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This paper is concerned with the problem of controlling a truncated general immigration
process, which represents a population of harmful individuals, by the introduction of a
predator. If the parameters of the model satisfy some mild conditions, the existence of
a control-limit policy that is average-cost optimal is proved. The proof is based on the
uniformization technique and on the variation of a fictitious parameter over the entire
real line. Furthermore, an efficient Markov decision algorithm is developed that generates
a sequence of improving control-limit policies converging to the optimal policy.
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1. Introduction

In many problems dealing with the optimal control of a stochastic process under the crite-
rion of minimizing the expected long-run average cost per unit time it is possible to prove
that the optimal policy initiates the controlling action if and only if the state of the pro-
cess exceeds a critical level. Such a policy is usually called control-limit policy. A method
that in some problems leads to the proof of the optimality of a control-limit policy is a
parametric analysis introduced by Federgruen and So [2] in a queueing model. According
to this method first it is shown that an optimal control-limit policy exists when a param-
eter (possibly fictitious) takes sufficiently small values. This assertion is then extended
inductively from interval to interval of the parameter values. An important advantage of
the Federgruen-So method is that in many cases, as a corollary, it can be proved that any
local minimum within the set of the average costs of control-limit policies is a global min-
imum within this set. This result enables us to compute very quickly the optimal policy
using the usual bisection procedure or a special-purpose policy iteration algorithm that
creates a sequence of strictly improving control-limit policies.

The present paper is concerned with the problem of controlling a pest population,
which grows stochastically according to a general immigration process in a habitat with
finite capacity, through the introduction of a predator. It is assumed that the predator
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captures the pests one at a time and then emigrates from the habitat. The capture rate
of the predator depends on the number of pests. A finite-state continuous time Markov
decision model is constructed and it is proved that there exists an average- cost optimal
control-limit policy, if the parameters of the model satisfy some mild conditions. The
proof is based on Federgruen-So method.

Note that the Federgruen-So method has been applied to two other Markov decision
models for pest control. These models differ from the present one in the way the pest
population grows or in the way the pest population is controlled. Specifically, in the first
of these models (see [7]) it was assumed that the pest population grows according to a
general immigration process in a habitat with finite capacity and it is controlled through
total catastrophes, which annihilate instantaneously the pest population size. In the sec-
ond model (see [8]) it was assumed that the pest population grows according to a Poisson
process in a habitat with unlimited capacity and it is controlled through the introduction
of a predator. The capture rate of the predator was assumed to be constant.

The structure of the rest of the paper is as follows. In Section 2 we give a detailed
description of the Markov decision process. In Section 3, firstly, a necessary and suf-
ficient condition is found under which the condition of never controlling is optimal.
When this condition fails, the optimality of control-limit policies is shown by applying
the Federgruen-So technique. In Section 4 a tailor-made policy iteration algorithm is de-
veloped that generates a sequence of improving control-limit policies and converges to
the optimal policy.

2. The model

Consider a population of individuals that cause some kind of damage (e.g., pests) which
grow stochastically according to a general immigration process in a habitat with carrying
capacity N , where N is a positive integer. Assume that the immigration rate that cor-
responds to each state i, 0 ≤ i ≤ N − 1 is equal to νi > 0. The immigration rate νN that
corresponds to the state N is necessarily equal to zero, since N is the carrying capacity
of the habitat. It is assumed that the damage done by the pests is represented by a cost
ci, 0≤ i≤ N , for each unit of time during which the population size is i. We impose the
natural assumptions that the sequence {ci} is non decreasing and c0 = 0.

We suppose that there is a controller who observes the evolution of the population
continuously and may take an action that introduces a predator in the habitat, whenever
a new state is entered. That is, the controller takes actions on a discrete-time mode. More
specifically, we assume that there exists a controlling mechanism which can be in one of
two modes: on or off. Whenever the mechanism is turned off the pest population evolves
without being influenced. When it is turned on, a predator is introduced in the habitat
after some random time that is exponentially distributed. The presence of the predator
immediately stops the immigrations of the pests, that is, the rates νi, 0≤ i≤ N − 1, take
immediately the value 0. As soon as the predator is introduced in the habitat, it captures
the pests one at a time until their population size is reduced to zero and then it emigrates
with rate ϑ > 0. It is assumed that the predator captures the pests with rate σi > 0 when
their population size is i, 1≤ i≤N . The unit of time has been chosen in such a way that
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the rate at which the predator is introduced in the habitat is equal to one. Thus, when the
controlling mechanism is on, the length of time until the introduction of the predator is
exponentially distributed with unit mean. Whenever the controlling mechanism is on, it
incurs a cost of K > 0 per time unit.

