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Received 17 April 2007; Accepted 8 August 2007

Recommended by Paul Cowpertwait

To increase the reliability of modules, and thus of systems assembled from them, they
are frequently constructed using parallel load-sharing components. Examples include jet
engines, electrical power networks, and telecommunications networks. We consider the
situation when the components operate independently, but when any one of them fails,
the load of the failed component is instantaneously distributed among the working com-
ponents. The entire module fails when the last working component fails. We analyze the
survival probability and residual life expectancy of such modules. An obvious application
is to the case of the 1998 Auckland power supply failure in New Zealand.
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1. Introduction and motivation

Reliability systems often consist of several subsystems, which may be called modules. In
practical reliability analysis, one often considers first the reliability of each module, and
derives the reliability of the system as a whole. A classical example of such a system is a
combination of data transmission routers. Since, in many areas, the continuity of data
flow is of utmost importance, the system’s reliability is increased by incorporating re-
dundancy in the form of parallel components or subsystems. For instance, data transfers
between two points may be accomplished by multiple (identical or not) parallel routers,
with electricity supplied to each of the routers by several (identical or not) power units.

In general, we are interested in a module consisting K ≥ 2 parallel components. We
denote the lifetimes of the components by Tk, 1≤ k ≤ K , with survival functions Sk(t)=
P{Tk > t}, and hazard rate (HR) functions hk(t) =−S′k(t)/Sk(t), respectively. When one
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of the components fails, its load is distributed among the working components. The en-
tire module fails when the last working component fails; denote the module’s failure time
by M(K). The corresponding survival and mean residual life (MRL) functions are, re-
spectively,

SM(K)(t)= P
{
M(K) > t

}
,

μM(K)(t)= ISM(K)(t)
SM(K)(t)

,
(1.1)

where ISM(K)(t) =
∫∞
t SM(K)(x)dx. We next give a couple of illustrative examples, where

the need to estimate the above two functions is a natural one.

“Consider jet engines functioning under full load on a commercial air-
plane. One functioning jet engine is enough for a small airplane, while 2
engines are necessary for a big airplane. But for higher reliability, 2 en-
gines are functioning for the small airplane and 4 for the big airplane.
An engine controller manages the load sharing. When 2 engines func-
tion in a small airplane, the load on each is much less than when they
function alone. From the test data, the failure rate of the engines is re-
duced to 45% under half load. Similarly, if 4 engines are functioning for
a big airplane, the failure rate for each engine is reduced to 45%, while
if three engines are functioning, the failure rate is reduced to 75% . . . for
how long can the small and big airplanes fly before the reliability drops
below 0.9?” [1].

We see from this excerpt that it is natural to aim at estimating the airplane’s survival func-
tion SM(K)(t). We may also want to know for how long, on average, the airplane can still
stay in the air, for which we need to estimate the MRL function μM(K)(t). Of course, the
above questions are more mathematical idealizations than reflections of reality, but they
serve as conceptual examples of some of the types of problems in the area. In practice,
even large jets can land relatively safely without a single functioning engine [2, 3].

“The 1998 Auckland power crisis was an event that occurred in the Auck-
land, New Zealand, Central Business District. The area suffered a five-
week-long power outage in 1998. At the beginning of 1998, almost all of
downtown Auckland received electricity from the supplier Mercury En-
ergy via only four power cables, two of them were 40-year-old oil-filled
cables past their replacement date. One of the cables failed on 20 Janu-
ary, possibly due to the unusually hot and dry conditions, another on 9
February, and due to the increased load from the failure of the first ca-
bles, the remaining two failed on 19 and 20 February, leaving the central
business district (except parts of a few streets) without power” [4].

For a detailed account and analysis of the power crisis, see [5]. In this case, estimation
of the mean residual life is of utmost importance in deciding what emergency repair or
replacement activities may be (more) effective.

To get an initial feel about the module’s survival, HR, and MRL functions, we note that
if the failure of any one of the K components does not influence the HR functionsof the
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functioning components, then the module’s survival function SM(K)(t) can be written in
terms of the individual survival functions as 1−∏K

k=1(1− Sk(t)). The individual survival
functions Sk(t) can in turn be expressed using the corresponding HR functions hk(t) as
Sk(t) = exp{−∫ t0 hk(y)dy}. In the context of the present paper, due to the load-sharing
scenario, the dynamics of the entire module and thus of its survival and MRL functions
are quite different from those in the case of non-interacting parallel components.

