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Consider a network of parallel finite tandem queues with two stages, where each arrival
attempts to minimize its own cost due to loss. It is known that the user optimal and
asymptotic system optimal policies may differ—we give examples showing that they may
differ for finite systems and that as the service rate is increased at the second stage the user
optimal policy may change in such a way that the total expected cost due to loss increases.
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1. Introduction and background

Queueing networks often exhibit seemingly paradoxical behaviour, where adding capac-
ity either in the form of extra capacity on links or at nodes, or even extra links or routes,
does not always lead to an improvement in performance, and may even lead to a severe
degradation in performance. The classic and very well-known example of this is Braess’s
paradox, which has been much studied, both in the traffic literature, and in the queueing
theory literature (see [1, 2] for the original paper and [3] for a comprehensive list of ref-
erences maintained by Braess). This was one of the examples mentioned by Professor Jeff

Hunter in his inaugural lecture. It is therefore a great pleasure to write on a different kind
of paradox in this festschrift for Jeff.

In addition to Braess’s paradox, there are several other well-known paradoxes (see,
e.g., Arnott and Small [4] and the references therein). The paradoxes can be ascribed to
the difference between system optimal and perceived user optimal behaviour—that is,
if individuals behave selfishly in a way that minimizes their own measure of cost (e.g.,
the delay in transit through a network), then the system as a whole can suffer, and flows
can alter in such a way that all individuals see worse performance. This is most clearly
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Figure 1.1. Three parallel two-stage tandem queues.

seen in traffic and transportation networks, and many of the early papers were directed
to this application (see, e.g., [1, 5–8]). More recently, the phenomenon of selfish routing
has become increasingly important in the context of telecommunication and computer
networks (e.g., [9–13]).

The model considered here consists of a system ofK parallel finite tandem queues with
two stages, with a stream of arrivals who can be sent to any one of the queues. Figure 1.1
illustrates such a system with 3 parallel tandem queues. The objective is to minimize the
cost due to loss, rather than minimize delay, the usual performance measure. Loss occurs
when an individual attempts to enter a finite queue, but is unable to do so because it is
full—that individual is then lost to the system. This assumption, while not at all realis-
tic for traffic networks, is realistic for computer networks, where packets attempting to
join a buffer that is full are lost and, if necessary, resent from the origin. This model was
earlier studied in [14] (which obtained some properties of user optimal routing policies)
and [15] (which obtained the asymptotic as K →∞ system optimal routing policies); and
these papers should be referred to for a more complete list of earlier, relevant references.
In [14] it was shown that user optimal policies may be paradoxical in the sense that ar-
rivals may choose a queue with greater occupancy to minimize their probability of loss.
The main contribution of this paper is to give an example showing that this paradoxical
behaviour may then have further consequences—under user optimal routing it is pos-
sible for the expected cost, both to the system as a whole, and to the individual user, to
increase when the service rate at the second queue is increased.

The model discussed here differs in some respects from those commonly studied in the
literature. The most obvious difference is that it is a queueing system with loss. Paradoxes
in loss networks have been studied [9, 10], but networks with finite queues and loss have
been seen more rarely. The usual performance measure of interest is delay, and in most
papers it is then also assumed that queues are infinite when studying paradoxes. Another
difference is that here we concentrate on state-dependent routing, whereas routing para-
doxes have most commonly been studied with probabilistic routing (see, e.g., [11, 16, 17]
for some examples of other studies with state-dependent routing). For the model in this
paper, with state-dependent routing, it has already been shown in [14] that when indi-
viduals are able to choose a route to minimize their own loss, they may choose a route
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where the occupancy is greater, particularly at the first stage of the tandem. Here, we il-
lustrate by example the difference in the expected cost between the user optimal policy
and the system optimal policy when the number of queues, K , is finite, and we compare
both with the asymptotically optimal cost. We then give an example showing that when
the service rate at the second stage of the tandem is increased, the expected cost under the
user optimal policy may increase, rather than decrease as might be expected.

In Section 2, we give a detailed description of the parallel tandem queue model, and
we give some of the results that we will be using from [14, 15]. In Section 3, we give ex-
amples comparing the performance of state-dependent user optimal and system optimal
routing schemes, looking both at asymptotic results taken from [15] and results for a
finite system. We conclude with a short discussion in Section 4.