Let i and i′ be the states of the process at which the population size of the pests is i, 0≤
i≤N , and the predator is absent from their habitat or present, respectively. A stationary
policy f is defined by a sequence { fi : 0 ≤ i ≤ N} where fi is the action taken when the
process is at state i. It is assumed that fi = 1, when the controlling mechanism is on, and
fi = 0 when the controlling mechanism is off. If the stationary policy f ≡ { fi : 0≤ i≤N}
is used, our assumptions imply that we have a continuous time Markov chain model for
the population growth of the pests with state space S= {0,0′,1,1′, . . . ,N ,N ′}.

Our goal is to find a policy that minimizes the expected long-run average cost per unit
time for every initial state among all stationary policies. The decision epochs include the
epochs at which an immigration of a pest occurs and the epochs at which the predator
emigrates. An intuitively appealing class of policies is the class of control-limit policies
{Pn : n= 0,1, . . . ,N}, where Pn is the stationary policy under which the controlling action
is taken if and only if the population size of the pests is equal to or exceeds n. It seems
reasonable that the optimal policy will be of control-limit type if K is sufficiently small. In
an earlier paper (see [6]) a similar model was introduced, in which the pest population
grows in a habitat with unlimited capacity according to a simple immigration process.
The cost rates ci and the captures rates were taken as ci = i and σi = σ , i≥ 0. In that work
the optimality of a particular control-limit policy within the wider class of all stationary
policies was established by proving that it satisfies the optimality equation and certain
conditions given by [1].

In the present model, it seems difficult to repeat the same proof since the expression for
the average cost under a control-limit policy is too complicated. However, if we impose
some mild conditions on the parameters of the model, we can prove the existence of an
optimal control-limit policy by applying the Federgruen-So technique, which, as it was
mentioned in the previous section, is based on a variation of a parameter over the entire
real line. The same technique has been applied in some other queueing and maintenance
models (see Federgruen & So [3, 4], So [13], So & Tang [14, 15]) and in two pest control
models (see Kyriakidis [7, 8]).

The conditions that we impose on the parameters of the model are given below.

Condition 1.

N∑

j=i

( j∏

k=i+1
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The proposition below, which can be proved by induction on i, gives a sufficient con-
dition for the validity of Condition 1.

Proposition 2.1. If ν0 ≥ ν1 ≥ ··· ≥ νN−1 and σ1 ≤ σ2 ≤ ··· ≤ σN then Condition 1 holds.

3. The optimality of control-limit policies

If the process is never controlled the long-run average cost per unit time is cN sinceN is an
absorbing state in this case. In the proposition below a necessary and sufficient condition
is given under which the policy of never controlling is optimal. Its proof is presented in
the appendix.

Proposition 3.1. The policy that never introduces the predator in the habitat is optimal if
and only if

cN

(
1
ν0

+
1
ϑ

)
+
N−1∑

i=1

(
cN − ci

)( 1
νi

+
1
σi

)
≤ K. (3.1)

Assume now that the relation (3.1) is not valid. In this case the policy that never intro-
duces the predator is not optimal. The average cost of a stationary policy which prescribes
action 0 at state N is equal to the average cost of the policy that never introduces the
predator since N is an absorbing state under such a stationary policy. Consequently, we
can restrict ourselves only to the stationary policies that prescribe action 1 at state N . All
the results that we will present in the rest of this section are concerned with the optimal
policy among these stationary policies. Let r be a real number (possibly negative) that
represents a fictitious cost incurred each unit of time the process is occupying the state 0′.
In Theorem 3.5 it will be shown that a control-limit policy is optimal for any fixed value
of r, in particular for r = 0.

