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Real options modeling, which extends the ability of option pricing models to evaluate real
assets, can be used to evaluate risky projects because of its capacity to handle uncertainties.
This research utilizes possibility theory to represent private risks of a project, which are not
reflected in the market and hence are not fully evaluated by standard option pricing models.
Using a transformation method, these private risks can be represented as fuzzy variables and then
priced with a fuzzy real options model. This principle is demonstrated by valuing a brownfield
redevelopment project using a prototype decision support system based on fuzzy real options.
Because they generalize the original model and enable it to deal with additional uncertainties,
fuzzy real options are entirely suitable for the evaluation of such projects.
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1. Introduction

An option is the right, but not the obligation, to buy or sell a certain security at a specified
price at some time in the future [1]. The option pricing model developed by Black and Scholes
[2] and Merton [3] is widely used to price financial derivatives. Because option pricing
quantifies the values of uncertainties, this technique has migrated to broader usage, such
as strategy selection [1], risky project valuation [4, 5], and policy assessment [6]. The idea
of employing an option pricing model to value real assets or investments with uncertainties
is usually called the real options approach or real options modeling [1, 7]. In real options,
risky projects are modeled as a portfolio of options that can be valued using option pricing
equations [4].

As options become “real” rather than financial, the underlying uncertainties become
harder to deal with. Some risks associated with real options are not priced in the market,
violating a basic assumption of option pricing. Hence, volatilities in real options usually
cannot be accurately estimated.
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The methods proposed to overcome the problem of private risk include utility theory
[1, 7], the Integrated Value Process [4], Monte-Carlo simulation [8, 9], and unique and
private risks [10]. This paper uses fuzzy real options, developed by Carlsson and Fuller
[11], to represent private risk. Representing private risks by fuzzy variables leaves room for
information other than market prices, such as expert experience and subjective estimation,
to be taken into account. In addition, the model of Carlsson and Fuller can be generalized
to allow parameters other than present value and exercise price [11] to be fuzzy variables,
utilizing the transformation method of Hanss [12]. The added flexibility that allows the fuzzy
real options model to tackle private risks issue also makes it more suitable for risky project
evaluations.

We build a fuzzy real options model for brownfield evaluation by extending Lentz and
Tse’s [13], and develop a prototype decision support system for brownfield redevelopment
evaluation to demonstrate the effectiveness of the fuzzy real options approach.

In this paper, option pricing models are introduced first and then used to value
real assets as real options. The main issue of real options, private risks, will be addressed
systematically. After a summary and comparison of methods to evaluate private risks,
this research will focus on fuzzy real options. After a theoretical introduction, brownfield
redevelopment, a typical risky project, is discussed briefly. Then a DSS for brownfield
valuation based on fuzzy real options is designed and implemented as a prototype.

2. Fuzzy Real Options and Private Risks
2.1. Real Options

Black, Scholes, and Merton proposed their frameworks for pricing basic call and put options
[2, 3] in 1973, establishing the theoretical foundation for pricing all options. Because option
pricing models acknowledge the value of uncertainty explicitly, they came to be used to
evaluate uncertain real assets, called real options. For instance, the managerial flexibility to
terminate a project if it proves unprofitable was recognized as a kind of American put option,
with sunk cost as the exercise price. Hence, the value of this risky project would be the sum
of its initial cash flows and the value of its derivative American put option [8].

As suggested by the above example, the value of a risky project includes not only
its present value, but also the portfolio of options associated with it, reflecting the values
of uncertainties and associated managerial flexibilities. The following options may exist
in different kinds of projects and situations and can be evaluated using option formulas
developed for the financial market [1, 5, 7-9].

(i) The option to defer. The option of waiting for the best time to start a project can be
valued as an American call option or a Bermuda call option.

(ii) The option to expand. The option of expanding the scale of the project can be valued
as an American call option or a barrier option.

(iii) The option to contract. The option of shrinking the scale of the project can be valued
as an American put option.

