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Indoor residual spraying—spraying insecticide inside houses to kill mosquitoes—is an important
method for controlling malaria vectors in sub-Saharan Africa. We propose a mathematical
model for both regular and non-fixed spraying, using impulsive differential equations. First, we
determine the stability properties of the nonimpulsive system. Next, we derive minimal effective
spraying intervals and the degree of spraying effectiveness required to control mosquitoes when
spraying occurs at regular intervals. If spraying is not fixed, then we determine the “next best”
spraying times. We also consider the effects of climate change on the prevalence of mosquitoes. We
show that both regular and nonfixed spraying will result in a significant reduction in the overall
number of mosquitoes, as well as the number of malaria cases in humans. We thus recommend that
the use of indoor spraying be re-examined for widespread application in malaria-endemic areas.
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1. Introduction

Malaria causes more than 300 million acute illnesses and at least one million deaths
annually, and remains one of the most important human diseases throughout the tropical
and subtropical regions of the world [1]. It is a leading cause of death and disease in many
developing countries, where young children and pregnant women are the groups most
affected. 40% of the world’s population live in malaria-endemic areas [2]; 90% of deaths due
to malaria occur in sub-Saharan Africa [3], 75% of whom are African children [4].

Control of malaria is largely through vector control and chemoprophylaxis. Vector
control is an intervention targeted to reducing vector population density and survival, which
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aims as an end product to reduce malaria transmission. Indoor residual spraying (IRS)
is one of the primary vector control interventions for reducing and interrupting malaria
transmission. In recent years, however, it has received relatively little attention. Recent data
reconfirm the efficacy and effectiveness of IRS in malaria control in countries where it was
implemented well [5]. Since many malaria vectors are endophilic, resting inside houses after
taking a blood meal, they are particularly susceptible to be controlled through IRS. This
method kills the mosquitoes after they have fed, thereby stopping transmission of the disease.
IRS resulted in the suppression of An. funestus, which is no longer an important vector for
transmission of malaria, in some areas of the subregion [6]. An. gambiae s.s. was also well
controlled [5]. The user is able to spray the whole house or dwelling on the inside, and under
the eaves on the outside. The duration of effective action ranges from two to greater than six
months [7].

Malaria eradication projects in the 1950’s through 1970’s in Benin, Brukina Faso,
Burundi, Cameroon, Kenya, Liberia, Madagascar, Nigeria, Rwanda, Senegal, Uganda, and
the United Republic of Tanzania demonstrated that malaria was highly responsive to control
by IRS, with a significant reduction of anopheline vector mosquitoes and malaria. The
application of IRS consistently over time in large areas has altered the vector distribution
and subsequently the epidemiological pattern of malaria in Botswana, Namibia, South
Africa, Swaziland, and Zimbabwe [8–11]. IRS has commonly been the intervention of
choice in areas of particular economic interest (e.g., tourism, mining, oil extraction, and
agricultural schemes) that require a rapid and effective prevention, where financial and
logistic constraints do not prevail [5].

We have developed a mathematical model to account for IRS using impulsive
differential equations, in order to determine the minimal effective spraying period, as well
as the amount by which mosquitoes should be reduced at each spraying event. However, the
spraying may not happen at fixed intervals, due to limitations in resources and unforeseen
events. If the spraying times are not fixed, then the optimal solution for the next spraying
event can be calculated, but it depends on the entire history of spraying events, which may
not be known. However, a suboptimal solution can be found, using partial information: the
spraying effectiveness and the time of the last two spraying events.

This paper is organised as follows. In Section 2, we introduce the mathematical model.
In Section 3, we analyse the nonimpulsive version of the model and determine the basic
reproductive ratio. In Section 4, we analyse the model with impulses and determine minimal
effective spraying times and spraying effectiveness, for both regular and nonfixed spraying.
In Section 5, we examine the effects of climate change on the results. In Section 6, we illustrate
the results with numerical simulations. Finally, in Section 7, we discuss the implications of the
results.