There are a few closely related references on this topic. The reliability of load sharing
systems may be studied through positively dependent multivariate life distributions [6];
for positively dependent bivariate life distributions, we refer to [7, Section 9.2]. Another
approach of studying dependency among parallel components is by using interaction
schemes. For example, Murthy and Nguyen [8], and Murthy and Wilson [9] propose
and analyze an interaction scheme where, in a two-component system, the failure of one
component provokes the failure of another component with probability p, and thus does
not provoke with 1− p. Another failure interaction scheme in various generalities—we
follow a similar line of thought in the present paper—is where the failure of a component
modifies the HR function of the other components by not provoking its failure instan-
taneously but modifying its conditional time to failure [10–13]. These papers assume
piecewise constant failure rates, or various degrees of interchangeability and symmetry
in their components and/or redistribution schemes, whereas our results are presented
in complete generality, and include estimators for the MRL. Perhaps more importantly,
our work starts with the notion that there might be too few observations of failing entire
modules in order to derive desired statistical inferential results, but failure times of indi-
vidual module’s components might be more readily available (e.g., from laboratory-type
testing). Hence assuming the availability of such data, we then aim at deriving formu-
lae for the survival function—and thus, in turn, failure, MRL, and other functions—of
the entire module. In contrast, the aforementioned papers are concerned with estimating
the component failure rate function given the observed failure times of entire systems.
Note also that this problem can be considered [1, 12] in the context of a more general
system, the k-out-of-K :G, which, by definition, functions as long as there are at least k
(1≤ k ≤ K) components working. These papers consider specific distributions and load
sharing rules, with less generality than our results.

The remainder of the paper is organized as follows. In Section 2, we present the model,
notational conventions, and other mathematical formalities. Section 5 contains expres-
sions for the survival and MRL functions, SM(K)(t) and μM(K)(t), in terms of individual
components that work under the original or increased loads. The general results, Theo-
rems 5.1 and 5.2, are preceded in Section 3 by a detailed analysis of the case K = 2, which
is of interest in its own right, as well as for a more easily comprehended example of the
general theorems. Explicit examples of the K = 2 case are given in Section 4, where the
performance of parametric and nonparametric estimators of the survival and MRL func-
tions are examined.

Two of us (M.B. and C.D.L.) were fortunate enough to be colleagues of Jeff Hunter
when he occupied the Chair in Statistics at Massey University. Jeff ’s inaugural address
was on the subject of reliability and warranty analysis, and we hope he enjoys this sequel.
The many visits of the third author (R.Z.) to Massey University in PalmerstonNorth did
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not pass by without Jeff flying in from Auckland either to give an inspiring seminar on
Generalized Inverses and Stochastic Processes, or to enliven morning and afternoon teas.

2. Mathematical formalism

We assume that the failure times T1, . . . ,TK are independent, though not necessarily iden-
tically distributed, random variables. We work with continuous life-time distributions,
and hence assume that there are no multiple failures at any time as multiple failures can
occur only with zero probabilities. The first failure occurs at the time T1:K =min1≤k≤K Tk,
which is the first order statistic of T1, . . . ,TK . Let D be the first antirank of T1, . . . ,TK ,
which is (uniquely) defined by TD = T1:K . Hence the pair (D,T1:K ) tells us which of the
components {1, . . . ,K} fails first and at what time.

At the time T1:K , the load of the failed component D is instantaneously distributed
among the remaining K − 1 components, whose set we denote by Δ(1) = {1, . . . ,K} \ {D}.
Specifically, for every k ∈ Δ(1), the failure of the Dth component increases the HR func-

tion hk(t) of the kth (working) component by a function a(1)
D,k(t), where the superscript

(1) indicates that the redistribution has occurred (immediately) after the 1st failure.

Hence for every k ∈ Δ(1), we have the conditional-on-{T1, . . . ,TK} HR function h(1)
k (t)=

(hk(t) + a(1)
D,k(t))1{T1:K≤t}, where the indicator 1{T1:K≤t} is equal to 1 when the statement

T1:K ≤ t is true and is 0 otherwise. Let T(1)
k , k ∈ Δ(1) be conditionally-on-{T1, . . . ,TK} in-

dependent random variables whose conditional-on-{T1, . . . ,TK} distributions have the
HR functions h(1)

k (t).
Before proceeding further, let us discuss intuitively what we have introduced so far.

First, note that h(1)
k (t) = 0 for all t < T1:K , which implies that the random variables T(1)

k ,
k ∈ Δ(1) do not take on any value in the interval [0,T1:K ]. Hence in addition to the ‘origi-
nal’ situation with K random variables T1, . . . ,TK , we have constructed an “artifact” with
K − 1 random variables T(1)

k , k ∈ Δ(1), which are “activated” at the moment t = T1:K and

governed by the HR functions hk(t) + a(1)
D,k(t). When one of the Δ(1) components fails, we

create new K − 2 “artificial” components. Proceeding in a similar fashion, we specify the
mechanism that governs the life of the entire module and allows us, via a conditioning
technique, to determine its survival, HR, and MRL functions. We next describe this pro-
cedure rigorously and also introduce additional notation to be used throughout the rest
of the paper.

To begin, we find it convenient to use the notation T(0)
1 , . . . ,T(0)

K instead of T1, . . . ,TK ,

respectively, andD(0) instead ofD. Next, starting with the “initial” random variables T(0)
k ,

we recursively, for all i= 1, . . . ,K − 2, define the following quantities.