Let T(n)
i0′ and T(n)

i′0′ , 0≤ i≤N , be the expected time until the process under the policy Pn,

0≤ n≤N , reaches the state 0′, given that the initial state is i or i′, respectively. Let alsoC(n)
i0′

and C(n)
i′0′ , 0≤ i≤N , be the expected cost until the process under the policy Pn, 0≤ n≤N ,

reaches the state 0′, given that the initial state is i or i′, respectively. Conditioning on the
first transition from the state i, we obtain:

T(n)
i0′ =

1 + νiT
(n)
i+1,0′ +

∑i
j=1 σ

−1
j

νi + 1
, n≤ i≤N − 1, (3.2)

C(n)
i0′ =

ci +K + νiC
(n)
i+1,0′ +

∑i
j=1 cj /σj

νi + 1
, n≤ i≤N − 1. (3.3)

Note also that

T(n)
N0′ = 1 +

N∑

j=1

1
σj

, C(n)
N0′ = cN +K +

N∑

j=1

cj
σj
. (3.4)

Given the above values of T(n)
N0′ and C(n)

N0′ , the quantities T(n)
i0′ and C(n)

i0′ , i=N − 1, . . . ,n can
be found from (3.2) and (3.3), recursively.
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Let gn denote the expected long-run average cost per unit time under the policy Pn,
0≤ n≤N . The process under the policy Pn is a regenerative process, where the successive
entries into state 0′ can be taken as regenerative epochs between successive cycles. From
a well-known regenerative argument (see [11, Proposition 5.9]) it follows that gn is equal
to the expected cost of a cycle divided by the expected time of the cycle. Hence,

gn =
∑n−1

i=0 ci/νi +C
(n)
n0′ + r/ϑ

∑n−1
i=0 1/νi +T

(n)
n0′ + 1/ϑ

, 0≤ n≤N. (3.5)

Let h(n)
i , 0≤ n≤N , be the relative value associated with the policy Pn, 0≤ n≤N , that

corresponds to the state i and let w(n)
i , 0≤ n≤N , be the relative value associated with the

policy Pn, 0≤ n≤N , that corresponds to the state i′. These quantities are defined by (see
relation (3.1.7) in Tijms [16])

h(n)
i = C(n)

i0′ − gnT(n)
i0′ , (3.6)

w(n)
i = C(n)

i′0′ − gnT(n)
i′0′ . (3.7)

Clearly,

w(n)
0 = 0, (3.8)

since gn = C(n)
0′0′ /T

(n)
0′0′ , by the usual regenerative argument. According to the semi-Markov

version of Theorem 3.1.1 in Tijms [16] (see [16, page 220]) the numbers h(n)
i , w(n)

i , 0 ≤
i≤N and gn satisfy the system of equations:

h(n)
i = ci− gn

νi
+h(n)

i+1, 0≤ i≤ n− 1, (3.9)

h(n)
i = ci +K − gn + νih

(n)
i+1 +w(n)

i

νi + 1
, n≤ i≤N − 1, (3.10)

w(n)
i = ci− gn

σi
+w(n)

i−1, 1≤ i≤ n, (3.11)

w(n)
0 = r− gn

ϑ
+h(n)

0 . (3.12)

Let A(n)
i = T(n)

i0′ −
∑i

j=1 σ
−1
j and B(n)

i = C(n)
i0′ −

∑i
j=1(cj /σj).

The results of Lemmas 3.2, 3.3 and 3.4 will be used in the proof of Theorem 3.5.
The proof of Lemma 3.2 is similar to the proof of Proposition 3 in [8] and the proof
of Lemma 3.3 is similar to the proof of Lemma 2 in [7].

Lemma 3.2. The policy Pn is optimal if and only if

ci− gn
νi

+h(n)
i+1 ≤

ci +K − gn + νih
(n)
i+1 +w(n)

i

νi + 1
, 0≤ i≤ n− 1,

ci +K − gn + νih
(n)
i+1 +w(n)

i

νi + 1
≤ ci− gn

νi
+h(n)

i+1, n≤ i≤N − 1.

(3.13)
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Lemma 3.3. Assume that the policy Pn, n < N , is optimal for some fixed value R of the pa-
rameter r. Then, it is impossible for the policy Pn to be optimal for all r ≥ R (simultaneously).

