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Two kinds of parametric set-valued vector quasi-equilibrium problems are introduced. The
existence of solutions to these problems is studied. The upper and lower semicontinuities of their
solution maps with respect to the parameters are investigated.

1. Introduction and Preliminaries

Equilibrium problems are a class of general problems that contains many other problems,
such as optimization problems, variational inequality problems, saddle point problems, and
complementarity problems, as special cases. Up to now, the main efforts for equilibrium
problems have been made for the solution existence; see for example [1–6] and the references
therein. A few results have been obtained for properties of solution sets, see [7–12].

Motivated and inspired by works in [1, 5, 8–12], in this paper, we will introduce
two kinds of parametric set-valued vector quasi-equilibrium problems and study the
solution existence of these problems. In addition, we will investigate the upper and lower
semicontinuities of their solution maps with respect to the parameters.

Throughout this paper, let X,Y be real Hausdorff topological vector spaces, Λ,M real
topological vector spaces, and A a nonempty compact convex subset of X. We denote by
coA, intA, ∂A, and clA the convex hull, interior, boundary, and closed hull ofA, respectively.
Let K : A ×M → 2X, T : A × Λ → 2Y , F : A × X × Y → 2Y , and C : A → 2Y be set-valued
mappings such that A ∩ K(x, μ)/= ∅ for all x ∈ A and μ ∈ M and C(x) be a closed convex
pointed cone of Y with intC(x)/= ∅ for each x ∈ A.

The mapping F is said to be Y \ − intC quasiconvex of type 2 with respect to T (see
[1]) if for any nonempty finite subset {y1, . . . , yn} ⊆ A and any x ∈ co{y1, . . . , yn}, there exist
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i ∈ {1, . . . , n} and z ∈ T(x) such that F(x, yi, z) ⊆ Y \− intC(x). F is said to be Y \− intC quasi
convex-like of type 2with respect to T (see [1]) if for any nonempty finite subset {y1, . . . , yn} ⊆
A and any x ∈ co{y1, . . . , yn}, there exist i ∈ {1, . . . , n} and z ∈ T(x) such that

F
(
x, yi, z

) ∩ (Y \ − intC(x))/= ∅. (1.1)

Let B be a nonempty subset of X. A set-valued mapping G : B → 2Y is said to be
upper semicontinuous (shortly, u.s.c) at x0 ∈ B if for any open set V ⊇ G(x0), there exists an
open neighborhood U of x0 such that G(x) ⊆ V for each x ∈ U ∩ B. G is said to be u.s.c on B
if it is u.s.c at each point in B.

The mapping G : B → 2Y is said to be lower semicontinuous (shortly, l.s.c) at x0 ∈ B
if for each y ∈ G(x0) and any open neighborhood V of y there exists an open neighborhood
U of x0 such that G(z) ∩ V /= ∅ for each z ∈ U ∩ B, or, equivalently, if for any net {xα} with
xα → x0 and any y ∈ G(x0), there exists a net {yα} with yα ∈ G(xα) for each α such that
yα → y. G is said to be l.s.c on B if it is l.s.c at each point in B.

The mapping G : B → 2Y is said to be closed at x0 ∈ B if for any net {(xα, yα)} :
(xα, yα) → (x0, y0) and yα ∈ G(xα) for each α, one has y0 ∈ G(x0). G is said to be a closed
set-valued mapping if its graph, denoted by graphG, is a closed set inX×Y , where graphG =
{(x, y) : x ∈ B, y ∈ G(x)}. G is said to have closed values if G(x) is a closed set for each x ∈ B.

A set-valued mapping G : B → 2B is said to be a KKMmapping if for each nonempty
finite subset {x1, . . . , xn} of B, one has co{x1, . . . , xn} ⊆ ⋃n

i=i G(xi).

Lemma 1.1 (Fan-KKM Theorem). Let B a nonempty convex subset of X and G : B → 2B be a
KKM mapping. If G(x) is a closed set for every x ∈ B and there exists x0 ∈ B such that G(x0) is a
compact set, then

⋂
x∈B G(x)/= ∅.

Lemma 1.2 (see [13]). If a set-valued mapping G : X → 2Y is u.s.c and has closed values, then it is
a closed set-valued mapping.

