magni-
tude. Then the inverse problem, to recover A(x) from the reflection data,
has a unique solution.
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E(x) with b1 = −.1
E(x) with b1 = −.1
E(x) with b1 = −.2

E(x) with b1 = +.1
E(x) with b1 = +.1
E(x) with b1 = +.2

Figure 8.1. The reconstructed elastic modulus E(x) = 1+ .1x for var-
ious b1 values using n = 128 grid points.
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E(x) with b1 = +.2

Figure 8.2. The reconstructed elastic modulus E(x) = 1 +
.1sin(2πx) for various b1 values using n = 128 grid points.
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The proof follows the format used to show uniqueness for the varying
cross-sectional area problem in the previous section.

8.4. Numerical results

A number of numerical tests were performed to study this case. The fol-
lowing modulus profiles were studied:

E1(x) = 1+ .1x, E2(x) = 1+ .1sin(2πx). (8.11)

The results are shown in Figures 8.1 and 8.2. The main observation to
be made here is that the inverse algorithm is much more sensitive to
variations in modulus than it is to variations in the cross-sectional area.
This makes sense, because the modulus appears in the stress-strain re-
lation and hence plays a more significant role in determining the nature
of wave propagation through the rod. However, the results match qual-
itatively with those for the varying cross-sectional area: small |b1| values
lead to good reconstructions, larger |b1| values lead to worse reconstruc-
tions, and if b1 is large enough, the algorithm fails because the wave
speed becomes negative.

Tests were also conducted for E(x) = 1− .1x and E(x) = 1− .1sin(2πx)
with results similar to those presented.

9. Conclusion

In this paper, elastic wave propagation in weakly nonlinear elastic rods
is considered in the time domain. The method of wave splitting is em-
ployed to formulate a standard scattering problem, forming the mathe-
matical basis for both direct and inverse problems. The focus here is on
developing algorithms for solving the inverse problem. An asymptotic
approach is used to linearize the dynamic equations. The goal is to de-
termine the conditions for which this approach is reasonable, and to use
the insight gained here to develop more robust inverse algorithms.

For the homogeneous nonlinear rod, the asymptotic approach leads to
an analytic expression for the transmitted field, which is used in a least
squares sense to recover the nonlinear parameter b1. For the homoge-
neous rod with varying cross section and the rod with varying modulus
of elasticity, the method of characteristics is used to recover the respec-
tive material parameter as a function of depth into the rod.

Numerical results indicate that although the inverse algorithms are
extremely fast, the asymptotic approach yields good results only when
the nonlinearity in the stress-strain relation is very weak. For even mod-
erate nonlinearities, another approach is needed for solving inverse
problems.
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Despite the limited usefulness of the algorithms presented here, there
are some valuable insights to be gained from this work. The elastic mod-
ulus affects wave propagation much more strongly than does the cross-
sectional area in nonlinear elastic rods, because of its appearance in the
stress-strain relation. The results here indicate that it is reasonable to pur-
sue a method that works in a global sense—these algorithms work well
near the incident boundary, with results that gradually worsen deeper
into the rod, and with occasional sudden failures. An algorithm that does
not use this “layer stripping” approach may work much better.

This paper is a first step in determining practical algorithms for solv-
ing inverse problems on nonlinear rods in the time domain. Work is cur-
rently underway to include higher-order asymptotic terms, to investi-
gate the effects of noisy data on this method, and to consider other ap-
proaches to solving such inverse problems. One such approach is the
optimization method presented in [8]. Although the context here is elas-
ticity, the analysis and numerics work just as well in electromagnetics
and acoustics.
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