(i) The random variables D(i) and T(i)
1:(K−i), which respectively specify the (i+ 1)st

failed component and its failure time, which are related via (or defined by) the

equations T(i)
D(i) = T(i)

1:(K−i) ≡mink∈Δ(i) T(i)
k , where Δ(0) = {1, . . . ,K} and, for any i≥

1, the set Δ(i) = Δ(i−1) \ {D(i−1)} consists of all working components immediately
before the (i+ 1)st failure.

(ii) Conditionally-on-{D(0), . . . ,D(i),T(i)
1:(K−i)} independent random variables T(i+1)

k ,

k ∈ Δ(i), whose conditional-on-{D(0), . . . ,D(i),T(i)
1:(K−i)} distributions have the HR
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functions

h(i+1)
k (t)=

(

hk(t) +
i+1∑

m=1

a(m)
D(m−1),k(t)

)

1{T(i)
1:(K−i)≤t}. (2.1)

Hence, T(i+1)
k is the lifetime of the kth component after i+ 1 failed components, which are

D(0), . . . ,D(i). The random variable T(i+1)
k starts its life at the time t = T(i)

1:(K−i).
Note that, since there are K components in the module, the largest value of i is K − 1

as there are no functioning components after the Kth failure. When i= K − 2, then there

is only one “surviving” random variable T(K−1)
k , whose index k is the (only) member of

the singleton set {1, . . . ,K} \ {D(0), . . . ,D(K−2)}; denote the member by κ(K − 1). Hence

we have M(K) = T(K−1)
κ(K−1), and so the module’s survival function SM(K)(t) can be written

as SM(K)(t)= P{T(K−1)
κ(K−1) > t}. With the help of the latter equation, the corresponding for-

mula for the MRL function μM(K)(t) can be expressed in terms of the survival function

of the random variable T(K−1)
κ(K−1) using (1.1). Of course, one can also derive an analogous

expression for the HR function via the equation hM(K)(t)=−S′M(K)(t)/SM(K)(t). Section 3
provides a detailed analysis of the survival and MRL functions when K = 2.

3. Survival and MRL functions for two components

In this section, we give a detailed analysis of the survival function SM(2)(t) of a module
with two (possibly different) components whose independent lifetime variables are T1

and T2 with (possibly different) survival functions S1(t) and S2(t), respectively. At the
time T1:2 =min(T1,T2), one of the two components fails; let it be i. As a result of the
failure, the HR function of the working component k = not(i) increases by a function

a(1)
i,k (t), for all t ≥ T1:2. (Note that not(i)= 3− i as we consider the K = 2 case.) Let S+i

k (t)
be the survival function of the component k when it is working under its own load plus
the load of the failed component i, which in our current two-component situation means
that the component k takes on the whole module’s load.

There is a possibility that we might have a sufficiently large number of failure times of
such modules, in which case we estimate SM(2)(t) using the empirical survival function,
or fit a parametric distribution to the failure times. Failing a sufficiently large number of
modules may not, however, be feasible, due to time and/or cost considerations. However,
assessing the reliability of individual components under normal and/or increased loads
can be quite a feasible task, say, in a laboratory environment. Quantitative accelerated
life testing techniques can be used to speed up the process (cf., e.g., Nelson [14]). For the
reasons noted above, in the next theorem, we express SM(2)(t) in terms of the “individual”
survival functions Si(t) and S+i

not(i)(t), for i= 1 and 2.

Theorem 3.1. We have that

SM(2)(t)=−
2∑

i=1

S+i
not(i)(t)

∫

1{y≤t}
Snot(i)(y)

S+i
not(i)(y)

dSi(y) + S1(t)S2(t). (3.1)

We can estimate the survival functions S1(t) and S2(t) on the right-hand side of (3.1)
by exposing (e.g., in a laboratory environment) the two components to their “normal”
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loads, and we can also estimate the survival functions S+2
1 (t) and S+1

2 (t) by exposing the
corresponding components to the load of the entire module. In the nonparametric ap-
proach, we estimate the survival functions Si(t), i = 1,2 as Ŝi(t) = (1/ni)

∑ni
�=1 1{Ti(�)>t},

where Ti(1), . . . ,Ti(ni) are independent copies of the random variable Ti ∼ Si. (For a given
random variable X , it is customary to use the notation X1, . . . ,Xn for copies of X . Since we
already use subscripts for other good reasons, throughout the paper, we useX(1), . . . ,X(n)
to denote copies of X .) Next, we use independent copies T+i

j (1), . . . ,T+i
j (mj) of the

random variable T+i
j ∼ S+i

j to construct an estimator for S+i
j (t), which is Ŝ+i

j (t) =
(1/mj)

∑mj

�=1 1{T+i
j (�)>t}. Thus, we have the nonparametric estimator of the module’s sur-

vival function

ŜM(2)(t)=
2∑

i=1

Ŝ+i
not(i)(t)

1
ni

ni∑

�=1

1{Ti(�)≤t}
Ŝnot(i)

(
Ti(�)

)

Ŝ+i
not(i)

(
Ti(�)

) + Ŝ1(t)Ŝ2(t). (3.2)

To derive an analogous expression for the MRL function μM(2)(t) in terms of the four
“individual” survival functions, we need to derive an analogous expression for the inte-
gral ISM(2)(t), which can be done by either integrating the right-hand side of (3.1) or by
using general Theorem 5.2 with K = 2. This gives us the following corollary.