Lemma 1.3 (see [14]). Let the set-valued mapping G : X → 2Y have a compact value at x. Then G
is u.s.c at x ∈ X if and only if for any nets {xα} ⊆ X : xα → x and {yα} : yα ∈ G(xα) for each α
there exist y ∈ G(x) and a subnet {yβ} of {yα} such that yβ → y.

For any given parameters λ ∈ Λ and μ ∈ M, in this paper, we consider the following
two parametric set-valued vector quasi-equilibrium problems.

PSVQEP 1. Find x ∈ A ∩ clK(x, μ) such that for each y ∈ K(x, μ) there exists z ∈ T(x, λ)
satisfying

F
(
x, y, z

) ⊆ Y \ − intC(x). (1.2)

PSVQEP 2. Find x ∈ A ∩ clK(x, μ) such that for each y ∈ K(x, μ) there exists z ∈ T(x, λ)
satisfying

F
(
x, y, z

) ∩ (Y \ − intC(x))/= ∅. (1.3)

We denote their solution sets by S1(λ, μ) and S2(λ, μ), respectively. Obviously,
S1(λ, μ) ⊆ S2(λ, μ).
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2. Solution Existence

In this section, we will study the existence of solutions for PSVQEP 1 and PSVQEP 2 without
any monotonicity. Since parameters play no role in considering solution existence, for the
sake of convenience, we state and prove existence results without parameters. We denote the
above problems without parameters by SVQEP1 and SVQEP2, and their solution sets by S1

and S2, respectively.

Theorem 2.1. Let

(i) coK(x) ⊆ clK(x) for all x ∈ A,

(ii) {x ∈ A : y ∈ K(x)} be an open set,

(iii) F be Y \ − intC quasi convex of type 2 with respect to T ,

(iv) {y ∈ A : ∃z ∈ T(x) s.t. F(x, y, z) ⊆ Y \ − intC(x)} be a closed set for each x ∈ A.
Then (SVQEP1) has at least a solution.

Proof. Put E := {x ∈ A : x ∈ clK(x)} and define three set-valued mappings P : A → 2A,H :
A → 2A, and Q : A → 2A by

P(x) =
{
y ∈ A : F

(
x, y, z

) ∩ − intC(x)/= ∅, ∀z ∈ T(x)
}
, ∀x ∈ A,

H(x) =

⎧
⎨

⎩

K(x) ∩ P(x), x ∈ E,

A ∩K(x), x ∈ A \ E,

Q
(
y
)
= A \ {x ∈ A : y ∈ H(x)

}
, ∀y ∈ A.

(2.1)

Firstly, we show that Q is a KKM mapping.
Suppose to the contrary that Q is not a KKM mapping. Then there exist a nonempty

finite subset {y1, . . . , yn} ⊆ A and a point x̂ =
∑n

j=1 αjyj ∈ co{y1, . . . , yn}, where αj ≥ 0, j =
1, . . . , n and

∑n
j=1 αj = 1, such that x̂ /∈ ⋃n

j=1 Q(yj), which implies that yj ∈ H(x̂), j = 1, . . . , n.
If x̂ ∈ E, then F(x̂, yj , z) ∩ − intC(x̂)/= ∅ for all z ∈ T(x̂) and j = 1, . . . , n, which

contradicts (iii).
If x̂ /∈E, then yj ∈ K(x̂), j = 1, . . . , n, which indicates that x̂ =

∑n
j=1 αjyj ∈ coK(x̂) ⊆

clK(x̂) and then x̂ ∈ E. This is a contradiction.
Thus, Q is a KKMmapping.
Secondly, we show that

⋂
y∈A Q(y)/= ∅.

For any given y ∈ A, we can deduce that

Q
(
y
)
= A \ {x ∈ A : y ∈ H(x)

}

= A \ ({x ∈ E : y ∈ K(x) ∩ P(x)
} ∪ {

x ∈ A \ E : y ∈ A ∩K(x)
})

= A \ ({x ∈ A : y ∈ K(x)
} ∩ (

(A \ E) ∪ {
x ∈ A : y ∈ P(x)

}))

=
(
A\({x ∈ A : y∈K(x)

})∪(E)∪{x∈A : ∃z∈T(x), F(x, y, z)⊆Y \− intC(x)
})

.