(iv) The option to abandon. The ability to quit the project can be valued as an American
put option or a European put option.
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(v) The option of staging. The ability to divide projects into several serial stages, with the
option of abandoning the project at the end of each stage (“option on option”), can
be valued as a compound option, also called the learning option in some articles.

(vi) The option to switch. The flexibility to change the project to another use can be valued
as a switch option.

The output of option pricing models usually includes valuations, critical values, and
strategy spaces to help a DM to make decisions [1]. This information includes

(i) Valuations. The most important output, and the main reason for using a real options
model, is the value of the risky project.

(ii) Critical values. Threshold distinguishing the best strategy is usually defined in terms
of parameters. For example, some critical values determine whether it is optimal to
undertake the project. Critical values play a similar role to Net Present Value (NPV)
zero.

(iii) Strategy space. The critical values divide the multidimensional strategy space into
regions, corresponding to which option is best to implement. Often, this output is
optional.

2.2. Private Risks

Unlike the uncertainties reflected in stock or bond prices or exchange rates, market data
gives very little information about uncertainties in real options. Moreover, inappropriate
consideration of uncertainties may make the real options model invalid, an important issue
because of the basic assumptions of option pricing models [4, 14].

(i) Complete market. All risks can be hedged by a portfolio of options [15]. In other
words, all risks have been reflected in the market price and can be replicated as
options. In some literature, this is also called the Market Asset Disclaimer (MAD)
approach [5].

(ii) Arbitrage-free market. There is no profit opportunity unless a player in the market is
willing to take some risk [4]. In other words, there is no risk-free way of making
money.

(iii) Frictionless market. There are no barriers to trading, borrowing, or shorting contracts,
and no transaction costs for doing so. Furthermore, underlying assets are infinitely
divisible [14].

These assumptions are generally realistic in the financial market, but may not be the
case for real options, in part because of the many distinct sources of uncertainty. But more
importantly, many uncertainties cannot be matched by any basked of market good, violating
the complete market assumption [14]. In fact, it is unusual for project-specific uncertainties
to be replicated as a market portfolio. The options modeling process must be customized to
make the valuation framework flexible enough to fit real options.

In summary, private risk refers to risks that cannot be valued in the market [1], a
simple but difficult issue in applying any real options model. Private risk challenges the
complete market assumption, making the output values unreliable. Volatility (o), which
reflects uncertainties, cannot be estimated objectively.
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2.3. Fuzzy Real Options

Projects usually have private risks, which usually cannot be estimated without expert
knowledge. Using soft-computing techniques, experts can use their experience to make
subjective predictions of private risk. These predictions can be improved using machine
learning algorithms. Accumulating additional cases adds to expert experience, so that
learning improves the accuracy of private risk estimation.

Among soft-computing techniques, fuzzy systems theory is especially suitable for
representation of expert knowledge. Here, fuzzy real options are intended to deal with
private risks that are hard to estimate objectively. The plan is to base fuzzy real options on
possibility theory [11, 16-18].

The fuzzy approach cannot only model preferences [17], but also take into account
subjective uncertainty [11]. In addition, it often requires less data, making it easier to use and
quicker to produce satisfactory outputs.

Carlsson and Fuller assume that the present value and exercise price in the option
formula are fuzzy variables with trapezoidal fuzzy membership functions. Because inputs
include fuzzy numbers, the value of a fuzzy real options is a fuzzy number as well. A final
crisp Real Option Value (ROV) can be calculated as the expected value of the fuzzy ROV
[11]. Using a-cuts (a® and b® denote, respectively, the minimum and maximum values at
the a-level of membership of a fuzzy variable), the possibilistic mean of the fuzzy variable
(denoted A) and the variance was calculated by [11] to be (2.1) and (2.2), respectively.

E(A) = fl

a(a(“) + b("‘)>da, (2.1)
0

1! 2
2 _ = (a) _ ()
0°(A) = 2I0a<b a > da. (2.2)

The concise and effective fuzzy real options approach proposed by Carlsson and Fuller
is widely applicable; see [19-21]. But this specific model restrict fuzzy variables to the exercise
price and current cash flow. Here, that restriction is avoided by employing fuzzy arithmetic
and the transformation method, which is introduced in the following section.