2. The model

It can be assumed that mosquitoes are either susceptible (M) or infected (N), have birth
rate Λ, and their death rate (μ) does not vary significantly if they are infected. Thus, we
assume that the infective period of the vector ends with its death, and therefore the vector
does not recover from being infective [12]. Individuals who have experienced infection may
recover (without substantial gain in immunity) at recovery rate h or may become temporarily
immune at acquired immunity rate α. See [13–17] for further details. Temporarily immune
individuals will become susceptible again at rate δ. The rate of infection of a susceptible
individual is βH , and the rate of infecting a mosquito is βM. The birth rate for humans is π ,
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Figure 1: The model consists of susceptible (S), infected (I), and recovered (R) humans, as well as
susceptible (M) and infected (N) mosquitoes. Humans may recover without immunity at rate h, or may
become temporarily immune at rate α. Such individuals will later become susceptible again at rate δ. The
rate of infection of a susceptible individual is βH , and the rate of infecting a mosquito is βM. The birth and
death rates are not drawn in, for conciseness.

the background death rate is μH , and γ is the death rate due to malaria. Humans may be
susceptible (S), infected (I), or temporarily immune (R). See Figure 1.

We assume that spraying reduces both susceptible and infected mosquitoes by the
same proportion r (satisfying 0 ≤ r ≤ 1), and that it occurs at distinct times tk (k =
0, 1, 2, . . .). These times may be fixed or variable. We model the effect of spraying by a system
of impulsive differential equations. Impulsive differential equations consist of a system
of ordinary differential equations (ODEs), together with difference equations. Between
“impulses” tk, the system is continuous, behaving as a system of ODEs. At the impulse points,
there is an instantaneous change in state in some or all of the variables. This instantaneous
change can occur when certain spatial, temporal, or spatiotemporal conditions are met. This
has the advantage of capturing the dynamics between spraying events, while ignoring the
short-term transient behaviour during the spraying itself. We refer the interested reader to
[18–21] for more details on the theory of impulsive differential equations.

Thus, the model is

dS

dt
= π − βHSN + hI + δR − μHS,

dI

dt
= βHSN − hI − αI − (μH + γ

)
I,

dR

dt
= αI − δR − μHR,

dM

dt
= Λ − μM − βMMI,

dN

dt
= βMMI − μN

(2.1)

for t /= tk, with impulsive conditions given by

ΔM = −rM−,

ΔN = −rN − (2.2)

for t = tk, where ΔM =M+ −M−, M− ≡M(t−
k
), and, equivalently, M+ ≡M(t+

k
).
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Hence, we are modelling the situation where IRS occurs simultaneously in multiple
households, as occurs in areas in several countries [5]. Our model assumes that both humans
and mosquitoes are well mixed in these areas. However, our results do not depend upon
the form of the model for humans and only rely on certain aspects of the equations for
mosquitoes. Further implications are taken up in Section 7.

3. Analysis of the nonimpulsive system

First, we will analyse the system without impulses; that is, without spraying. The disease-free
equilibrium for the nonimpulsive model is given by

E0 =
(
S, I, R,M,N

)
=
(
π

μH
, 0, 0,

Λ
μ
, 0
)
. (3.1)

The endemic equilibrium is given by

E1 = (S∗, I∗, R∗,M∗,N∗), (3.2)

where

S∗ =
π

μH
+

δαI∗

μH
(
δ +muH

) − α + μH + γ
μH

I∗,

R∗ =
αI∗

δ + μH
,

M∗ =
Λ

μ + βMI∗
,

N∗ =
βMΛI∗

μ
(
μ + βMI∗

) ,

I∗ =

[
βHβMΛπ − (h + α + μH + γ

)
μ2μH

](
δ + μH

)

βM
[(
μH + γ

)(
βHΛ + μ

)(
δ + μH

)
+
(
βMΛ + μ

)
αμH + μh

(
δ + μH

)
+ μαδ

] .

(3.3)

It can be seen that E0 attracts the region

Ω0 =
{
(S, I, R,M,N) : I = R =N = 0

}
. (3.4)

Theorem 3.1. The basic reproductive ratio [22] for model (2.1) is given by

R0 =
βHβMΛπ

μ2μH(μH + α + γ + h)
. (3.5)

The disease-free equilibrium is stable if and only if R0 < 1. Furthermore, the endemic equilibrium is
positive if and only if R0 > 1.
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Proof. The Jacobian matrix for model (2.1) is

J =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−βHN − μH h δ 0 −βHS
βHN −(h + α + μH + γ) 0 0 βHS

0 α −(δ + μH) 0 0

0 −βMM 0 −μ − βMI 0

0 βMM 0 βMI −μ

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

. (3.6)

At the disease-free equilibrium,

J |I=N=0 =

⎡

⎢
⎢
⎢
⎢⎢⎢⎢
⎣

−μH h δ 0 −βHS
0 −(h + α + μH + γ) 0 0 βHS

0 α −(δ + μH) 0 0

0 −βMM 0 −μ 0

0 βMM 0 0 −μ

⎤

⎥
⎥
⎥
⎥⎥⎥⎥
⎦

. (3.7)