2. Definitions and preliminaries

This section gives a detailed description of the network and outlines some results from
previous papers, in particular [14, 15].

Consider a network with K parallel tandem queues. Each tandem queue has two single
server finite queues in sequence, which we refer to as stages, the first stage having service
rate μ1 and capacity C1 and the second service rate μ2 and capacity C2. Arrivals to the
system are as a Poisson process with rate Kλ so that the arrival rate scales with the size of
the system. An arrival can be routed to any one of the K queues, but once it has joined a
tandem queue, it cannot change to a different queue, so there is no interaction between
the queues beyond that induced by any controls over the routing of arrivals. We assume
that all interarrival times and service times are exponentially distributed and independent
of one another, so the system can be modelled as a Markov process.

Since the queues are finite, not all arrivals will necessarily be accepted into the system.
Moreover, since the second queue in the tandem is finite, it is possible for an individual
to finish service at the first queue, but find that the second queue is full, so that they are
unable to join it—we assume that in that case, the individual leaves the system, and is
lost, without completing service at both queues.

We assume that the objective is to minimize the cost due to losing or blocking indi-
viduals. In a system such as this, it may also be possible to consider minimizing the delay,
conditional on not being lost, but we do not do so here. Previous analyses of paradoxes in
queueing networks (not loss networks) have often focussed on routing or other controls
that minimize or equalize delay rather than loss, because the common assumption is that
the queues have infinite capacity—however, in practice, queues are often finite, so that
minimizing loss in networks with finite queues also needs to be considered.

Let d1 be the cost of losing an individual on entry to queue 1, and d2 the cost of losing
an individual on entry to queue 2. We will examine both system optimal and user optimal
policies, as well as a range of intermediate policies.

Under probabilistic routing, each arrival chooses queue k with probability pk, 1≤ k ≤
K , where

∑
k pk = 1 independently of all other routing decisions, service times, and arrival

times. In that case it is sufficient to consider the tandem queues separately, with arrival
rate Kλpk at the kth tandem queue. The state for a single queue is then given by (i, j),
where i is the occupancy at the first queue, and j the occupancy at the second. This single
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queue has state space S1 = {(i, j) : 0≤ i≤ C1, 0≤ j ≤ C2} and transition rates

(i, j)−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i+ 1, j) Kλpk if i < C1,

(i− 1, j + 1) μ1 if i > 0, j < C2,

(i− 1, j) μ1 if i > 0, j = C2,

(i, j− 1) μ2 if j > 0.

(2.1)

Let the equilibrium distribution for a single tandem queue with these transition proba-
bilities be denoted by π̃(n), n∈ S1. The system optimal policy is found by minimizing a
weighted sum of the cost of loss for the individual queues. In contrast, the user optimal
policy is one where the costs of loss at all queues that are in use are equalized. For this
model, under probabilistic routing, the system optimal and user optimal policies coincide
with pk = 1/K , 1≤ k ≤ K and the flow of arrivals is divided equally between the tandem
queues, so that each tandem queue has arrival rate λ.

Under state-dependent routing the analysis is considerably more complicated and it
is necessary to consider the state of the whole network simultaneously. Now, let ni j be
the number of tandem queues with occupancy i at the first queue, and j at the sec-
ond queue. Then n = (ni j : 0 ≤ i ≤ C1, 0 ≤ j ≤ C2) is a Markov process with state space
S = {n :

∑
i j ni j = K , ni j ∈ {0,1,2, . . . ,K}, 0 ≤ i ≤ C1, 0 ≤ j ≤ C2} and transition rates

partly depending on the routing rule. Denote by rn(i, j) the probability an arrival is sent
to a tandem queue in state (i, j) if the network is in state n, and let rn(b) be the prob-
ability that an arrival is lost in state n, where rn(b) +

∑
i j rn(i, j) = 1 for all n ∈ S. Let

R= {rn(i, j),rn(b); n∈ S, 0≤ i≤ C1, 0≤ j ≤ C2, 0≤ rn(i, j),rn(b)≤ 1} denote a particu-
lar state-dependent admission and routing policy. Note that for a finite system, since this
is a Markov decision process, the system optimal policy will have rn(i, j),rn(b) ∈ {0,1}.
Given some linear ordering of the states (i, j), let ei j denote the (C1 + 1)× (C2 + 1) unit
vector with the i jth entry equal to 1, and the remaining entries equal to 0. Then the
transition rates under policy R are given by

n−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n− ei j + ei+1, j Kλrn(i, j) for (i, j)∈ S1,

n− ei j + ei−1, j+1 ni jμ1 if i > 0, j < C2,

n− ei j + ei−1, j ni jμ1 if i > 0, j = C2,

n− ei j + ei, j−1 ni jμ2 if j > 0.