(2.2)
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By (ii) and (iv), we can conclude that Q(y) is a closed set. Since X is a Hausdorff topological
vector space and A is a compact set, we have that Q(y) is compact for each y ∈ A. By
Lemma 1.1, we get

⋂
y∈A Q(y)/= ∅.

Finally, we prove that the assertion of the theorem holds.
Taking arbitrarily x ∈ ⋂

y∈A Q(y), we have x /∈ {x ∈ A : y ∈ H(x)} for all y ∈ A, which
indicates thatH(x) = ∅. AsA ∩ K(x)/= ∅ for all x, we know that x ∈ E and thenK(x)∩P(x) =
∅. Consequently, for each y ∈ K(x), there exists z ∈ T(x) such that F(x, y, z) ⊆ Y \ − intC(x),
which shows that x ∈ S1.

By a similar proof as for Theorem 2.1, we obtain the following result.

Theorem 2.2. Let hypotheses (i) and (ii) in Theorem 2.1 hold and let
(iii) F be Y \ − intC quasi convex-like of type 2 with respect to T ,
(iv) {y ∈ A : ∃z ∈ T(x) s.t. F(x, y, z)∩(Y \− intC(x))/= ∅} be a closed set for each x ∈ A.

Then (SVQEP2) has at least a solution.

3. Upper Semicontinuity of Solution Sets

In this section, we will study the upper semicontinuity of the solution sets S1(λ, μ) and
S2(λ, μ) with respect to parameters (λ, μ). For this end, we assume that S1(λ, μ) and S2(λ, μ)
are nonempty for any (λ, μ) ∈ Λ ×M. Let x0 ∈ A, λ0, λ ∈ Λ and μ0, μ ∈ M.

Theorem 3.1. Let

(i) E(·) = {x ∈ A : x ∈ clK(x, ·)} and W(·) be closed set-valued mappings, where W(x) :=
Y \ − intC(x) for each x ∈ A;

(ii) for any nets {λα} : λα → λ0, {μα} : μα → μ0, {xα} : xα → x0, {zα} : zα ∈ T(xα, λα)
for each α and any y0 ∈ K(x0, μ0), there exist nets {yα} : yα ∈ K(xα, μα) for each α,
{zβ} ⊆ {zα} and z0 ∈ T(x0, λ0) such that yα → y0 and zβ → z0;

(iii) F be l.s.c on A ×X × Y . Then S1(·, ·) is both closed and u.s.c at (λ0, μ0).

Proof. We first show that S1(·, ·) is closed at (λ0, μ0).
Suppose to the contrary that S1(·, ·) is not closed at (λ0, μ0). Then there exist nets

{(λα, μα)} : (λα, μα) → (λ0, μ0) and {xα} : xα → x0 and xα ∈ S1(λα, μα) for each α such
that x0 /∈S1(λ0, μ0).

xα ∈ S1(λα, μα) implies that (μα, xα) ∈ graphE for each α. By the closedness of A ∩
clK(·, ·), we get x0 ∈ A ∩ clK(x0, μ0), which together with x0 /∈S1(λ0, μ0) indicates that there
exists y0 ∈ K(x0, μ0) such that

F
(
x0, y0, z

) ∩ − intC(x0)/= ∅, ∀z ∈ T(x0, λ0). (3.1)

For y0 ∈ K(x0, μ0), by (ii), there exists yα ∈ K(xα, μα) for each α such that yα →
y0. Due to xα ∈ S1(λα, μα), for each yα ∈ K(xα, μα), there exists zα ∈ T(xα, λα) such that
F(xα, yα, zα) ⊆ Y \ − intC(xα). Again by (ii), there exist a subnet {zβ} ⊆ {zα} and a point
z0 ∈ T(x0, λ0) such that zβ → z0 and

F
(
xα, yα, zβ

) ⊆ W(xα). (3.2)
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For z0 ∈ T(x0, λ0), by (3.1), there exists f0 ∈ F(x0, y0, z0) such that

f0 ∈ − intC(x0). (3.3)

By the lower semicontinuity of F, there exists fβ ∈ F(xβ, yβ, zβ) for each β such that fβ → f0,
which together with the closedness of W(·) and (3.2) implies that f0 ∈ Y \ − intC(x0). This
contradicts (3.3). Hence, S1(·, ·) is closed at (λ0, μ0).