Lemma 3.4. (i) Condition 1 implies that the sequence {A(n)
i } is non-increasing in i, n≤

i < N , for each n= 0,1, . . ..
(ii) Condition 2 implies that the sequence {B(n)

i } is non-decreasing in i, n≤ i < N , for
each n= 0,1, . . ..

Theorem 3.5. There exists a sequence R0 < R1 ≤ R2 ≤ ··· ≤ RN < RN+1 with R0 = −∞
and RN+1 = +∞ such that the policy Pn, 0 ≤ n ≤ N is optimal for all r ∈ [Rn,Rn+1], where
Rn+1 = sup{w :w ≥ Rn, the policy Pn is optimal for all r ∈ [Rn,w]}.
Proof. The proof is by induction on n. We first establish that a number R > −∞ exists
such that the policy P0 is optimal for all r ≤ R. In view of Lemma 3.2, it suffices to show

that the numbers h(0)
i and w(0)

i , 0≤ i≤N , and g0 satisfy the inequalities:

ci +K − g0 + νih
(0)
i+1 +w(0)

i

νi + 1
≤ ci− g0

νi
+h(0)

i+1, 0≤ i≤N − 1. (3.14)

Using (3.6) and (3.7), with n= 0 the above inequalities reduce to

g0

[
νi
(
T(0)
i+1,0′ −T(0)

i′0′
)

+ 1
]
≤ ci + νiC

(0)
i+1,0′ − νiC

(0)
i′0′ − νiK , (3.15)

with 0≤ i≤N − 1.
Note that the process under P0 must pass through the state i′ before it enters the

state 0′, if the initial state is i + 1. Hence, T(0)
i+1,0′ − T(0)

i′0′ > 0. From (3.5) we have that
g0 →−∞ as r →−∞. Thus, there exists a number R >−∞ such that (3.15) hold simulta-
neously for all r ≤ R. From Lemma 3.3 it follows that R1 < +∞, where R1 = sup{w : w ≥
R and the policy P0 is optimal for all r ≤w}.

Suppose that there exists a sequence R0 < R1 ≤ R2 ≤ ··· ≤ Rn, where n < N , such
that the policy Ps, 0 ≤ s ≤ n, is optimal for all r ∈ [Rs,Rs+1] with Rs+1 = sup{w : w ≥
Rs and the policy Ps is optimal for all r ∈ [Rs,w]} < +∞. We will show that the policy Pn+1

is optimal for r = Rn+1. To achieve this, we use the standard uniformization technique
(see Serfozo [12]) to transform the original Markov decision process into an equiva-
lent one in which the times between transitions have the same exponential parameter
ν = max1≤i≤N{ν0,1 + νi,σi,ϑ} whatever the state and the action are. The reformulated
Markov decision process has the same average cost as the original one under any sta-

tionary policy. Thus both models have the same optimal policy. Let g̃n and h̃(n)
i , w̃(n)

i ,
0≤ i≤N , denote the average cost and the relative values under the policy Pn in the new

model. Let also T̃(n)
i0′ , T̃(n)

i′0′ , and C̃(n)
i0′ , C̃(n)

i′0′ , 0≤ i≤N , be the expected times and costs, re-
spectively, until the new process under the policy Pn, 1≤ n≤N , reaches the state 0′, given
that the initial state is i or i′.
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Consider now some ε > 0. If r = Rn+1 + ε, the policy Pn is not optimal for the original
and, consequently, for the new model. Hence, according to the corresponding result of
Lemma 3.2 for the equivalent model one of the following two cases occurs:

Case 1. For some i with 0≤ i≤ n− 1:

ci +K − g̃n + νih̃
(n)
i+1 +

[
ν− (νi + 1

)]
h̃(n)
i + w̃(n)

i

ν
<
ci− g̃n + νih̃

(n)
i+1 +

(
ν− νi

)
h̃(n)
i

ν
. (3.16)

The above inequality is equivalent to ψi(Rn+1 + ε) > 0, with

ψi(r)= h̃(n)
i − w̃(n)

i −K
= C̃(n)

i0′ − C̃(n)
i′0′ − g̃n

(
T̃(n)
i0′ − T̃(n)

i′0′
)
−K

= C(n)
i0′ −C(n)

i′0′ − gn
(
T(n)
i0′ −T(n)

i′0′
)
−K ,

(3.17)

where the last equality follows from the fact that the original and the reformulated process

have the same generator (see Serfozo [12]). Since T̃(n)
i0′ − T̃(n)

i′0′ > 0 and gn as given in (3.5)
is increasing in r we deduce that ψi(r) is decreasing in r. Thus,

0 < ψi
(
Rn+1 + ε

)
< ψi

(
Rn+1

)≤ 0, (3.18)

where the last inequality follows from the optimality of Pn for r = Rn+1. Clearly, this is a
contradiction and the following Case 2 must arise.