The eigenvalues of this matrix satisfy the characteristic equation

(−μH − λ)(−δ − μH − λ)(−μ − λ)det

[
−(h + α + μH + γ) − λ βHS

βMM −μ − λ

]

= 0. (3.8)

The only change in sign from the eigenvalues can occur from this last determinant, which
satisfies

λ2 + λ(μ + h + α + μH + γ) + μ(h + α + μH + γ) − βHβMSM = 0. (3.9)

This equation will have negative roots if μ(h + α + μH + γ) − βHβMSM > 0, or, equivalently,
if and only if

R0 ≡ βHβMΛπ
μ2μH(μH + α + γ + h)

< 1. (3.10)

Finally, I∗ is clearly positive if and only if R0 > 1.

Remark 3.2. It follows that there is a transcritical bifurcation at R0 = 1. Thus, R0 is the average
number of mosquitoes infected by a single human (βMπ/μ2) multiplied by the average
number of humans infected by a single mosquito (βHΛ/μH(μH + α + γ + h)).

4. Analysis of the impulsive system

When spraying events are included, the system will undergo an instantaneous jump when
IRS is applied. We thus analyse model (2.1) when impulses are included. However, the
mosquito dynamics will prove to be far more important in the model than those of humans.
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If we define the total mosquito population by

Ψ =M +N, (4.1)

then we have the decoupled impulsive differential equation

dΨ
dt

= Λ − μΨ, t /= tk,

ΔΨ = −rΨ, t = tk.
(4.2)

Thus,

Ψ+ −Ψ− = −rΨ−,

Ψ+ = (1 − r)Ψ−.
(4.3)

Hence, for tk ≤ t < tk+1,

Ψ′(t) + μΨ(t) = Λ,

d

dt

(
eμtΨ

)
= Λeμt,

eμtΨ(t) − eμtkΨ(t+k
)
=

Λ
μ
eμt − Λ

μ
eμtk ,

Ψ(t) =
Λ
μ

(
1 − eμ(tk−t)) + Ψ

(
t+k
)
eμ(tk−t).

(4.4)

It follows that

Ψ−
k+1 =

Λ
μ

(
1 − e−μ(tk+1−tk)) + Ψ+

ke
−μ(tk+1−tk)

=
Λ
μ

(
1 − e−μ(tk+1−tk)) + (1 − r)Ψ−

ke
−μ(tk+1−tk),

(4.5)

using (4.3).
We thus have a recurrence relation for the total number of mosquitoes immediately

before spraying. This relation depends on the birth and death rates of mosquitoes, the
spraying times, and the spraying effectiveness.

Theorem 4.1. If spraying occurs at fixed times, satisfying tk+1 − tk = τ , then

Ψ̃−(r) =
Λ
μ
· 1 − e−μτ
1 + (r − 1)e−μτ

(4.6)

is a globally asymptotically stable fixed point of the recurrence relation

Ψ−
k+1 =

Λ
μ

(
1 − e−μ(tk+1−tk)) + (1 − r)Ψ−

ke
−μ(tk+1−tk). (4.7)
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Proof. For completeness, define Ψ0 to be the preimage of Ψ(0) under the impulsive condition.
That is, Ψ0 = (1/(1 − r))Ψ(0). Then, we have

Ψ−
1 =

Λ
μ

(
1 − e−μ(t1−t0)) + (1 − r)Ψ0e

−μ(t1−t0),

Ψ−
2 =

Λ
μ

(
1 − e−μ(t2−t1)) + (1 − r)Ψ−

1e
−μ(t2−t1)

=
Λ
μ

(
1 − e−μ(t2−t1)) + (1 − r)Λ

μ

(
1 − e−μ(t1−t0))e−μ(t2−t1) + (1 − r)2Ψ0e

−μ(t1−t0)e−μ(t2−t1)

=
Λ
μ

(
1 − re−μ(t2−t1) − (1 − r)e−μ(t2−t0)) + (1 − r)2Ψ0e

−μ(t2−t0),

Ψ−
3 =

Λ
μ

(
1 − e−μ(t3−t2)) + (1 − r)Ψ−

2e
−μ(t3−t2)

=
Λ
μ

(
1−e−μ(t3−t2))+(1−r)Λ

μ

(
1−re−μ(t2−t1)−(1−r)e−μ(t2−t0))e−μ(t3−t2)+(1−r)3Ψ0e

−μ(t2−t0)e−μ(t3−t2)

=
Λ
μ

(
1 − re−μ(t3−t2) − r(1 − r)e−μ(t3−t1) − (1 − r)2e−μ(t3−t0)

)
+ (1 − r)3Ψ0e

−μ(t3−t0),

Ψ−
4 =

Λ
μ

(
1−re−μ(t4−t3)−r(1 − r)e−μ(t4−t2)−r(1 − r)2e−μ(t4−t1) −(1−r)3e−μ(t4−t0)

)
+(1−r)4Ψ0e

−μ(t4−t0)

...