Next, we show that S1(·, ·) is u.s.c at (λ0, μ0).
By the closedness of S1(·, ·) at (λ0, μ0), S1(λ0, μ0) is closed and hence compact as is A.
Suppose to the contrary that S1(·, ·) is not u.s.c at (λ0, μ0). By Lemma 1.3, there exist

nets {(λα, μα)} : (λα, μα) → (λ0, μ0) and {xα} : xα ∈ S1(λα, μα) for each α such that for any
x0 ∈ S1(λ0, μ0) and any subnet {xβ} ⊆ {xα} one has

xβ � x0. (3.4)

xα ∈ S1(λα, μα) implies that xα ∈ E(μα) for each α and {xα} ⊆ A. By the compactness
of A, there exists a convergent subnet {xβ} of {xα} such that xβ → x ∈ A. By the closedness
of E(·), we have x ∈ E(μ0). By (3.4), we get x /∈S1(λ0, μ0), that is,

F
(
x, y, z

) ∩ − intC(x)/= ∅, ∀z ∈ T(x, λ0). (3.5)

By using a similar argument as in part one, we can complete the proof.

Theorem 3.2. Let hypotheses (i) and (ii) in Theorem 3.1 hold and let
(iii) F be u.s.c on A ×X × Y .

Then S2(·, ·) is both u.s.c and closed at (λ0, μ0).

Proof. We first prove that S2(·, ·) is closed at (λ0, μ0).
Suppose to the contrary that S2(·, ·) is not closed at (λ0, μ0). Then there exist nets

{(λα, μα)} : (λα, μα) → (λ0, μ0) and {xα} : xα → x0 and xα ∈ S2(λα, μα) for each α such
that x0 /∈S2(λ0, μ0). By using a similar reasoning as in part one of the proof of Theorem 3.1,
we can conclude that there exists a net {(xβ, yβ, zβ)} such that (xβ, yβ, zβ) → (x0, y0, z0) and

F
(
x0, y0, z0

) ⊆ − intC(x0), (3.6)

F
(
xβ, yβ, zβ

) ∩ (
Y \ − intC

(
xβ

))
/= ∅, ∀β, (3.7)

where yβ ∈ K(xβ, μβ) with yβ → y0 ∈ K(x0, μ0) and zβ ∈ T(xβ, λβ) with zβ → z0 ∈ T(x0, λ0).
By the upper semicontinuity of F and (3.6), we know that there exists β0 such that

F
(
xβ, yβ, zβ

) ⊆ − intC(x0), ∀β ≥ β0, (3.8)

which contradicts (3.7). Hence, S2(·, ·) is closed at (λ0, μ0).
Next, we prove that S2(·, ·) is u.s.c at (λ0, μ0).
By the closedness of S2(·, ·) at (λ0, μ0), S2(λ0, μ0) is closed and hence compact as is A.
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Suppose to the contrary that S2(·, ·) is not u.s.c at (λ0, μ0). By Lemma 1.3, there exist
nets {(λα, μα)} : (λα, μα) → (λ0, μ0) and {xα} : xα ∈ S2(λα, μα) for each α such that (3.4) holds
for any x0 ∈ S2(λ0, μ0) and any subnet {xβ} ⊆ {xα}.

xα ∈ S2(λα, μα) implies that xα ∈ E(μα) for each α and {xα} ⊆ A. By the compactness
of A and the closedness of E(·), it follows that there exists a convergent subnet {xβ} of {xα}
such that xβ → x ∈ E(μ0). By (3.4), we get x /∈S2(λ0, μ0), that is,

F
(
x, y, z

) ⊆ − intC(x), ∀z ∈ T(x, λ0). (3.9)

By using a similar argument as in part one, we can complete the proof.

4. Lower Semicontinuity of Solution Sets

In this section, wewill consider the lower semicontinuity of the solution sets S1(·, ·) and S2(·, ·)
with respect to parameters (λ, μ).