Case 2. For some i with n≤ i≤N :

ci− g̃n + νih̃
(n)
i+1 +

(
ν− νi

)
h̃(n)
i

ν
<
ci +K − g̃n + νih̃

(n)
i+1 +

[
ν− (νi + 1

)]
h̃(n)
i + w̃(n)

i

ν
. (3.19)

The above inequality is equivalent to ψi(Rn+1 + ε) < 0, with

ψi(r)= h̃(n)
i − w̃(n)

i −K
= C(n)

i0′ −C(n)
i′0′ − gn

(
T(n)
i0′ −T(n)

i′0′
)
−K

= B(n)
i − gnA(n)

i −K.
(3.20)

From Lemma 3.4 we deduce that ψi(r), n≤ i≤N , is non-decreasing in i. Thus,

ψn
(
Rn+1 + ε

)≤ ψi
(
Rn+1 + ε

)
< 0. (3.21)

Consider a sequence {ε�} ↓ 0. In view of the above inequality we have that for all �,
ψn(Rn+1 + ε�) < 0. From the continuity of ψn(r) in r it follows that ψn(Rn+1)≤ 0. However,
ψn(Rn+1) ≥ 0 since the policy Pn is optimal for r = Rn+1. Thus, ψn(Rn+1) = 0. The last
equality means that in the new model for r = Rn+1 the actions prescribed, for each state i,
by the policy Pn+1 minimizes the right-side of the optimality equation (see [16, equation

(3.5.4)]), which is satisfied by the numbers h̃(n)
i , w̃(n)

i , 0≤ i≤N , and g̃n. Thus the policy
Pn+1 is optimal for r = Rn+1 in the new and, consequently, in the original model.
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Consider again the original model. If n+ 1 < N , we define Rn+2 = sup{w : w ≥ Rn+1

and the policy Pn+1 is optimal for all r ∈ [Rn+1,w]}. From Lemma 3.3 it follows that
Rn+2 <∞. If n+ 1=N , it can be shown that the policy PN is optimal for all r ≥ RN , using
a similar analysis as in Case 1 without transforming the model. �

Lemma 3.6. {T(n)
n0′ }, 0≤ n≤N , is non-decreasing in n.

Proof. Conditioning on the first transition from state n we have that

T(n)
n0′ =

1
νn + 1

+
νn

νn + 1
T(n+1)
n+1,0′ +

1
νn + 1

n∑

j=1

1
σj
. (3.22)

Hence,

T(n+1)
n+1,0′ −T(n)

n0′ =
1

νn + 1

(
T(n+1)
n+1,0′ − 1−

n∑

j=1

1
σj

)
. (3.23)

Conditioning on the time until the introduction of the predator we obtain

T(n+1)
n+1,0′ =

∫∞

0

⎡
⎣t+

N∑

j=n+1

pn+1, j(t)

( j∑

k=1

1
σk

)⎤
⎦e−tdt

≥ 1 +
∫∞

0

⎡
⎣

N∑

j=n+1

pn+1, j(t)

( j∑

k=1

1
σk

)⎤
⎦e−tdt

= 1 +
n∑

k=1

1
σj

,

(3.24)

where pn+1, j(t) is the probability that the state of the (uncontrolled) general immigration
process at time t will be j, given that the state at time 0 is n+ 1. The relations (3.23) and
(3.24) give the result of the lemma. �

From (3.5) and Lemma 3.6 we deduce that gn can be written as

gn = rπn + g̃n, (3.25)

where g̃n is independent of r and πn is decreasing in n. Using this result and Theorem 3.5,
the following proposition, which will be useful in the computation of the optimal control-
limit policy, can be proved in the same way as the Lemma 5.2 in Federgruen and So [2].