Ψ−
n=

Λ
μ

(

1 −
n−1∑

i=1

r(1 − r)n−i−1e−μ(tn−ti) − (1 − r)n−1e−μ(tn−t0)
)

+ (1 − r)nΨ0e
−μ(tn−t0).

(4.8)

For regular spraying, tn − ti = (n − i)τ , so we have

Ψ−
n =

Λ
μ

(
1 − re−μτ − (1 − r)n−1re−μτ

1 − (1 − r)e−μτ − (1 − r)n−1e−μnτ
)
+ (1 − r)nΨ0e

−μnτ

−→ Λ
μ

(
1 − re−μτ

1 − (1 − r)e−μτ
) (4.9)

as n→ ∞, since 0 < r < 1.

Remarks 4.2. (1) Note that

lim
τ→0
n→∞

Ψ−
n = 0. (4.10)

Thus, the total mosquito population shrinks to zero as spraying period decreases.
(2) It follows from Theorem 4.1 that the impulsive periodic orbit given by (4.4), with

endpoints Ψ− and (1 − r)Ψ−, where Ψ− satisfies (4.6), is asymptotically stable.
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Corollary 4.3. (1) To reduce the total mosquito population below a desired threshold Ψ̃, the minimum
spraying effectiveness satisfies

r̃ = 1 −
[

1 − Λ

μΨ̃

(
1 − e−μτ)

]
eμτ . (4.11)

(2) To reduce the mosquito population below a desired threshold Ψ̃, the minimum spraying period
satisfies

τ̃ = − 1
μ

ln
[

Λ − μΨ̃
Λ + μΨ̃(r − 1)

]
. (4.12)

Proof. (1) Since Ψ(t) ≤ Ψ− for tk ≤ t ≤ tk+1, the maximum within each cycle occurs
immediately before spraying is undertaken, so we can set Ψ̃ = Ψ−. By Theorem 4.1, we have

Ψ̃ =
Λ
μ
· 1 − e−μτ
1 + (r̃ − 1)e−μτ

,

1 + (r̃ − 1)e−μτ =
Λ

μΨ̃
(1 − e−μτ),

r̃ = 1 −
[

1 − Λ

μΨ̃
(1 − e−μτ)

]
eμτ .

(4.13)

(2) Similarly, we have

(
r − 1 +

Λ

μΨ̃

)
e−μτ̃ =

Λ

μΨ̃
− 1,

τ̃ = − 1
μ

ln
[

Λ − μΨ̃
Λ + μΨ̃(r − 1)

]
.

(4.14)

It follows that we can find the minimal spraying effectiveness or the minimal spraying
period, in terms of the birth and death rates of mosquitoes and the spraying effectiveness.

Theorem 4.4. If spraying occurs at nonfixed times, then, assuming the two previous spraying events
are known, the population of mosquitoes can be reduced below the threshold Ψ̃ if the next spraying
event satisfies

tn+1 ≤ tn − 1
μ

ln
[

2 − r − μΨ̃/Λ
1 + r(1 − r)e−μ(tn−tn−1)

]
. (4.15)

Proof. For n large,

Ψ−
n ≈ Λ

μ

(

1 −
n−1∑

i=1

r(1 − r)n−i−1e−μ(tn−ti)
)

(4.16)
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since (1 − r)n−1 ≈ 0 and e−μ(tn−t0) ≈ 0. If we assume e−μ(tn−tn−2) is small, then, using (4.5), we
have

Ψ−
n <

Λ
μ

(
1 − e−μ(tn−tn−1)

)
,

Ψ+
n+1 <

Λ
μ

(
1 − e−μ(tn+1−tn)) + (1 − r)Ψ−

n e
−μ(tn+1−tn)

<
Λ
μ

(
1 − e−μ(tn+1−tn)) + (1 − r)Λ

μ

(
1 − re−μ(tn−tn−1)

)
e−μ(tn+1−tn).