2.4. Fuzzy Arithmetics and the Transformation Method

While fuzzy logics and inferencing systems are well-established, fuzzy arithmetic lags
behind. Fuzzy arithmetic is restricted to simple operators [22, 23]. In applications, fuzzy
arithmetic is usually limited to several predefined membership functions in MATLAB and
Mathematica. This is mainly because the final result may be different depending on the
procedure for implementing standard fuzzy arithmetic [12].

Hanss established the transformation method, thereby solving the multiple outputs
problem and making generalized fuzzy arithmetic possible [24]. In the transformation
method, a fuzzy function is defined as in Definition 2.1).

Definition 2.1. A fuzzy function with fuzzy output g, n fuzzy inputs p;, and k normal inputs
Xk, can be expressed as

g=F(x1,%2,...,%K;P1, P2, Pn)- (2.3)
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The idea underlying the transformation method has three important points: decom-
pose fuzzy numbers into discrete form, use an a-cut for calculation purposes as a traditional
function, and search the coordinates of the points in the hypersurfaces of the cube. The
algorithm of the transformation method is given next [12]:

2.4.1. Decomposition of the Input Fuzzy Numbers

Similar to (2.1), da is discretized into a large number of m intervals of length Aa = 1/m. Each
fuzzy input p; is decomposite into a series of crisp values at different a-cut levels y;, where
uj=(/m) (j=0,1,...,m)

p={x", X", x M, xP,i=1,2,0,m, (2.4)

where every element Xl.(j ' is define as

(1)) () 4 ()
Xiﬂf — [ai.“f lbi/‘f ]/ (2.5)

where alf” 7 and bl.(” ? denote the minimum and maximum values at the pj-level of a given

fuzzy variable, respectively, as previous.

2.4.2. Transformation of the Input Intervals

The intervals Xi(j), i = 1,2,...,n of each level of membership uji, j =0, 1,2,...,m, are

transformed into arrays le of the form with the number of 2/~ pairs (agj ), ﬂl(] ) ),
X/ = ((“Y)/ﬁy)>/ (afi),ﬁfj>),. » <al§j),ﬂi(i)>> (2.6)
with 2"~ elements in each set of
o = (af,....al),  p=(b]...b]). 2.7)

The above formula fits the case of the reduced transformation method when the fuzzy
function is monotonic or has only one fuzzy input. The general transformation method is
similar to these formulae [12]. The main difference is that more points are tested.

Denotion of aE’ ) and ﬂl(’ ) as pairs of a-cut values allows repetitive elements. The order
of the elements is critical. The ultimate goal is that the 2/~! of the ith element forms endpoints
on the hypersurfaces. As illustrated in Figure 1, in the case of 3 fuzzy inputs shown as 3-

dimensional space, the above definition means every Xi(j ) has 27ix2i-1 = 2" = 23 = 8 elements,
which are located on the endpoints of the cubicle.
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Figure 1: Fuzzy transformation diagram [12].

2.4.3. Evaluation of the Model

The function F is evaluated separately at each of the columns in the arrays using the classical
arithmetic for crisp numbers. In other words, if the output § can be decomposed to the arrays
Z (j =0,1,2,...,m) using the algorithms mentioned above, the kth element can be obtained
using the formula as

kz0) = P(kﬁ”, k0., ky?fl]);yl,yz,...,w), (2.8)

where ¥ fci(j ) is the kth element of the array Z ) andy; (i=1,2,..., k) are the other crisp inputs
of the function.