Theorem 4.1. Let

(i) E(·) := {x ∈ A|x ∈ clK(x, ·)} be l.s.c on M and C(·)u.s.c at x0;

(ii) for any nets {λα} : λα → λ0, {μα} : μα → μ0, {xα} : xα → x0, {yα} : yα ∈ K(xα, μα)
for each α and any z0 ∈ T(x0, λ0), there exist nets {zα} : zα ∈ T(xα, λα) for each α,
{yβ} ⊆ {yα} and a point y0 ∈ K(x0, μ0) such that zα → z0 and yβ → y0;

(iii) F be u.s.c and have compact values on A ×X × Y ;

(iv) F(x0, y0, z0) ∩ −∂C(x0) = ∅ for all x0 ∈ S1(λ0, μ0), y0 ∈ K(x0, μ0), and z0 ∈ T(x0, λ0).
Then S1(·, ·) is l.s.c at (λ0, μ0).

Proof. Suppose to the contrary that S1(·, ·) is not l.s.c at (λ0, μ0). Then there exist a net
{(λα, μα)} : (λα, μα) → (λ0, μ0) and a point x0 ∈ S1(λ0, μ0) such that for any net {x̃α} : x̃α ∈
S1(λα, μα) for each α one has

x̃α � x0. (4.1)

x0 ∈ S1(λ0, μ0) implies that x0 ∈ E(μ0). By the lower semicontinuity of E, there exists a
net {xα} : xα ∈ E(μα) for each α such that xα → x0, which combining with (4.1) shows that
there exists a subnet {xβ} of {xα} such that xβ /∈S1(λβ, μβ) for all β. Consequently, for each β,
there exists yβ ∈ K(xβ, μβ) satisfying

F
(
xβ, yβ, zβ

) ∩ − intC
(
xβ

)
/= ∅, ∀zβ ∈ T

(
xβ, λβ

)
. (4.2)

By (ii), there exist a subnet {yβ} ⊆ {yβ} and a point y0 ∈ K(x0, μ0) such that yβ → y0,
which together with x0 ∈ S1(λ0, μ0) and (ii) indicates that there exist z0 ∈ T(x0, λ0) and
zβ ∈ T(xβ, λβ) such that zβ → z0, F(xβ, yβ, zβ) ∩ − intC(xβ)/= ∅ for all β and

F
(
x0, y0, z0

) ⊆ Y \ − intC(x0). (4.3)
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Take arbitrarily fβ ∈ F(xβ, yβ, zβ) ∩ − intC(xβ) for each β. By Lemma 1.3, there exist
f0 ∈ F(x0, y0, z0) and a subset {fβ} of {fβ} such that fβ → f0.

Since fβ ∈ −C(xβ) for each β, by the upper semicontinuity of C(·) and Lemma 1.2, we
know that f0 ∈ −C(x0), which together with (iv) shows that f0 ∈ − intC(x0). This contradicts
(4.3). Hence, S1(·, ·) is l.s.c at (λ0, μ0).

Theorem 4.2. Let hypotheses (i) and (ii) in Theorem 4.1 hold and let
(iii) F(·, ·, ·) be l.s.c on A ×X × Y ;
(iv) F(x0, y0, z0) ∩ −∂C(x0) = ∅ for all x0 ∈ S2(λ0, μ0), y0 ∈ K(x0, μ0), and z0 ∈ T(x0, λ0).

Then S2(·, ·) is l.s.c at (λ0, μ0).

Proof. By arguments similar to those for Theorem 4.1, we can conclude that there exists a net
{(xβ, yβ, zβ)} such that (xβ, yβ, zβ) → (x0, y0, z0), F(x0, y0, z0) ∩ (Y \ − intC(x0))/= ∅, and

F
(
xβ, yβ, zβ

)
⊆ − intC

(
xβ

)
, ∀β, (4.4)

where xβ ∈ E(μβ), yβ ∈ K(xβ, μβ), zβ ∈ T(xβ, λβ) for all β and x0 ∈ S2(λ0, μ0), y0 ∈ K(x0, μ0)
and z0 ∈ T(x0, λ0).

For any given f0 ∈ F(x0, y0, z0) ∩ (Y \ − intC(x0)), by the lower semicontinuity of F,
there exists fβ ∈ F(xβ, yβ, zβ) for each β such that fβ → f0. By (4.4), we have fβ ∈ −C(xβ)

for each β. By the upper semicontinuity of C(·) and Lemma 1.2, it follows that f0 ∈ −C(x0),
which together with (iv) implies that f0 ∈ − intC(x0). This is a contradiction. Hence, S2(·, ·)
is l.s.c at (λ0, μ0).
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