(4.17)

Define

Ψ̃ ≡ Λ
μ

(
1 − e−μ(tn+1−tn)) + (1 − r)Λ

μ

(
1 − re−μ(tn−tn−1)

)
e−μ(tn+1−tn). (4.18)

Thus,

Λ
μ

(
1 + (1 − r)) − Ψ̃ = e−μ(tn+1−tn) Λ

μ

(
1 + r(1 − r)e−μ(tn−tn−1)

)
,

e−μ(tn+1−tn) =
2 − r − μΨ̃/Λ

1 + r(1 − r)e−μ(tn−tn−1)
,

tn+1 = tn − 1
μ

ln
[

2 − r − μΨ̃/Λ
1 + r(1 − r)e−μ(tn−tn−1)

]
.

(4.19)

Hence, if spraying occurs at tn+1 or earlier, then the number of mosquitoes will be less than or
equal to Ψ̃, immediately after the (n + 1)th spraying event.

Thus, we can derive the “next best” spraying events for nonfixed spraying, by
assuming that the time between the current spraying and two sprayings events previously is
sufficiently large.

Theorem 4.5. If nonfixed spraying occurs indefinitely, then there exists a minimum spraying
effectiveness r0, satisfying 0 < r0 < 1, such that variable spraying is only effective for r0 ≤ r ≤ 1.
Furthermore, on this interval, the minimum spraying interval for indefinite nonfixed spraying is
always less than the minimum spraying interval for regular spraying.

Proof. First, note that, for regular spraying, we have

τ̃ = − 1
μ

ln
[

Λ − μΨ̃
Λ + μΨ̃(r − 1)

]
,

τ̃ |r=0 = − 1
μ

ln
[
Λ − μΨ̃
Λ − μΨ̃

]
= 0,

(4.20)

τ̃ |r=1 = − 1
μ

ln
[
Λ − μΨ̃

Λ

]
= − 1

μ
ln
[

1 − μΨ̃
Λ

]
. (4.21)
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However, Ψ = M +N. So, if there is no impulse, then, from (4.2), limt→∞Ψ(t) = Λ/μ. Thus,
we can assume that Ψ̃ < Λ/μ. Hence,

0 < 1 − μΨ̃
Λ

< 1, (4.22)

and thus τ̃ |r=1 > 0.
If nonfixed spraying occurs indefinitely, then let τnf ≡ tn+1− tn = tn− tn−1. The minimum

spraying effectiveness then satisfies

τnf = − 1
μ

ln
[

2 − r − μΨ̃/Λ
1 + r(1 − r)e−μτnf

]
. (4.23)

If τnf = 0, then

− 1
μ

ln
[

2 − r − μΨ̃/Λ
1 + r(1 − r)

]
= 0,

2 − r − μΨ̃
Λ

= 1 + r(1 − r),

r2 − 2r + 1 − μΨ̃
Λ

= 0,

r = 1 ±
√
μΨ̃
Λ
.

(4.24)

Clearly, the larger root exceeds unity and can hence be discounted. The smaller root, r0 ≡
1−
√
μΨ̃/Λ, satisfies 0 < r0 < 1 by (4.22). It follows that spraying is only effective in the range

r0 ≤ r ≤ 1.
Next, we have

τnf|r=1 = − 1
μ

ln
[

1 − μΨ̃/Λ
1

]
= τ̃ |r=1, (4.25)

from (4.21).
Note that Λ+μΨ̃(r−1) and (2−r)Λ−μΨ̃ are both positive on 0 < r < 1, since Λ−μΨ̃ > 0.

Since e−μτnf < 1, we have

Λ − μΨ̃
Λ + μΨ̃(r − 1)

·1 + r(1 − r)e−μτnf

2 − r − μΨ̃/Λ
<

Λ(Λ − μΨ̃)

Λ + μΨ̃(r − 1)
· 1 + r(1 − r)
(2 − r)Λ − μΨ̃

. (4.26)

Thus,

Λ(Λ − μΨ̃)

Λ + μΨ̃(r − 1)
· 1 + r(1 − r)
(2 − r)Λ − μΨ̃

− 1 =
γ

[
Λ + μΨ̃(r − 1)

][
(2 − r)Λ − μΨ̃]

, (4.27)

where

γ = −Λ2(r − 1)2 + 2μΨ̃Λ(r − 1)2 + μ2Ψ̃2(r − 1)

= −(r − 1)
[
Λ2(r − 1) − 2μΨ̃Λ(r − 1) − μ2Ψ̃2].

