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The generalised score and Wald tests are described and related to their nongeneralised versions.
Two interesting applications are discussed. In the first a new test for the Behrens-Fisher problem
is derived. The second is testing homogeneity of variances from multiple univariate normal
populations.

1. Introduction

This paper is intended to be a tutorial for those wishing to inform themselves about the
generalised score and Wald Tests. It extends the content of [1] and has similar objectives;
that is, it focuses on the use of these tests rather than their properties. It is intended to be very
accessible. Readers need only some prior knowledge of partitioned matrices, score and Wald
tests, see, for example, [1] and [2, Chapter 3].

The score test is particularly valuable when maximum likelihood (ML) estimation
under the full model is not preferred, but ML estimation under the null model is. The
converse holds for the Wald test. Thus when ML estimation under one of the null and full
models is not preferred, the likelihood ratio test is problematic, but one of the score andWald
tests is not. Here by not preferred we mean that, for example, estimates may be calculated by
some iterative scheme with dubious convergence. Other possibilities are that estimates may
have a particularly convoluted expression or the finite sample properties (such as large bias)
may be inappropriate for the problem of interest.

When ML estimation under both the null and full models is not preferred, we need
another way forward. This is provided by the generalised score and Wald Tests. These tests
are especially valuable when the model may be misspecified, but that will not be the focus
here.

In Section 2 the generalised score and Wald Tests are described. In Section 3 this
material is applied to deriving a new test for the Behrens-Fisher problem, while Section 4
looks at testing equality of variances from multiple independent normal samples.
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2. M-Estimators and Generalised Score Tests

The class of M-estimators includes both ML and method of moments estimators. An M-
estimator γ̃ satisfies

n
∑

j=1

Ψ
(

Xj, γ̃
)

= 0p, (2.1)

in which X1, . . . , Xn are independent but not necessarily identically distributed,Ψ is a known
p × 1 function not depending on j or n, γ is a p-dimensional parameter, and in general 0m
denotes an m × 1 vector of zeros. The estimating function Ψ must be sufficiently ‘smooth.’
In particular, its derivatives up to second order, and their expectations, must exist. Hence
the matrices A and B defined subsequently are assumed to exist. Also, the expectation of
the second-order derivatives must be bounded in probability. More technical details on M-
estimators may be found in [3, Chapter 5].

In our setting we assume that γ = (θT , βT )T and that we wish to testH0: θ = 0k against
the alternativeK: θ /= 0k with θ being the k × 1 vector of primary interest, with β a q × 1 vector
of nuisance parameters, and with p = k + q. The generalised score test is based on the partial
M-estimator that satisfies

n
∑

j=1

Ψβ

(

Xj, γ̃0
)

= 0q, (2.2)

whereΨ is partitioned similarly to γ , so thatΨT = (ΨT
θ ,Ψ

T
β ), and where γ̃0 = (0Tk ,

˜βT0 )
T
in which

˜β0 is the M-estimator of β under the null hypothesis. Define

Uθ

(

γ
)

=
n
∑

j=1

Ψθ

(

Xj, γ
)

,

A
(

γ
)

= −E0

[

∂Ψ
(

X, γ
)

∂γ

]

=

(

Aθθ Aθβ

Aβθ Aββ

)

,

B
(

γ
)

= E0

[

ΨΨT
]

=

(

Bθθ Bθβ

Bβθ Bββ

)

,

(2.3)

in which E0 denotes expectation under the null hypothesis. HereA(γ) and B(γ) are p × p and
Aθθ and Bθθ are k × k. We note that A(γ) is not necessarily symmetric while B(γ) is. This
means that the form of the generalised tests given by, for example, [4], needs to be slightly
modified. The generalised score test statistic is given by

SG = UT
θ

(

(

AT
)−1)

θθ

(

A−1B
(

AT
)−1)−1

θθ

(

A−1
)

θθ
Uθ (2.4)
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in which, as can readily be shown, (A−1)θθ = (Aθθ −AθβA
−1
ββAβθ)

−1
and the arguments in Uθ,

A, and B are suppressed; here all are γ̃0. Similarly the generalised Wald test statistic is given
by

WG = ˜θT

(

A−1B
(

AT
)−1)−1

θθ

˜θ (2.5)

in which all arguments are γ̃ . In the exposition in [4] parameters are estimated by ML but the
data do not come from the parametric model: this is ML under misspecification. In [5], Kent’s
definitions are given but in place of ML estimators any M-estimators are permitted. It is also
noted in [4] that A and B can in practice be replaced by any consistent estimates.