2.4.4. Retransformation of the Output Array

Now the decomposition of the fuzzy output § becomes the set Q = {Z©,zM), z®) . zm},
Each element of this set should be the a-cut value at each level just like (2.5). Each value is
obtained by retransforming the arrays Z() in a recursive manner using the following formula:

2 = min(a(j+l), kz(1)>, j=0,1,...,m-1,
pli) = max<b<f+1>, kz(f)), j=0,1,...,m-1, (2.9)

a™ = min( ki(m)>, bm = max( ki(m)>.
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2.4.5. Recomposition of the Output Intervals

Recompositing the inverals Z 0, j=0,1,2,...,mof the set Q based on their membership level
uj, we can get the final fuzzy output g.

The transformation method is an ideal solution for implementing generalized
arithmetic operations. Hence, it is employed in this paper to integrate the subjective
uncertainties into the real options model. This algorithm is one of the key components in
building the decision support system for the project evaluation of brownfield redevelopment
using the fuzzy real options.

3. Brownfield Redevelopment
3.1. Uncertainties in Brownfield Redevelopment

A brownfield is an abandoned or underutilized property that is contaminated, or suspected
to be contaminated, usually due to previous industrial usage [25]. Brownfields are common
in cities transitioning from an industrial to a service-oriented economy, or when industrial
enterprises have been relocated elsewhere or restructured themselves [26]. Brownfields are
associated with an unsustainable development pattern, as they often arise when greenfields
are developed while brownfields are abandoned.

Hence, brownfield redevelopment is helpful in enhancing regional sustainability. For
example, municipal governments in Canada and elsewhere are encouraging brownfield
redevelopment as part of a regional sustainable development plan. If brownfields were suc-
cessfully redeveloped, local economic transitions would be more fluid; current infrastructure
would be reused, and local public health would be more secure.

Brownfield redevelopment is a typical system-of-systems (SoSs) problem, as it
involves various systems with complex interactions as illustrated in Figure 2. Brownfield
redevelopment has the characteristics of an SoS; it possesses high uncertainty, nonlinear
interactions within and among systems and is interdisciplinary in nature [27]. Due to the
complex interactions of soil and groundwater systems with societal systems, as well as
uncertainties in redevelopment costs, knowledge and technologies, and potentially high
liabilities, brownfield redevelopment is difficult to initiate [28]. Uncertainties in brownfield
redevelopment can be classified into the following categories.

(i) Uncertainties due to limited knowledge of brownfields. Currently, knowledge and data
about brownfields are limited. Identifying appropriate models, characteristics, and
parameters can be costly and time-consuming.

(ii) Uncertainties originating from environmental systems. Environmental systems have
complex interactions in different systems, especially between groundwater and
soil. Complex site-specific characteristics hinder remediation and redevelopment
processes because they usually lead to highly uncertain remediation costs [29].

(iii) Uncertainties originating from societal systems. There are various kinds of stakeholders
in brownfield redevelopment participating in complex conflicts and interactions,
which create high levels of uncertainty in liabilities and cost sharing polices.

Because of the high uncertainties involved in brownfield redevelopment, traditional
valuation methods are inoperable. It is very difficult to identify an appropriate discount
rate for the Capital Asset Pricing Model (CAPM) [30]. Developers normally require high-
risk premiums to compensate for the high uncertainties in brownfield redevelopment
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Figure 2: Systems diagram of brownfield redevelopment.

projects. Using Net Present Values (NPVs), developers usually calculated negative values
for redevelopment projects and thus were reluctant to undertake them [31].

However, brownfield redevelopment can be profitable and even produces higher
investment returns in some cases [31-33]. One explanation of the gap between predicted
(conceptual) profit using NPV and the actual investment return is that the NPV method fails
to map the value of opportunities created under a high uncertainty environment into project
values.

These observations motivate the use of the real options model to evaluate redevelop-
ment projects; it may provide more accurate valuations in the presence of high uncertainties.
This research builds a prototype decision support system to implement a fuzzy real options
model. The effectivenss of the model is tested using hypothetical data derived from actual
brownfield redevelopment projects.