(4.28)
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For 0 < r < 1, r − 1 < 0. Furthermore, if Λ − 2μΨ̃ > 0, then the quantity in the square brackets
is increasing and hence the maximum value it attains on the interval 0 < r < 1 is −μ2Ψ̃2 at
r = 1. Conversely, if Λ − 2μΨ̃ < 0, then the quantity in the square brackets is decreasing and
hence the maximum value it attains on the interval 0 < r < 1 is −(Λ − μΨ̃)2 at r = 0. In either
case, γ < 0 on the interval 0 < r < 1.

Consequently,

Λ − μΨ̃
Λ + μΨ̃(r − 1)

·1 + r(1 − r)e−μτnf

2 − r − μΨ̃/Λ
< 1, (4.29)

and hence

τ̃ − τnf = − 1
μ

ln
[

Λ − μΨ̃
Λ + μΨ̃(r − 1)

·1 + r(1 − r)e−μτnf

2 − r − μΨ̃/Λ

]
> 0. (4.30)

Thus, τ̃ > τnf for 0 < r < 1.

It follows that nonfixed spraying is always worse than regular spraying—even in the
best-case scenario where such spraying is applied at regular intervals—and is only defined
for a sufficiently effective insecticide.

5. The impact of climate change

As global temperatures increase, one of the major impacts will be an increase in the birth rate
of mosquitoes [23, 24]. Consequently, we examine the impact of increasing the birth rate on
the minimal effective period of IRS required to maintain mosquitoes at given thresholds.

If the mosquito birth rate is increased from Λ to Λ + Λ1, then the recursion relation
(4.5), with regular spraying, becomes

Ψ−
k+1 =

Λ + Λ1

μ

(
1 − e−μτ) + (1 − r)Ψ−

ke
−μτ . (5.1)

This has solution

Ψ̃− =
Λ + Λ1

μ
· 1 − e−μτ
1 + (r − 1)e−μτ

. (5.2)

Rearranging, we have

τ̃ = − 1
μ

ln
[

Λ + Λ1 − μΨ̃
Λ + Λ1 + μΨ̃(r − 1)

]
. (5.3)

It follows that

∂τ̃

∂Λ1
= − rΨ̃

(Λ + Λ1 − μΨ̃)(Λ + Λ1 − μΨ̃ + rμΨ̃)
< 0 (5.4)

since Ψ̃ < Λ/μ. Thus, as the mosquito birth rate increases, the minimal effective spraying
period will always be reduced, for a fixed mosquito threshold Ψ̃. In particular, we have

lim
Λ1→0

τ̃ = 0. (5.5)
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Figure 2: The relative reduction of mosquitoes as a function of the spraying effectiveness. The two curves
indicate the maximum and minimum numbers of mosquitoes, given by Ψ− and Ψ+ = (1−r)Ψ−, respectively.
Parameters used were Λ = 1000 mosquitoes · years−1, μ = 1/7.3 days−1, and spraying that occurred every
three months. Note that there is a discontinuity at the right endpoint due to the impulsive nature of the
solutions; if spraying is 100% effective, then the mosquito population will be zero.

6. Numerical simulations

The average lifespan of a mosquito is of the order of days to weeks [25]; we chose an
intermediate value of 7 days. The birth rate of mosquitoes is the carrying capacity divided by
the lifespan [26]. With a lifespan of 7 days and a carrying capacity of 20 000 [26], this results
in 1400 females per year. Correcting for those not reached by spraying (e.g., those who feed
away from houses), we assumed 1000 females per year. The probability of infection is the
product of the biting rate times the probability that a bite is infectious. The former value is 0.7
per day and the latter is 0.75 [27], resulting in an infection probability for humans of 0.5 per
day. The value for mosquito infection is assumed to be one tenth of the value for humans. The
total duration of malaria infection in humans is 3–7 days [28]. We chose recovery, immunity,
and mortality rates so that the total duration of infection was 3 days.

The dependency of the mosquito population upon the spraying effectiveness is
illustrated in Figure 2. The two curves indicate the maximum and minimum mosquito
populations if an insecticide is used which reduces mosquitoes by the percentage on the
x-axis, when sprayed every three months. These are the long-term outcomes of fixed
spraying. The greater the spraying effectiveness is, the more variation in the overall
mosquito population exists, but the lower the average mosquito population will be. We
chose parameters to simulate a small spraying region, since mosquito spraying may occur
at different times.

Varying the period of spraying will result in a change of strategy, as shown in Figure 3.
A mosquito control program aiming to reduce the maximum number of mosquitoes by
15% would require an insecticide that reduced mosquitoes by 92% per spraying if spraying
occurred three times a year, or by 54% if spraying occurred 2.3 times a year.