(2.2)

We denote by πR(n), n∈ S the equilibrium distribution under a given policy R.
The state space grows rapidly as the capacities C1, C2, and the number of queues in-

crease. The system optimal policy can be found using the theory of Markov decision
processes, but apart from some special cases (e.g., when C1 = C2 = 1), the exactly optimal
policy will, in general, not only require considerable computational effort to calculate,
but also, just as importantly, substantial effort to implement. In Section 3, we therefore
limit ourselves to state-dependent policies that are relatively easy both to analyse and to
implement (although note that the asymptotic result given below gives optimality over
all state-dependent policies). The system optimal policy minimizes over all policies R the
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expected cost per queue per unit time, which is given by

λ
∑

n:n∈S
πR(n)rn(b) +μ1

∑

n:n∈S
πR(n)

∑

i

ni,C2 /K. (2.3)

The user optimal policy, however, is one that chooses the route that will give the lowest
expected cost due to loss for an arrival. This can be calculated explicitly (see [14]), and
the details are not given here, although the calculations are done for the examples in
Section 3.

In the numerical examples below, in addition to giving exact results for the system with
a small number of queues, found by calculating the equilibrium distribution numerically,
we also give the asymptotic costs and policy, as the number of queues becomes large.
The following results from [15], which are obtained using the methods of [18, 19], give
the basis for obtaining the asymptotic results given below. In the following, instead of
considering n as the state, we instead consider xK = n/K . Here, xKi j is the proportion of
tandem queues in state (i, j).

Consider the sequence of networks indexed by K , the Kth network operating under
any admissible acceptance and routing policy (an admissible policy must be nonanticipat-
ing). Let KwK

ij (t) be the number of arrivals that have been accepted at a tandem queue in

state (i, j) by time t, 0≤ i≤ C1, 0≤ j ≤ C2 and let KwK
b (t) be the number of arrivals that

have been lost at entry (i.e., not accepted into the system) by time t. Then {(xK ,wK )(·)} is
relatively compact and the limit of any convergent sequence has the following properties.

(1)
∑

i j xi j(t)= 1 for all t ≥ 0.
(2) xi j(t)≥ 0 for all t ≥ 0, 0≤ i≤ C1, 0≤ j ≤ C2.
(3) There exists z(·) such that, almost surely, zi j(t),zb(t)≥ 0, and

xi j(t)= xi j(0) +
∫ t

0

(
zi−1, j(s)I{i �=0} − zi j(s)I{i �=C1}

+μ1xi+1, j−1(s)I{i �=C1, j �=0} +μ1xi+1, j(s)I{i �=C1, j=C2}

+μ2xi, j+1(s)I{ j �=C2} − xi j(s)
(
μ1I{i �=0} +μ2I{ j �=0}

))
ds,

λ=
∑

i j

zi j(t) + zb(t),

(2.4)

for all t ≥ 0, 0≤ i≤ C1, 0≤ j ≤ C2.
The equilibrium distribution is then a solution to the following system of equations:

zi j + xi j
(
μ1I{i �=0} +μ2I{ j �=0}

)

= zi−1, j I{i �=0} +μ1xi+1, j−1I{i �=C1, j �=0}
+μ1xi+1, j I{i �=C1, j=C2} +μ2xi, j+1I{ j �=C2}, 0≤ i≤ C1, 0≤ j ≤ C2,

λ=
∑

i j

zi j + zb,
∑

i j

xi j = 1, xi j ,zi j ,zb ≥ 0.

(2.5)

These equations are balance equations for the asymptotic system. The zi j here give the
rate at which arrivals are entering queues in state (i, j) under the given policy, while zb
gives the rate at which arrivals are blocked.
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In [15] these equations are constraints for the linear optimisation problem

minimize F
(

x,zb
)= d1zb +d2μ1

C1∑

i=1

xi,C2 . (2.6)

This can be solved to find the asymptotically optimal value of the objective function, and
hence derive the asymptotically optimal control. However, the balance equations above
can more generally be used to find the asymptotic costs for any routing policy of interest.
In particular, we will give the asymptotic costs for the two main policies of interest, which
are to accept all arrivals if possible, and to accept arrivals only if they can be routed to
a tandem queue that has total occupancy less than C2 (i.e., for the designated tandem
queue, n1 +n2 < C2).