3.2. Fuzzy Real Options for Brownfield Redevelopment

Among a couple of available real options models for brownfield redevelopment, model
proposed by Lentz and Tse is chosen to be extended with fuzzy variables, which includes
an option to remove hazardous materials at the best time and an option to redevelop the
brownfield, converting this site into other more profitable usage, at the best opportunity
[13]. This model is more generic than others, such as Espinoza and Luccioni [32], in which
only one American option is considered and Erzi-Akcelik [33], in which just applied Dixit
and Pindyck’s model [7]. Hence, an option to defer and option to learn are involved in the
evaluation of contaminated properties.

The value of brownfield sites is regarded as two Wiener processes: the cash flow
generated from this site without contamination (denoted as x) and the redevelopment
cost for this site (denoted as R). To make private risks distinct from market ones, both of
them are treated as two partially hedged portfolios, cash flow portfolio (denoted as P) and
redevelopment cost (denoted as K), respectively.

In addition, four coefficient parameters with regard to x and R are involved. The
parameters ¢, and ¢ focus on cash flows. As cash flows from all states are being proportional
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Figure 3: System architecture of the DSS.

to the clean one, the cash flow generated under contamination is ¢ x; cash flow after removal
is regarded as resumed to the clean one with x; and cash flow after redevelopment is ¢x. The
coefficients a1 and a, denote the removal and restoration costs as a;R and a,R, which are
assumed to be proportional to the total redevelopment cost R as well. Therefore, the cleanup
cost C equals (a7 + a2)R.

Overall, three critical values are involved in deciding three kinds of strategies, which
are denoted as Z*, Y*, and W* in [13, Formula 14]: do nothing, remove pollutants and
redevelop sequentially, or remove and redevelop simultaneously. Values to be compared with
these critical values are, respectively, Z = x/R, the ratio of the clean cash flow (x) to the
redevelopment cost (R), Y = x/C, the ratio of the clean cash flow (x) to the cleanup cost (C),
and W = x/(1+a1)R, the ratio of the clean cash flow (x) to the combined cost of removal and
redevelopment as a joint action. In addition, all supplementary formulae are shown as [13,
Formula 12]:

o? :o§+o§—20xR,
Y = Wk — UR,
6=g~ (ur—px +1),
g§=px—(pp—71) P,

Ox
ﬁx = PxPO__Pr (31)

p IR
R = PRK
P ox’

wi =7+ (px = 7)Pr,

2_ 26 - 0%)%+8yc?
=05 00226+\/( 0?)" +8yo

ot

If the contaminated properties were to be cleaned and redeveloped sequentially, their
values can be expressed as [13, Formula 13], depending on the critical value of Y* as [13,
Formula 14]. If Y > Y*, the removal action should be taken right now. Otherwise, the optimal
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executing time is in [13, Formula 16]. After the cleanup action, redevelopment is better to be
conducted when Z > Z* in (3.5):

() @ ) Q) ey

V1= -
- 1)1 —1\1 -1
x (=Y <¢ 1> (5)” x-C, Y >Y"
r—g q1 r—g R
(3.2)
r-8 4
Y* = —_—,
1-¢p1g-1
r-g 49
W = —, 3.3
P-pig-1 53)
«_I'—8 4
Z _<,‘b—1_q—1'

If the brownfield sites were to be cleaned and redeveloped simultaneously, their values
can be expressed in [13, Formula 15], depending on the critical value of W* in (3.3). If W >
W*, the removal action should be taken right now. Otherwise, the optimal executing time is
in (3.5):

@1x +<¢—<P1>"<(q—1)"'1> x if W< W*;

v2=47-8 r-g q1 (R +R)’ (3.4)
X _(mR+R), W s W
r-g
InY*-InY
Ty = s
My — MR
L IW-W 65
Mmy — MR
InZ*-In Z
Tz = —————————
My — MR

for m, > mg, where m, = pi, — 0.502 and mpg = UR — 0.50123.

The final value of the brownfield site is the maximum of V1 and V2. An optimized
redevelopment strategy can also be formed based on where it locates in the decision region,
since all critical value can be converted into x/R.