Proposition 3.7. For any fixed r any local minimum within the set {gn : 0≤ n≤ N} is a
global minimum within this set.

4. The computation of the optimal policy

In this section we assume that r = 0. So, we consider again the model introduced in
Section 2. In view of Theorem 3.5, if condition (3.1) fails, there exists an optimal control-
limit policy Pn∗ . From Proposition 3.7 it follows that the optimal critical point n∗ can be
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found by the standard bisection procedure or by a tailor-made policy iteration algorithm.
The tailor-made policy iteration algorithm, which is based on Tijms’s embedding tech-
nique (see Tijms [16, page 234]), generates a sequence of strictly improving control-limit
policies that converges to Pn∗ . Similar algorithms have developed in queueing, inventory
and maintenance models (see [10] and [16, Section 3.6]) and in other pest control models
(see [5, 7]). From a great number of examples we have tested it seems that the tailor-made
policy iteration algorithm is more efficient than the bisection procedure.

Tailor-made policy iteration algorithm

Step 1. Check (3.1). If it is true then the policy of never controlling is optimal. Otherwise
go to Step 2.

Step 2 (Initialization). Choose an initial critical integer n, 0≤ n≤N .

Step 3 (Value-determination step). For the current policy Pn, compute its average cost gn,

using (3.2), (3.3), (3.4), (3.5) and the associated relative values h(n)
i , 0≤ i≤ n, using (3.8),

(3.10), (3.12).

Step 4 (Policy-improvement step). (a) Find, if it exists, the smallest integer ñ such that
1≤ ñ < n and

ci +K − gn + νih
(n)
i+1 +w(n)

i

νi + 1
≤ h(n)

i , ñ≤ i < n, (4.1)

where, w(n)
i is computed from the relations (3.8) and (3.11), and go to Step 3 with n

replaced by ñ. Else go to (b).
(b) Find, if it exists, the largest integer ñ such that n < ñ≤N and

ci− gn
νi

+h(n)
i+1 ≤ h(n)

i , n≤ i≤ ñ− 1. (4.2)

The numbers h(n)
i , n+ 1 ≤ i ≤ N , can be found, if it is necessary, by (3.2), (3.3), (3.4),

(3.6).

Step 5 (Convergence test). If it is not possible to find an integer ñ such that Steps 4(a) or
4(b) are satisfied, then the algorithm is stopped. The optimal policy is Pn and its average
cost is gn.

We give as illustration a numerical example in which N = 160, νi = 20(1− i/N), σi =
40, ci = i, 1 ≤ i ≤ N , ϑ = 30, K = 80. This example clearly satisfies the condition of
Proposition 2.1 and, therefore, Condition 1 holds. It can be also verified numerically that
Condition 2 holds. If the initial policy is the policy P160 the successive policies that are
generated by the algorithm are the policies P160, P8, P45, P31, P33 with average costs 129.7,
56.87, 47.58, 46.47, 46.44, respectively.

Appendix

Proof of Proposition 3.1. Suppose that the policy of never controlling is optimal. Its aver-
age cost is equal to cN . Assume that (3.1) is not true. From the well-known regenerative
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argument (see Ross [11, Proposition 5.9]) it follows that the average cost gN under the
policy PN is given by

gN =
∑N−1

i=0

(
ci/νi

)
+ cN +K +

∑N
i=1

(
ci/σi

)
∑N−1

i=0

(
1/νi

)
+ 1 +

∑N
i=1

(
1/σi

)
+
(
1/ϑ

) . (A.1)

It can be seen that gN < cN . This is a contradiction.
Suppose that (3.1) holds. From Miller [9, Theorem 10] it follows that the policy of

never controlling is optimal if there exist two sequences {hi} and {wi} that correspond to
the states i and i′, 0≤ i≤N , respectively, such that

cN = ci + νihi+1− νihi, 0≤ i≤N − 1

cN ≤ ci +K + νihi+1 +wi−
(
νi + 1

)
hi, 1≤ i≤N

cN = ci + σiwi−1− σiwi, 1≤ i≤N
cN = c0 + ϑh0− ϑw0.