An alternative form of SG that is more convenient for calculation is given in [2], where
it is applied to the construction of generalized smooth tests of goodness of fit. This form gives

SG = UT
θ

(

γ̃0
)

Σ−1
GS

(

γ̃0
)

Uθ

(

γ̃0
)

(2.6)

in which

ΣGS

(

γ
)

= Bθθ −AθβA
−1
ββBβθ − Bθβ

(

A−1
ββ

)T
AT

θβ +AθβA
−1
ββBββ

(

A−1
ββ

)T
AT

θβ. (2.7)

The equivalence of the two forms requires routine but tedious matrix algebra and is omitted
here. The asymptotic distribution of both SG and WG under H0 is χ2

k.
If Ψ(X, γ) is the derivative of logarithm of the likelihood, which is the usual score

function, then A = B is the usual (symmetric) information matrix, and A−1B(AT )−1 = A−1. If
ML estimation is used, then WG = ̂θT{Aθθ − AθβA

−1
ββAβθ}̂θ, the usual Wald test statistic, and

SG = UT
θ {Aθθ −AθβA

−1
ββAβθ}−1Uθ, the usual score test statistic. Both are given in this form in

[1]. For more information see [5, 6].
In [5, page 328] replacing the inverse of the asymptotic covariance matrix ΣGS(γ̃0) in

SG by a generalised inverse of a consistent estimate of ΣGS(γ̃0) is recommended. Although
it may sound trivial, when calculating any of the ordinary or generalised score or Wald
test statistics, we are finding (X − E[X])TΣ−1(X − E[X]) where X is at least asymptotically
multivariate normal and Σ is at least asymptotically the full rank covariance matrix of X.
Very occasionally it may be more convenient to find the exact covariance matrix rather
than one that is asymptotically equivalent. If so the exact covariance matrix can be used in
the above expressions; similarly when appropriate a generalised inverse of the exact or an
asymptotically equivalent covariance matrix can be used.

3. The Behrens-Fisher Problem

In the Behrens-Fisher problem, Y1, . . . , Ym is a random sample from anN(μY , σ
2
Y ) population,

and Z1, . . . , Zn is an independent random sample from anN(μZ, σ
2
Z) population. It is desired

to testH: μY = μZ againstK: μY /=μZ, with the standard deviations σY and σZ being nuisance
parameters. In [2, Example 3.3.2] the likelihood ratio, score, and Wald tests are derived. The
score test requires the solution of an inconvenient cubic equation; so this is one situation in
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which the Wald statistic looks distinctly more appealing than both the likelihood ratio and
score test statistics.

When the estimating function
∑n

j=1 Ψ(Xj, γ) is the usual score function, the generalised
score test is the usual score test. To conform to our notation put (Y1, . . . , Ym,Z1, . . . , Zn) = XT ,
μY − μZ = 2θ, μY + μZ = 2β1, σ2

Y = β2 and σ2
Z = β2. We test H : θ = 0 against K : θ /= 0, with

nuisance parameters β1, β2 and β3. The logarithm of the likelihood is

constant −
(m

2

)

log β2 −
(n

2

)

log β3 −
(

2β2
)−1∑

i

(

yi − β1 − θ
)2 − (2β3

)−1∑

j

(

zj − β1 + θ
)2
,

(3.1)

and therefore the score function has the following components:

Sθ

(

γ
)

=
∑

i

(

yi − β1 − θ
)

β2
−
∑

j

(

zj − β1 + θ
)

β3
,

Sβ1

(

γ
)

=
∑

i

(

yi − β1 − θ
)

β2
+
∑

j

(

zj − β1 + θ
)

β3
,

Sβ2

(

γ
)

= − m
(

2β2
) +
∑

i

(

yi − β1 − θ
)2

(

2β22
) ,

Sβ3

(

γ
)

= − n
(

2β3
) +
∑

j

(

zj − β1 + θ
)2

(

2β23
) .

(3.2)

These are the partial derivatives of the logarithm of the likelihood. Under the null hypothesis
the estimating equations are Sβ1(γ0) = Sβ2(γ0) = Sβ3(γ0) = 0. This leads to the inconvenient
cubic equationmentioned previously. If we proceedwith this model, the cubic must be solved

to find ˜β10, and hence ˜β20 =
∑

i (Yi − ˜β10)
2
/m and ˜β30 =

∑

j (Zj − ˜β10)
2
/n. We also find

Sθ

(

γ̃0
)

=
2
(

Y − Z
)

˜β20/m + ˜β30/n
,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m

β2
+

n

β3

m

β2
− n

β3
0 0

m

β2
− n

β3

m

β2
+

n

β3
0 0

0 0
m
(

2β22
) 0

0 0 0
n

(

2β23
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= B,

(3.3)
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whence

ΣGS =
4

{

β2/m + β3/n
} , (3.4)

and the generalised score test statistic is SG = (Y − Z)
2
/(˜β20/m + ˜β30/n). This is just the

ordinary score test statistic.
While solving the cubic is not a great difficulty, if we modify Sβ1(γ) so that it becomes

Sβ1

(

γ
)

=
∑

i

(

yi − β1 − θ
)

+
∑

j

(

zj − β1 + θ
)