4. Decision Support System Design and Case Study
4.1. System Architecture

The system architecture of the DSS is shown in Figure 3. Experts input parameters via the
layer of the Windows Presentation Foundation (WPF) are given in Figure 4. After that, an
event and process management module will control the work flow to convert all information
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using the format of MatLab and feed them into MatLab for actual computation using the
proposed fuzzy real options algorithm. Basically, fuzzy data are first converted (fuzzified
and defuzzifed) into the crisp value needed for the real options model. Then, output can
be obtained by calling the real options formula. Finally, the last output will be presented
graphically via WPF to users.

Although prototype developed in this paper is primitive, the system architecture is
quite generic and extendable. This DSS can be gradually expanded in scale and become more
complex with more functions. The developed prototype satisfies the goal of a feasibility study
on both the algorithm and technical approach in building this DSS.

4.2. An Illustrative Example

To demonstrate the fuzzy real options modeling, a brief example using hypothetical values
is presented to illustrate an application of the associated DSS. These data mainly come from
Lentz and Tse’s paper [13], so that the DSS can be tested by comparing with their result.
In addition, although inputs data are imaginary, they are modified according to real data
in some articles on brownfield redevelopment, such as [33, 34] and added with some fuzzy
parameters. The input data are shown in Table 1.

In addition to the data used in Table 1, all variables in this model are allowed to be
fuzzy ones, in order to incorporate expert knowledge into parameter estimation. Given that
the most difficult task in brownfield redevelopment is to estimate uncertainties regarding the
redevelopment cost, which belongs to the private risk, the volatility rate of the redevelopment
cost, o, is deemed to be a fuzzy variable and studied intensively in this paper.

The volatility of the redevelopment cost is hard to estimate mainly because the
dissemination of pollutants underground is highly complex. Soils, rocks, and materials
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Table 1: Input data [13].

Variable name Value
Current net cash flow of the clean property (x) $300000
Current redevelopment vost (R) $5000000
Riskless interest rate (r) 5%
Instantaneous return rate of the cash flow () 10%
Volatility rate of the cash flow (ox) 20%
Instantaneous return rate of the portfolio hedging the cash flow (pp) 15%
Volatility rate of the portfolio hedging the cash flow (op) 20%
Instantaneous return rate of the redevelopment cost (yg) 7%
Volatility rate of the redevelopment cost (or) 20%
Instantaneous return rate of the portfolio hedging the redevelopment cost (px) 15%
Volatility rate of the portfolio hedging the redevelopment cost (o) 16%
Ratio of the contaminated cash flow to the clean one (¢1) 0.4
Ratio of the restored cash flow to the clean one (¢») 1
Ratio of the redeveloped cash flow to the clean one (¢)

Ratio of the clean-up cost to the redevelopment cost (a;) 0.3
Ratio of the restoration cost to the redevelopment cost (a2) 0.2
Correlation between the hedging portfolio and underlying cash flow (p.p) 1
Correlation between the hedging portfolio and underlying cash flow (prk) 1
Correlation between the cash flow and the redevelopment cost (pxr) 0

Note: Parameters, ¢1, (2, §, a1, &2, pxp, PrK, xR, are predefined in the DSS to simplify inputs. And since they are mainly
coefficient parameters, there is no need to change them frequently.

are distributed ununiformly. Their hydraulic conductivities vary greatly according to the
materials, elevation, and seasonal change. For instance, groundwater passes through peat
(or cinders) at the velocity of 177 cm/d, which is hundreds of times the speed in the silt till
(0.49 cm/d) at the site of the Ralgreen Community in Kitchener, ON, Canada [34]. Moreover,
redevelopment cost also depends on the residual rate of pollutants and excavation cost, which
are hard to estimate using market data neither.