The dependency of the mosquito population upon the spraying effectiveness, for
both regular and nonfixed spraying, is illustrated in Figure 4. If spraying is fixed, then
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Figure 3: Two spraying options: every three months (solid curve) and every 2.3 months (dashed curve).
A mosquito-control program aiming to reduce the number of mosquitoes by 15% would require a 92%
effective insecticide if spraying occurred every three months, or 54% if spraying occurred every 2.3 months.
Note that these curves illustrate the maximum number of mosquitoes in each case, showing the worst-case
scenario.
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Figure 4: The minimum spraying intervals, for both regular spraying and nonfixed spraying, to reduce
the overall mosquito population by 15% of the levels without spraying. While regular spraying can
theoretically be applied for any spraying effectiveness, nonfixed spraying is only applicable if the spraying
is 8% effective or greater. An insecticide that reduced mosquitoes by 90% at each spraying would have to
be applied every three months, if it were applied regularly, but not more than every 2.3 months if spraying
was not fixed.

any spraying effectiveness may theoretically be used, when the insecticide is applied with
sufficient frequency. If spraying is not fixed, then there is minimum spraying effectiveness
that must be satisfied. A 90% effective insecticide should be sprayed at three-month intervals
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Figure 5: (a) Number of infected humans, over a ten year period, for no spraying (dashed curve) and
regular, three-monthly spraying (solid curve) Inset: Mean number of infected humans over a 100 year
period. (b) Number of infected mosquitoes over a ten year period, for no spraying (dashed curve) and
regular, three-monthly spraying (solid curve). Inset: Mean number of infected mosquitoes over a 100 year
period. Data used were Λ = 1000 mosquitoes ·years−1, βM = 0.05 mosquitoes−1 days−1, h = 1/9 days−1,
δ = 1/30 days−1, μH = 1/30 years−1, α = 1/8 days−1, γ = 1/20 days−1, μ = 1/7.3 days−1, π = 100 humans ·
years−1, βH = 0.5 humans−1 days−1, r = 0.85 and τ = 0.25 years.

for regular spraying, or every 2.3 months for nonfixed spraying, to reduce the overall
mosquito population to 85% of that of the mosquito population without spraying.

To illustrate this, model (2.1) was simulated, over a period of 100 years. Regular
spraying occurred every three months, for an insecticide that was 85% effective. Regular
spraying significantly reduced the number of malaria cases in humans (Figure 5(a)) and
the number of infected mosquitoes (Figure 5(b)). Nonfixed spraying was also illustrated, for
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Figure 6: (a) Number of infected humans, over a 25-year period, for no spraying (dashed curve) and
nonfixed spraying (solid curve). (b) Number of infected mosquitoes over a 25-year period, for no spraying
(dashed curve) and nonfixed spraying (solid curve). Data used were identical to those in Figure 5, except
for the time of spraying. These times were randomly generated from a normal distribution, with a mean
of 4 months and a standard deviation of 1.2 months.

a spraying program with random spraying events chosen from a normal distribution with a
mean of 4 months and a standard deviation of 1.2 months. In this case, the number of malaria
cases in both humans and mosquitoes was also reduced significantly (Figure 6). However,
during some periods where the gap between spraying events was excessive, the peaks of
infection matched the number of infections without spraying.

The effects of increasing the mosquito birth rate are illustrated in Figure 7. The minimal
effective spraying period for regular spraying will always decrease as the mosquito birth rate
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Figure 7: The amount of IRS required to maintain present mosquito levels, as the mosquito birth rate
increases. If the mosquito birth rate is increased by 25%, then the minimal effective spraying period for
regular spraying decreases by about half (dashed red lines). If the mosquito birth rate doubles, then the
minimal effective spraying period is reduced by three quarters. As the mosquito birth rate continues to
increase, the minimal effective spraying period is driven to zero. In this case, identical parameters were
used to Figure 2.

increases; however, even a small increase in the mosquito birth rate has a significant effect on
the reduction of the minimal effective spraying period.

Finally, sensitivity to the other significant parameter, the mosquito death rate, is
illustrated in Figure 8. As the death rate increases, the minimal effective spraying period
decreases. There is a vertical asymptote at μ = Λ/Ψ, since Ψ ≤ Λ/μ, the equilibrium level
from the nonimpulsive system. That is, if μ > Λ/Ψ, then dΨ/dt < 0 and thus the number of
mosquitoes would never increase.