Corollary 3.2. We have that

ISM(2)(t)=
2∑

i=1

∫∫
(
x−max(y, t)

)
+dS

+i
not(i)(x)

Snot(i)(y)

S+i
not(i)(y)

dSi(y)

−
2∑

i=1

∫

(y− t)+Snot(i)(y)dSi(y),

(3.3)

where c+ = c if c > 0 and c+ = 0 otherwise.

Equations (3.1) and (3.3) can be used for constructing parametric estimators for the
MRL function μM(2)(t). If, however, we want to use a nonparametric estimator, then we
can construct it with the help of the non-parametric estimator for the integral ISM(2)(t),

ÎSM(2)(t)=
2∑

i=1

1
nimnot(i)

ni∑

�=1

mnot(i)∑

v=1

(
T+i

not(i)(v)−max
(
Ti(�), t

))
+

Ŝnot(i)
(
Ti(�)

)

Ŝ+i
not(i)

(
Ti(�)

)

+
2∑

i=1

1
ni

ni∑

�=1

(
Ti(�)− t)+Ŝnot(i)

(
Ti(�)

)
.

(3.4)

We now define a nonparametric estimator for the MRL function μM(2)(t) as

μ̂M(2)(t)= ÎSM(2)(t)

ŜM(2)(t)
. (3.5)

The above expressions for the module’s survival and MRL functions are based on the
survival functions of individual components under their original and increased loads. If
desired, however (and we will find it convenient in Section 4), the expressions can easily
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be rewritten in terms of the corresponding HR functions. This can be done using the

equations Sk(t) = exp{−∫ t0 hk(x)dx}, S+i
k (t) = exp{−∫ t0 hk(x) + a(1)

i,k (x)dx}, and so forth,
or simply using (A.6) derived in the appendix. (Indeed, the proof of general Theorem 5.1

is based on HR functions.) Clearly now, we have Sk(t)/S+i
k (t)= exp{∫ t0 a(1)

i,k (x)dx}, which
is convenient when dealing with the right-hand sides of (3.1) and (3.3). (Of course, we
have i �= k.)

4. Examples

As an example, consider the simple but important case when the module’s two compo-
nents have exponential lifetimes. (For a recent discussion of tests for exponentiality, we
refer to Mimoto and Zitikis [15] and references therein.) That is, we assume the sur-
vival function Sk(t)= exp(−λkt) and, consequently, the HR function hk(t)= λk. (We will
later find it also convenient to use the notation S(t;λk) instead of Sk(t), and the notation
f (t;λk) for the corresponding density function.) Since the exponential HR function is
constant, it leaps to mind to choose the redistribution function also as a constant; hence
we assume that a(1)

i,k (t)≡ αi,k. Under this assumption and using (3.1), we obtain the sur-
vival function

SM(2)(t)=
(

1 + t
2∑

i=1

λiΔ
(
t;λi−αi,k

)
e(λi−αi,k)t

)

e−(λ1+λ2)t, (4.1)

where

Δ(t;c)=
⎧
⎪⎨

⎪⎩

1
ct

(
1− e−ct) if c �= 0,

1 if c = 0.
(4.2)

Irrespectively of the sign of c, the quantity Δ(t;c) is nonnegative, and so we have the
bound SM(2)(t) ≥ e−(λ1+λ2)t, which can be rewritten as SM(2)(t) ≥ P{min(T1,T2) > t};
hence the obvious fact is that the module functions at least until the time of the first
failure.

We next derive the HR function, which is

hM(2)(t)=
(
λ1 + λ2

)−∑2
i=1 λie

(λi−αi,k)t + t
(
λ1 + λ2

)∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

1 + t
∑2

i=1 λiΔ
(
t;λi−αi,k

)
e(λi−αi,k)t

. (4.3)

Integrating (4.1), we obtain an expression for ISM(2)(t) and, in turn, for the MRL func-
tion:

μM(2)(t)= 1 +
∑2

i=1 λi
/(
λk +αi,k

)
e(λi−αi,k)t + t

∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

(
1 + t

∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

)(
λ1 + λ2

) . (4.4)

We will next further examine two special cases.

4.1. Scenario A. If we suppose that the components are functionally identical but the

HR functions differ because the load is shared unequally, then we can have a(1)
i,k (t) ≡ λi.