To overcome this problem, the fuzzy redevelopment volatility is utilized as one with
a triangle membership distribution based on parameters of minimum value, maximum
value, and most likely value, because project managers and experts usually estimate
uncertain parameters using the three-point estimation method [35]. Based on the hydraulic
conductivity, volume of contaminated soil, and elevations, we found that the 20% volatility
rate, used in Tse and Lentz’s article [13], is roughly realistic. Nonetheless, since there are only
two wells drilled for sampling, a relatively large interval should be added. As the result, the
fuzzy redevelopment volatility is inputed as (0.15, 0.2, 0.25).

The main result from the DSS is shown in Figure 5, which includes the value of the
brownfield site, a suggestion for a redevelopment strategy, and associated critical values that
lead to this suggestion. In this case, the property value is a fuzzy variable with a mean
of around 6.3 million and variance of around 1.7 million. Obviously, the private risk of
redevelopment volatility has a great effect on the value of brownfield properties. And because
the output indicators (Y and W) are less than their corresponding critical values (Y, and W,),
this site is not worth of redeveloping now. This result partially explains why developers are
reluctant to undertake this redevelopment task.
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Figure 6: W (the red line in left) and W* with fuzzy boundary (membership function).

Moreover, the critical values are fuzzy outputs as well. The fuzzy boundaries
differentiating optimal strategies are illustrated in Figure 6. Also, these critical values can be
converted into the ratio of x/R and shown in one figure as different decision regions in the
strategy space (Figure 7). Fuzzy areas are calculated based on their fuzzy means and standard
deviations. This DSS provides decision makers an intuitive decision suggestion with the aid
of the decision region chart.

Finally, the effect of subjective estimation on property value is studied by changing the
fuzzy intervals (minimum and maximum values of the fuzzy redevelopment volatility) while
holding the most likely value unchanged, also as a kind of sensitivity analysis. Based on the
illustrative example, we found that the value of the contaminated property increases as the
fuzzy interval enlarges, as shown in Figure 8. This result implies that the subjective estimation
of the private risk has an effect on the final evaluation result, although the change is not too
much. Furthermore, experts can take advantage of their knowledge to make a slightly higher
profit in the brownfield redevelopment projects than others. And the variation of the fuzzy
output increases gradually, suggesting that there is no abrupt change and associated critical
value in the fuzzy real options model.
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5. Conclusions and Future Work

This paper employs a fuzzy real options approach to deal with the private risk problem. With
help of the transformation method, any parameter in a real option model can be estimated
as a fuzzy variable. Based on the results from the illustrative example using the prototype
DSS, we found that this approach is effective in dealing with the private risk and generating
satisfactory evaluations and useful suggestions. Hence, based on our limited test, the DSS
based on the fuzzy real options is a useful tool in risky project evaluations. It potential for
application should be further studied.
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In addition, from the result of the illustrative example (Figure8), we see that
possibilities as well as probabilities can affect evaluations of risky projects. For the case of
brownfield redevelopment, expertise can be utilized to make the contaminated property more
valuable. This effect needs to be further analyzed.

But it should be recognized that the fuzzy real options model in this paper has several
limitations, some of which may be removed in future work. Fuzzy arithmetic permits any
membership function to be utilized in real options. This flexibility builds a foundation for
future application of soft-computing techniques. For instance, the neural network could
provide a nonparametric adaptive mechanism for private risk estimation. The DSS will be
enhanced if it can be made to behave intelligently and adaptively.

A key feature of the fuzzy real options proposed here the mixture of fuzziness and
randomness describing hybrid markets and private risks. But one limitation of our approach
is that these two features are not well-integrated. Randomness is represented as a stochastic
process, while fuzziness is represented using only fuzzy arithmetic. Incorporating a fuzzy
process would clarify the structure, perhaps producing some important new insights.

A unifyied process including both fuzzy and stochastic features could strengthen the
idea of fuzzy real options and extend enormous flexibility to soft-computing techniques and
statistical models associated with these options. This goal may be achieved with the aid of
the chance theory proposed by Liu [36].

Finally, since the fuzzy real options approach helps to improve developers’ evaluation
on brownfields, game-theoretic approaches could later be employed for negotiation of
governmental assistance in the brownfield redevelopment to achieve optimal results.
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