3. Examples

Consider a system of parallel tandem queues with C1 = C2 = 2. If arrivals are accepted
into the system, they will be routed to a queue in one of the states (0,0),(1,0), (0,1),(1,1),
(0,2),(1,2). In the state-dependent case, under user optimal routing, arrivals choose the
queue that will minimize their own cost. Let pd(n) be the probability that an arrival join-
ing a tandem queue in state n= (n1,n2) will reach its destination (the success probability).
When C1 = C2 = 2,

pd(1,1)= 1−
(

μ1

μ1 +μ2

)2

,

pd(1,2)= 1−
(

μ1

μ1 +μ2

)2(

1 +
μ2

μ1 +μ2

)

,

pd(0,2)= 1− μ1

μ1 +μ2

(3.1)

with, trivially, pd(0,0)= pd(1,0)= pd(0,1)= 1 and pd(2,0)= pd(2,1)= pd(2,2)= 0 (see
[14] for details). We see immediately that pd(1,1) > pd(1,2) > pd(0,2). When μ1 = μ2 = 1,
for instance, pd(1,1)= 3/4, pd(1,2)= 5/8 and pd(0,2)= 1/2. Thus, somewhat paradox-
ically, an arrival wishing to minimize their own blocking probability at the second stage
would prefer to join a queue in state (1,2), rather than one in state (0,2), even though
the number of individuals in the former is greater. A queue in state (1,1) is preferred to a
queue in state (0,2). In both cases the increased delay for the new arrival allows additional
time for individuals ahead of them in the tandem to leave, thus reducing the blocking
probability for the new arrival. Under user optimal routing, in general, arrivals may join
queues that are in state (i, j) provided d1 > d2(1− pd(i, j)). Thus when μ1 = μ2 = 1, for
instance, they may join queues in state (1,1) if d2 < 4d1, in state (1,2) if d2 < d18/3, and
in state (0,2) if d2 < 2d1.

The policy under user optimal routing is in strong contrast to the asymptotically sys-
tem optimal policy, which is to accept arrivals if possible when d2 < d1, and otherwise to
only accept arrivals into queues in one of the states (0,0), (1,0), or (0,1), that is, a queue
in such a state that the probability the arrival is lost at the second stage is 0 (see [15] for
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details). The results in that paper also yield the asymptotic average costs (to first order).
Let

λ∗ = μ1
1 +
(
μ1/μ2

)

1 +
(
μ1/μ2

)
+
(
μ1/μ2

)2 . (3.2)

Then the asymptotic average costs of the two policies are as follows.
(1) If λ < λ∗, then all arrivals (to first order) can be routed to queues where there is

no blocking, and the average cost is 0.
(2) For the policy that accepts all arrivals if possible the average cost is d2(λ− λ∗)

when λ∗ < λ < μ1, and d1(λ−μ1) +d2(μ1− λ∗) when λ > μ1.
(3) For the policy that only accepts arrivals into queues with occupancy less than

C1 +C2, the average cost is d1(λ− λ∗) for λ > λ∗.
For a finite number of queues, as already observed, state-dependent optimal policies

can be found using the theory of Markov decision processes, but are complex. Instead
we consider a number of policies intermediate between the two asymptotically optimal
ones. The costs of these are calculated numerically, and although closed form expressions
can be given, we do not do so here, since they are tedious and not at all illuminating. In
the examples below, where C1 = C2 = 2, we consider the following policies. A policy here
consists of a list of possible states for queues into which an arrival can be accepted, listed
in order of preference with the most preferred first. The policies compared below are

(1) (0,0),(0,1),(1,0),
(2) (0,0),(0,1),(1,0),(1,1),
(3) (0,0),(0,1),(1,0),(0,2),
(4) (0,0),(0,1),(1,0),(1,1),(1,2),
(5) (0,0),(0,1),(1,0),(1,1),(0,2),
(6) (0,0),(0,1),(1,0),(1,1),(1,2),(0,2).