8 Journal of Applied Mathematics and Decision Sciences

0 1 2 3 4 5 6 7 8 9 10

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
(t

)

Figure 4.1. Representative shapes of the failure rate of a module consisting of two exponential com-
ponents in parallel with failure rates λ1,λ2 : λ1 + λ2 = 1. The solid lines are for the independent case
[16, Equation 2.2] with the upper, middle, and lower curves having λ1 = 0.5,0.3,0.1, respectively. The
dashed curve is Scenario A (λ1 = 0.5,0.3,0.1) and Scenario B with λ1 = 0.5, the dotted curve is Sce-
nario B with λ1 = 0.3, and the dot-dashed curve is Scenario B with λ1 = 0.1.

(As a special case, we may have λ1 = λ2 =, say, λ.) Equations (4.1) and (4.3) yield the
survival and HR functions

SM(2)(t)=
(
1 + t

(
λ1 + λ2

))
e−(λ1+λ2)t, hM(2)(t)= t

(
λ1 + λ2

)2

1 + t
(
λ1 + λ2

) , (4.5)

while (4.4) gives the MRL function

μM(2)(t)= 2 + t
(
λ1 + λ2

)

(
1 + t

(
λ1 + λ2

))(
λ1 + λ2

) . (4.6)

4.2. Scenario B. As an alternative to Scenario A, we might suppose that the components
are sharing the load equally but the component reliabilities differ. In this case, we set

a(1)
i,k (t)≡ λk, assuming without loss of generality that λ1 �= λ2, as the case of equality (i.e.,
λ1 = λ2 =, say, λ) is covered by Scenario A. As before, (4.1) and (4.3) give

SM(2)(t)= λ1e−2λ2t − λ2e−2λ1t

λ1− λ2
, hM(2)(t)= 2λ1λ2

(
e−2λ2t − e−2λ1t

)

λ1e−2λ2t − λ2e−2λ1t
. (4.7)

Finally, from (4.4), we have the MRL function

μM(2)(t)= λ2
2e
−2λ1t − λ2

1e
−2λ2t

2λ1λ2
(
λ2e−2λ1t − λ1e−2λ2t

) . (4.8)

Figure 4.1 shows the behaviour of the HR function for various combinations of λ1, λ2,
normalized so that λ1 + λ2 = 1.
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In both scenarios, the survival, HR, and MRL functions depend only on λ1 and λ2,
which are parameters of individual components and can, therefore, be estimated by fail-
ing the components under, for example, their “usual” loads a number of times in a labo-
ratory environment. Assuming that we have such data

t1(1), . . . , t1(n1)− observations of T1 ∼ S
(•;λ1

)
,

t2(1), . . . , t2
(
n2
)− observations of T2 ∼ S

(•;λ2
)
,

(4.9)

the MLEs of λi, i = 1,2 are the standard ones: λ̂i = ni/si, where si =
∑ni

�=1 ti(�). However,
we may have more information about failures under the original and redistributed load.

First, consider the case of individual components. Suppose that the reliability of indi-
vidual components can be determined in a laboratory environment, providing ni obser-
vations of Ti, and mi observations of T+i

not(i). Hence in addition to data (4.9), we now also
have

t+1 (1), . . . , t+1 (m1)− observations of T+2
1 ∼

⎧
⎪⎨

⎪⎩

S
(•;λ1 + λ2

)
Scenario A,

S
(•;2λ1

)
Scenario B,

t+2 (1), . . . , t+2
(
m2
)− observations of T+1

2 ∼

⎧
⎪⎨

⎪⎩

S
(•;λ1 + λ2

)
Scenario A,

S
(•;2λ2

)
Scenario B.

(4.10)

(It would be more precise to write t+not(i)
i (�) instead of t+i (�), but the latter is simpler and

we expect no confusion.) The likelihood is the product of the n1 +n2 +m1 +m2 individual
likelihoods. Denote s+i =

∑mi
�=1 t

+
i (�). Then in Scenario A, the loglikelihood function is

logL(λ)= n1 logλ1− λ1s1 +n2 logλ2− λ2s2

+
(
m1 +m2

)
log

(
λ1 + λ2

)− (λ1 + λ2
)(
s+1 + s+2

)
.

(4.11)

Solving the system of equations (∂/∂λi) logL(λ)= 0, i= 1,2 yields the MLEs for i= 1,2,

λ̂i = b±√b2− 4ac
2a

, (4.12)

where a = (si − s3−i)(si + s+1 + s+2 ), b = (si − s3−i)(ni +m1 +m2) + (n1 + n2)(si + s+1 + s+2 ),
and c = ni(n1 +n2 +m1 +m2). In Scenario B, we have the loglikelihood function

logL(λ)= n1 logλ1− λ1s1 +n2 logλ2− λ2s2

+m1 log
(
2λ1

)
+m2 log

(
2λ2

)− 2λ1s
+
1 − 2λ2s

+
2 ,

(4.13)

which yields the MLEs for i= 1,2,

λ̂i = ni +mi

si + 2s+i
. (4.14)