7. Discussion

We derived minimal effective spraying times for either fixed or variable spraying. Once the
birth and death rates of mosquitoes and spraying effectiveness of the insecticide are known,
the minimal effective spraying period can be determined, using (4.12). This is a simple
formula that can be easily calculated by policy makers and health officials.

If spraying occurs at regular, known intervals (e.g., every six months), then the
minimal insecticide effectiveness or spraying period can be derived (Corollary 4.3). If
spraying does not occur at fixed intervals, then the optimal result would depend on knowing
the entire history of spraying in the area. Since this is not possible, we assume that only the
previous two spraying events are known. In this case, the next best spraying is given by
Theorem 4.4. While this provides a recipe for coping with the “next best” outcome, it should
be noted (from Theorem 4.5) that (a) nonfixed spraying is always less optimal than regular
spraying and (b) only applies for a sufficiently effective insecticide.

These thresholds are analytical, so their application may vary, depending on the region
in which they are applied. However, we provide an illustrative example: an insecticide which
reduces mosquitoes by 90% at each spraying will ultimately result in a 15% reduction in
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Figure 8: Sensitivity of IRS to changes in the mosquito death rate. Parameters used are identical to Figure 2
and the median case illustrated by the dashed red line. As the death rate decreases, the minimal effective
spraying period decreases, but it is bounded below by τmin = 0.085 years. Thus, if regular spraying occurs
every month, then mosquitoes would be eradicated even if they never died due to any other cause.
Conversely, as the death rate increases, the minimal effective IRS period is increased. There is a vertical
asymptote at μ = Λ/Ψ; above this level, mosquitoes would be dying faster than they were born—an
unrealistic scenario.

mosquitoes if sprayed every three months. If the same insecticide is used, but with nonfixed
spraying, then the insecticide should be applied at 2.3-month intervals to achieve a 15%
reduction.

The mosquito birth rate may increase due to a variety of factors; one of those factors
will be the impact of climate change, as global temperatures increase. The effect of global
warming will have an increasingly heavy burden on the resulting change in strategy; if the
mosquito birth rate increased by one quarter, as a result of temperate changes, then the
minimal effective IRS period would be reduced by roughly half. If the mosquito birth rate
doubled, then the minimal effective IRS period would be reduced by about three quarters.
Since the spraying of insecticide consumes valuable and limited resources [29], we therefore
conclude that global warming will have a disproportionately detrimental effect in malaria-
endemic countries. However, it should be noted that the effects of climate change are likely
to be significantly more complicated than considered here.

The dependence of the minimal effective spraying period upon mosquito birth rates is
also a measure of the sensitivity of the results to changes in the latter. Since the thresholds
for the insecticide effectiveness and spraying period also serve as sensitivity analyses to
their respective parameters, we thus performed a sensitivity analysis on the only remaining
significant parameter, the death rate of mosquitoes. The result is reasonably sensitive to
changes in the death rate (Figure 8), but this is unsurprising; many models are sensitive to
changes in death rates (see [30] for more discussion on this topic), but we do not expect the
death rate to vary enormously.

We use a simple SIR model for humans, with mass action terms, but the bulk of
the analysis only depends on the form of the mosquito interactions. Thus, the results are
independent of the mass-action condition, and will be similar for other models, as long as the
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total mosquito population satisfies (4.1). In particular, the model could easily accommodate
a separate, exposed, class, and specific biting rates of mosquitoes, with the ODEs for
mosquitoes satisfying

dM

dt
= Λ − μM − βMbMI

Σ
,

dE

dt
= βMb

MI

Σ
− θE,

dN

dt
= θE − μN,

(7.1)

where E is the exposed (but noninfectious) class, b is the biting rate of mosquitoes, θ is
the duration of exposure, and Σ is the total human population. These more complicated
dynamics for mosquitoes still satisfy (4.1), and thus our results still apply. Similarly, if only a
single household were modelled, the dynamics for humans would not be well approximated
by ordinary differential equations, whereas the dynamics of mosquitoes still might be, if
sufficiently prevalent. In this case, the human interactions might take other forms, such as
network models.

Future work will examine the impact of spatial variation on the implementation of IRS,
including the reemergence of disease from point sources missed from the previous spraying.
More complex criteria for nonfixed spraying will also be considered.

In conclusion, regular spraying is clearly superior to nonfixed spraying, but either will
result in a significant reduction in the overall number of mosquitoes, as well as the number of
malaria cases in humans. We thus recommend that the use of indoor spraying be reexamined
for widespread application in malaria-endemic areas.
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