For instance, policy (2) is to send an arrival to a queue in state (0,0) if possible, other-
wise to a queue in state (0,1), otherwise to a queue in state (1,0), and finally, if there is no
queue in any of these three states, to a queue in state (1,1). If there are no queues in any of
these four states, then the arrival is lost. Some candidate policies have been omitted from
the list. The policy (0,0),(0,1),(1,0),(1,2) has the same average cost as policy (1), since
the state (1,2) for a single queue is transient under this policy (to see this, observe that to
reach the state (1,2) from any of the other three states included in this policy, it needs to
pass through a state with n1 + n2 = 2, but no such state is included in this policy). Also,
in policies (4), (5), and (6) we have assumed that queues in state (1,1) are preferred to
queues in state (0,2).

The first example has C1 = C2 = 2, with μ1 = μ2 = 1. In Figure 3.1 we plot the expected
cost per unit time for each of the six policies when d1 = 1 and d2 = 3 for a system of four
queues. We note that policy (3) is the user optimal policy in this case, although the system
optimal policy is to only accept arrivals into tandem queues that have occupancy no more
than 1. For comparison purposes, the asymptotic cost as the number of queues, K →∞,
under the asymptotically optimal policy (policy (1)) is also given. The expected cost is
lowest for policy (1), and highest for policy (6), with policy (2) having lower cost than
policy (4), which has lower cost again than policies (3) and (5). Thus, in accordance with
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Figure 3.1. Expected cost per queue per unit time, C1 = C2 = 2, μ1 = μ2 = 1, d1 = 1, d2 = 3. Plotting
symbols for each policy are 1 �, 2 ◦, 3×, 4
, 5� 6 �, asymptotically optimal policy�. Four tandem
queues.
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Figure 3.2. Expected cost per queue per unit time,C1 = C2 = 2, μ1 = μ2 = 1, d1 = 1, d2 = 0.1. Plotting
symbols for each policy are 1 �, 2 ◦, 3×, 4
, 5� 6 �, asymptotically optimal policy�. Four tandem
queues.

the user optimal policy, sending arrivals to queues in state (0,2) also gives the highest
average cost. However, when d2 < d1, this is largely reversed. Figure 3.2 gives a similar
plot, but now with d2 = 0.1, and we see that the policies are reversed, with policy (6)
having the lowest cost, and policy (1) the highest.
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Figure 3.3. Expected cost per queue per unit time, C1 = C2 = 2, μ1 = 1, d1 = 1, d2 = 2.5 under user
optimal policies when μ2 = 0.5,1.0. Plotting symbols: μ2 = 0.5 �, μ2 = 1.0
. Four queues.

Finally, Figure 3.3 plots the expected cost under the user optimal policy when d1 = 1
and d2 = 2.5 for C1 = C2 = 2, μ1 = 1, and μ2 = 0.5,1.0. For both values of μ2, the system
optimal policy is policy (1). When μ2 = 0.5, the user optimal policy coincides with the
system optimal policy, however, when μ2 = 1.0, policy (4) is user optimal since the ex-
pected cost of using queues in states (1,1) and (1,2) is less than d1 in this case. We see
from the plot that if arrivals follow user optimal policies, increasing the service rate at
stage 2 of the tandem queues gives a higher expected cost overall for high values of λ.

These examples have all had unrealistically small capacities. This has been because the
state space grows rapidly with C1, C2, and K . In all cases above, the equilibrium distri-
bution, when the number of queues is finite, has been calculated explicitly to obtain the
expected costs (rather than estimating from simulation). However, we conjecture that
the finding in this case will carry over to larger capacities, that is, for sufficiently high
arrival rates, as μ2 increases, the expected cost may also increase, when d2 is greater than
d1 (note that d2 > d1 is a reasonable scenario for a system where there may be a greater
cost attached to losing an individual on whom some service has already been expended).

4. Conclusions

The numerical examples of the previous section have shown that permitting otherwise
indistinguishable arrivals to use queues in certain states may lead to greater expected
costs, when arrivals attempt to minimize their own costs due to loss. The difference here
between the expected cost under user optimal and system optimal policies can be sub-
stantial. Furthermore, increasing the service rate, as in the classical paradoxes, may lead
to worse overall performance, if user optimal policies are permitted. We have given a nu-
merical example where increasing the service rate at the second stage of the tandem leads
to increased expected cost.
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