Now, consider the case where we have data on failures of the entire module. We have
already noted the “trivial” situation when the module’s survival, HR, and MRL function
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can be estimated using modules’ observed failures, provided that the number of such ob-
servations is sufficiently large. If, however, the sample size is not large, then in order to
increase the reliability of statistical inference, we want to use every possible bit of infor-
mation. Hence assume that we have n independent observations of the random vector
(D,T1:2,T+D

not(D)), where D is the first failed component, T1:2 is the time of the first failure,
and T+D

not(D) is the time of module’s failure. (Note that not(D)= 3−D.) Our data are the
three-dimensional vectors (d(�), t(�), t+(�)), � = 1, . . . ,n, which are independent observa-

tions of the random vector (D,T1:2,T+D
not(D)). (It would be more precise to write t+d(�)

not(d(�))(�)
instead of t+(�), but the latter is less cumbersome and we expect no confusion.) In addi-
tion, we assume that we also know n1 =

∑n
�=1 1{d(�)=1}, the number of times component

1 has failed first. The frequency of component 2 failing first is, therefore, n2 = n− n1.
Whether we are dealing with Scenario A or B, the (unknown) parameter is λ = (λ1,λ2),
and we need to estimate it. In Scenario A, we have the likelihood function

L(λ)=
n∏

�=1

f
(
t(�);λd(�)

)
S
(
t(�);λ3−d(�)

)
f
(
t+(�)− t(�);λ1 + λ2

)

= (λ1 + λ2
)n
λn1

1 λ
n2
2 exp

{

− (λ1 + λ2
) n∑

�=1

t+(�)

}

.

(4.15)

Solving the system of equations (∂/∂λi) logL(λ) = 0, i = 1,2 yields the MLEs for i = 1,2,

λ̂i = 2ni/
∑n

�=1 t
+(�). In Scenario B, the likelihood function is

L(λ)=
n∏

�=1

f
(
t(�);λd(�)

)
S
(
t(�);λ3−d(�)

)
f
(
t+(�)− t(�);2λ3−d(�)

)

= (2λ1λ2
)n

exp

{

− (λ1 + λ2
) n∑

�=1

t(�)

}

exp

{

− 2
n∑

�=1

λ3−d(�)
(
t+(�)− t(�)

)
}

,

(4.16)

which gives the MLEs, for i= 1,2,

λ̂i = n
∑n

�=1 t(�) + 2
∑n

�=1 1{d(�)=3−i}
(
t+(�)− t(�)

) . (4.17)

We are now able to compare the performance of the parametric estimators obtained
from (3.1) and (3.3), and the nonparametric estimators (3.2) and (3.5), using a small
simulation study. We suppose that λ1 = 0.001, λ2 = 0.002, and that we have n1 = n2 =
m1 =m2 observations of failure times of individual components in a laboratory setting,
allowing us to estimate the parameters from (4.12) or (4.14). Figure 4.2 compares the
estimated survival and MRL functions for Scenario A, while Figure 4.3 shows the same for
Scenario B. We can see in both examples that the estimators appear to be unbiased, except,
possibly, the nonparametric estimator of the MRL, where there may be underestimation.
The variation is larger, as expected, for the nonparametric estimators, and increases over
time, except in the case of the parametric estimate of the MRL, where the 90-percentile
band appears to be of approximately constant width.
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Figure 4.2. The estimated survival (left) and MRL (right) functions for Scenario A. Parametric es-
timates are shown in the top panel, nonparametric in the bottom. The true curve is a solid line. The
mean of 100 repetitions is shown as a dashed line, while the dotted lines are the 5th and 95th per-
centiles.
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Figure 4.3. The estimated survival (left) and MRL (right) functions for Scenario B. Parametric es-
timates are shown in the top panel, nonparametric in the bottom. The true curve is a solid line. The
mean of 100 repetitions is shown as a dashed line, while the dotted lines are the 5th and 95th per-
centiles.

5. Survival and MRL functions for more than two components

In this section, we consider the survival and MRL functions of modules with arbitrar-
ily, K ≥ 2, many components. We will need additional notation. Let S

+(i, j)
k (t) denote the

survival function of a working component k when two other components, i and j, have
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failed. Likewise, we interpret the survival functions S+(i1,...,iK−2)
iK−1

(t), S+(i1,...,iK−1)
not(i1,...,iK−1)(t), and so

forth.

Theorem 5.1. For every K ≥ 2, we have SM(K)(t)= S∗M(K)(t) + S∗∗M(K)(t), where

S∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
S+(i1,...,iK−1)

not(i1,...,iK−1)(t)
∫

···
∫

1{yK−1≤t}

×
∏

q∈{1,...,K}\{i1,...,iK−1}

S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

)1{yK−1>yK−2}dS
+(i1,...,iK−2)
iK−1

(
yK−1

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
,

S∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫

···
∫

1{yK−1>max(yK−2,t)}

× S+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
1{yK−1>yK−2}dS

+(i1,...,iK−2)
iK−1

(
yK−1

)

×
∏

q∈{1,...,K}\{i1,...,iK−2}

S+(i1,...,iK−3)
q

(
yK−2

)

S+(i1,...,iK−2)
q

(
yK−2

)1{yK−2>yK−3}dS
+(i1,...,iK−3)
iK−1

(
yK−2

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q (y1)

1{y1>0}dSi1
(
y1
)
.