(A.2)

It can be readily checked that the expressions:

hi =
i−1∑

j=0

cN − cj
ν j

+
cN
ϑ

+w0, 0≤ i≤N

wi =
i∑

j=1

cj − cN
σj

+w0, 0≤ i≤N
(A.3)

satisfy the above four relations for any value of w0. Hence the policy of never controlling
is optimal. �

Proof of Lemma 3.4. (i) To prove that for each n = 0,1, . . . ,N − 1 the sequence {A(n)
i } is

non-increasing in i, n≤ i < N , it suffices to show that

T(0)
i+1,0′ −T(0)

i0′ ≤
1
σi+1

, 0≤ i < N − 1. (A.4)

Using (3.2) we see that the above relation is equivalent to the following one:

T(0)
i+1,0′ ≤ 1 +

νi + 1
σi+1

+
i∑

j=1

1
σj

, 1≤ i+ 1 < N. (A.5)

Conditioning on the time until the introduction of the predator we obtain that

T(n+1)
i+1,0′ =

∫∞

0

⎡
⎣t+

N∑

j=i+1

pi+1, j(t)

( j∑

k=1

1
σk

)⎤
⎦e−tdt

= 1 +
N∑

j=i+1

p∗i+1, j

( j∑

k=1

1
σk

)
,

(A.6)
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where, pi+1, j(t) is the probability that the state of the (uncontrolled) general truncated
immigration process will be j at time t given that the state at time 0 is i+ 1, and

p∗i+1, j =
∫∞

0
pi+1, j(t)e−tdt. (A.7)

Using (A.6) we see that (A.5) is equivalent to

N∑

j=i
p∗i j

( j∑

k=i
σ−1
k

)
≤ νi−1σ

−1
i +

i∑

j=i
σ−1
j , 1≤ i < N. (A.8)

Taking Laplace transforms with respect to t in the Kolmogorov forward equation for the
probabilities pi j(t) we obtain the following expression for p∗i, j , i≤ j ≤N .

p∗i j =
⎡
⎣

j∏

k=i+1

νk−1
(
1 + νk

)−1

⎤
⎦(1 + νi

)−1
, i≤ j ≤N ,

i∏

k=i+1

≡ 1. (A.9)

Using (A.9) it can be seen that the relation (A.8) is equivalent to Condition 1.

(ii) To prove that, for each n= 0,1, . . . ,N − 1 the sequence {B(n)
i } is non-decreasing in

i, n≤ i < N it suffices to show that

C(0)
i+1,0′ +C(0)

i0′ ≥
ci+1

σi+1
, 0≤ i < N − 1. (A.10)

Using (3.3) we see that the above relation is equivalent to the following one:

C(0)
i+1,0′ ≥ ci +K +

i+1∑

j=1

cj
σj

+
νici+1

σi+1
, 1≤ i+ 1 < N. (A.11)

Conditioning on the time until the introduction of the predator we obtain that

C(0)
i+1,0′ =

∫∞

0

[∫ t

0

{
E
[
cX(s) | X(0)= i+ 1

]
+K

}
ds

+
N∑

j=i+1

pi+1, j(t)

( j∑

k=1

ck
σk

)]
e−tdt,

(A.12)

where X(s) is the population size of the (uncontrolled) truncated general immigration
process at time s. Applying a well-known property of Laplace transforms (e.g., see Tijms
[16, page 362]) the above expression reduces to

C(0)
i+1,0′ =

∫∞

0
E
[
cX(t) | X(0)= i+ 1

]
e−tdt

+
∫∞

0

⎡
⎣

N∑

j=i+1

pi+1, j(t)

( j∑

k=1

ck
σk

)⎤
⎦e−tdt+K

=
N∑

j=i+1

p∗i+1, j c j +
N∑

j=i+1

p∗i+1, j

( j∑

k=1

ck
σk

)
+K.

(A.13)
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Using (A.13) it can be seen that (A.11) is equivalent to

N∑

j=1

p∗i j

(
cj +

j∑

k=1

ck
σk

)
≥ ci−1 +

i∑

j=1

cj
σj

+
νi−1ci
σi

, 1≤ i < N. (A.14)

In view of (A.9) the last relation is equivalent to Condition 2.
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