(5.1)

The proof of Theorem 5.1 is deferred from the appendix.
In the following theorem, we consider the integral ISM(K)(t) for arbitrary K ≥ 2, from

which we can arrive at the MRL function μM(K)(t) via the equation μM(K)(t) =
ISM(K)(t)/SM(K)(t).

Theorem 5.2. For every K ≥ 2, we have ISM(K)(t)= IS∗M(K)(t) + IS∗∗M(K)(t), where

IS∗M(K)(t)= (−1)K
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫

···
∫
(
x−max

(
yK−1, t

))
+dS

+(i1,...,iK−1)
not(i1,...,iK−1)(x)

×
∏

q∈{1,...,K}\{i1,...,iK−1}

S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

)1{yK−1>yK−2}dS
+(i1,...,iK−2)
iK−1

(
yK−1

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
,
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IS∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫

···
∫
(
yK−1− t

)
+S

+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
1{yK−1>yK−2}dS

+(i1,...,iK−2)
iK−1

(
yK−1

)

×
∏

q∈{1,...,K}\{i1,...,iK−2}

S+(i1,...,iK−3)
q

(
yK−2

)

S+(i1,...,iK−2)
q

(
yK−2

)1{yK−2>yK−3}dS
+(i1,...,iK−3)
iK−1

(
yK−2

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
.

(5.2)

The proof of Theorem 5.2 is again deferred to the appendix. We have by now estab-
lished all the necessary formulas to derive the MRL function μM(K)(t) via original and
increased loads of individual components.

Explicit formulae for Theorems 5.1 and 5.2 in the case of three and four components
are available from the authors. The case K = 4 features prominently in our motivating
examples in Section 1.

6. Summary

In this paper, we argue that reliability of modules with load-sharing components can be
expressed in terms of the reliabilities of individual components exposed to various levels
of load (normal and increased). This is of practical interest since the reliability of individ-
ual components can be conveniently estimated in a laboratory environment using either
a natural aging regime (if time permits) or employing, for example, a quantitative ac-
celerated life testing technique (cf., e.g., Nelson [14]). Hence we have derived equations
expressing the module’s survival, and thus HR and MRL, functions in terms of the sur-
vival functions of individual components. We have also discussed parametric and non-
parametric inference for the latter functions, or their parameters if a parametric model
has been assumed, under various load-sharing scenarios and data gathering regimes.

Appendix

A. Proofs

Proof of Theorem 5.1. We start calculating the survival function SM(K)(t) using first con-
ditioning and then the formula of total probability. Hence

SM(K)(t)= E
[

P
{
T(K−1)
κ(K−1) > t |D(0), . . . ,D(K−2),T(K−2)

1:2

}]

= E

[

exp

{

− 1{T(K−2)

D(K−2)≤t}

∫ t

T(K−2)

D(K−2)

(

hκ(K−1)(x) +
K−1∑

m=1

a(m)
D(m−1),κ(K−1)(x)

)

dx

}]
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=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[

exp

{

− 1{T(K−2)
iK−1

≤t}

∫ t

T(K−2)
iK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× 1{D(0)=i1} ···1{D(K−3)=iK−2}1{D(K−2)=iK−1}

]

,

(A.1)

where iK is the (only) member of the singleton set {1, . . . ,K} \ {i1, . . . , iK−1}. Given D(0) =
i1, . . . ,D(K−3) = iK−2, the event D(K−2) = iK−1 is equivalent to T(K−2)

iK−1
< T(K−2)

iK . By con-
struction, the latter two random variables are independent. Hence we calculate the con-
ditional expectation of 1{D(K−2)=iK−1} by first writing

P
{
T(K−2)
iK > t |D(0) = i1, . . . ,D(K−3) = iK−2

}

= exp

{

− 1{T(K−3)
iK−2

≤t}

∫ t

T(K−3)
iK−2

(

hiK (x) +
K−2∑

m=1

a(m)
im,iK (x)

)

dx

}

.
(A.2)

Next, we use (A.2) with t = T(K−2)
iK−1

to get the desired probability of the event T(K−2)
iK−1

<

T(K−2)
iK . This, together with (A.1), gives

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[

exp

{

− 1{T(K−2)
iK−1

≤t}

∫ t

T(K−2)
iK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× exp

{

− 1{T(K−3)
iK−2

≤T(K−2)
iK−1

}

∫ T(K−2)
iK−1

T(K−3)
iK−2

(

hiK (x) +
K−2∑

m=1

a(m)
im,iK (x)

)

dx

}

× 1{D(0)=i1} ···1{D(K−3)=iK−2}

]

.

(A.3)

Our next step is to integrate the expression inside E[···] on the right-hand side of (A.3)

with respect to the random variable T(K−2)
iK−1

, for which we need to derive the survival
function. Analogously to (A.2), we have that

P
{
T(K−2)
iK−1

> t |D(0) = i1, . . . ,D(K−3) = iK−2

}

= exp

{

−
∫ t

0

(

hiK−1 (x) +
K−2∑

m=1

a(m)
im,iK−1

(x)

)

1{T(K−3)
iK−2

≤x}dx

}

.
(A.4)
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Using the latter equation on the right-hand side of (A.3), we have that

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[∫∞

T(K−3)
iK−2

exp

{

− 1{yK−1≤t}
∫ t

yK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−2}

∫ yK−1

T(K−3)
iK−2

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×
(

hiK−1

(
yK−1

)
+
K−2∑

m=1

a(m)
im,iK−1

(
yK−1

)
)

dyK−11{D(0)=i1} ···1{D(K−3)=iK−2}

]

.

(A.5)

Comparing the latter equation with (A.1), we see that we have “eliminated” the indicator
1{D(K−2)=iK−1}. Continuing the above arguments until the last indicator 1{D(0)=i1} is “elimi-
nated,” we arrive at

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫∞

0

∫∞

y1

···
∫∞

yK−2

exp

{

− 1{yK−1≤t}
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ t

yK−1

(

hq(x) +
K−1∑

m=1

a(m)
im,q(x)

)

dx

}

× exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−2}

∫ yK−1

yK−2

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×
(

hiK−1

(
yK−1

)
+
K−2∑

m=1

a(m)
im,iK−1

(
yK−1

)
)

dyK−1

···

× exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y2

y1

(

hq(x) + a(1)
i1,q(x)

)

dx

}(

hi2
(
y2
)

+ a(1)
i1,i2

(
y2
)
)

dy2

× exp

{

−
∑

q∈{1,...,K}

∫ y1

0
hq(x)dx

}

hi1
(
y1
)
dy1.

(A.6)

We will next modify the last K − 1 exponents in (A.6). We start with

exp

{

−
∑

q∈{1,...,K}

∫ y1

0
hq(x)dx

}

hi1
(
y1
)
dy1 =−exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y1

0
hq(x)dx

}

dSi1
(
y1
)
.

(A.7)
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We now combine the exponent on the right-hand side of (A.7) with the penultimate
exponent in (A.6). The last two lines of (A.6) become

···× exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y2

0

(
hq(x) + a(1)

i1,q(x)
)
dx

}
(
hi2
(
y2
)

+ a(1)
i1,i2

(
y2
))
dy2

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
,

(A.8)

which can be rewritten as

···× (−1)exp

{

−
∑

q∈{1,...,K}\{i1,i2}

∫ y2

0

(
hq(x) + a(1)

i1,q(x)
)
dx

}

dS+i1
i2

(
y2
)

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.9)

We continue with these arguments and arrive at

SM(K)(t)=
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫∞

0
···

∫∞

yK−2

exp

{

− 1{yK−1≤t}
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ t

yK−1

(

hq(x) +
K−1∑

m=1

a(m)
im,q(x)

)

dx

}

× (−1)exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ yK−1

0

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×dS+(i1,...,iK−2)
iK−1

(
yK−1

)

···

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.10)

Next, we write SM(K)(t)= S∗M(K)(t) + S∗∗M(K)(t), where

S∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
S+(i1,...,iK−1)

not(i1,...,iK−1)(t)
∫∞

0
···

∫∞

yK−2

1{yK−1≤t}

× exp

{
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ yK−1

0
a(K−1)
im,q (x)dx

}

dS+(i1,...,iK−2)
iK−1

(
yK−1

)

···

× exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
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S∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫∞

0

∫∞

y1

···
∫∞

yK−2

1{yK−1>t}S
+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
dS+(i1,...,iK−2)

iK−1

(
yK−1

)

···

× exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.11)

Write a(1)
i1,q(x) as the sum of hq(x) + a(1)

i1,q(x) and −hg(x), which shows that the rightmost
exponent in (A.11) can be written as the ratio Sq(y1)/S+i1

q (y1). Similarly, we have the equa-
tions

exp

{∫ y2

0
a(2)
i2,q(x)dx

}

= S+i1
q

(
y2
)

S+(i1,i2)
q

(
y2
) , . . . , exp

{∫ yK−1

0
a(K−1)
i2,q (x)dx

}

= S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

) .

(A.12)

Theorem 5.1 follows. �

Proof of Theorem 3.1. This is a consequence of Theorem 5.1 and the observation that the
product S1(t)S2(t) is equal to −∑2

i=1

∫∞
t Snot(i)(y)dSi(y), which appears in the result of

Theorem 5.1 when K = 2. �

Proof of Theorem 5.2. For any random variable X , whose survival function we denote
by SX(t), the integral

∫∞
t SX(x)1{z≤x}dx is equal to the expectation E[(X −max(z, t))+],

which is of course equal to−∫∞0 (x−max(z, t))+dSX(x). Furthermore,
∫∞
t 1{y>x}dx is equal

to (y− t)+. These observations and (3.1) complete the proof of Theorem 5.2. �
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