, (3.5)

a possibly less efficient but certainly more convenient estimator of the common mean under
the null hypothesis may be found. This estimator is the solution to Sβ1(γ0) = 0, namely, ˜β∗10 =
(mY + nZ)/(m + n). If we also modify Sθ(γ) so that

Sθ

(

γ
)

=
∑

i

(

yi − β1 − θ
) −
∑

j

(

zj − β1 + θ
)

, (3.6)

while leaving the other two equations unchanged, the generalised score test is based on

Sθ

(

γ̃0
)

=
2mn

m + n

(

Y − Z
)

. (3.7)

The estimators of β2 and β3 are slightly different from those found previously, being ˜β∗20 =
∑

i (Yi − ˜β∗10)
2
/m and ˜β∗30 =

∑

j (Zj − ˜β∗10)
2
/n. Modifying the previous derivation gives

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m + n m − n 0 0

m − n m + n 0 0

0 0
m
(

2β22
) 0

0 0 0
n

(

2β23
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mβ2 + nβ3 mβ2 − nβ3 0 0

mβ2 − nβ3 mβ2 + nβ3 0 0

0 0
m
(

2β22
) 0

0 0 0
n

(

2β23
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(3.8)
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whence

ΣGS =
4mn

(

mβ3 + nβ2
)

(m + n)2
, (3.9)

and the generalised score test statistic is

SG =

(

Y − Z
)2

(

˜β∗20/m + ˜β∗30/n
) . (3.10)

It may be shown that theWald test statistic is a one-one function of this SG, so that these
two tests are equivalent. However, if using the asymptotic χ2

1 critical values, the generalised
score test has actual test sizes much closer to the nominal sizes than theWald test. When using
simulated critical values that are virtually exact, the generalised score test power is within 1%
of the entrenched test due to Welch [7]. So on this criterion the Welch and generalised score
tests are virtually indistinguishable.

The Welch test is very similar to the Wald test. Using Satterthwaite’s approximation
to the null distribution of the Welch test gives excellent agreement between the nominal and
actual test sizes. However Satterthwaite’s approximation does not work nearly as well for SG.
Hence, in terms of agreement between nominal and actual test sizes using approximations
and asymptotic critical values, the Welch test is to be preferred. Support for these assertions
and more numerical details are available in [8].

4. Testing Equality of Variances

Suppose that we have m independent random samples, with the jth, j = 1, . . . , m, being of
size nj and from a normal N(μj, σ

2
j ) population. The total sample size is n = n1 + · · · + nm.

We seek to test equality of variances: H: σ2
1 = · · · = σ2

m= σ2 say against the alternative K: not
H. Popular tests include the likelihood ratio test, frequently referred to as Bartlett’s test, and
Levene’s test. The former is known to be nonrobust, while the latter is more robust in that
its actual levels are closer to the nominal levels. Levene’s test is less powerful than Bartlett’s
when the data are consistent with normality.

We now construct a Wald test of H against K. We could use the generalised Wald test
construction with Ψ(X, γ) being the derivative of logarithm of the likelihood, but we leave
that as an exercise for the interested reader. We could also calculate one of the forms of the
asymptotic covariance matrix, but this is a case where it is simpler to calculate the exact
covariance matrix. Moreover the exact covariance matrix involves an inconvenient inverse;
so we instead use the Moore-Penrose inverse. This is defined in the appendix, along with
some relevant useful results. This approach leads to a simpler test statistic.

Throughout this example, since we are calculating theWald test statistic, all estimation
is ML. As a consequence estimators are denoted by hats (∧) instead of tildes (∼). We also
use unbiased versions of the sample variances (with divisors n − 1 instead of n). These are
asymptotically equivalent to the usual ML estimators, and the corresponding test statistic is
asymptotically equivalent to the usual Wald test statistic.
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Before proceeding with the construction, note that if S2 is the unbiased sample
variance from a random sample of size n from a N(μ, σ2) distribution, then (n − 1) S2/σ2

has the χ2
n−1 distribution. As is well known, var{(n − 1) S2/σ2} = 2(n − 1), so that

var
(

S2
)

=
2σ4

(n − 1)
and E

[

S4
]

=
(n + 1)σ4

(n − 1)
. (4.1)

From the Rao-Blackwell theorem (n − 1)S4/(n + 1) is an optimal estimator of σ4, being
the unique estimator with minimum variance in the class of unbiased estimators of σ4.
This optimality is conferred upon 2S4/(n + 1) when estimating var(S2). Writing S2

j for the
unbiased estimator of the jth population variance σ2

j , j = 1, . . . , m, the optimal estimator of
var(S2

j ) = 2σ4
j /(nj − 1) is dj = 2S4

j /(nj + 1) for j = 1, . . . , m.

Should the null hypothesis be true, an unbiased estimator of the common population
variance σ2 is the pooled sample variance S2 =

∑

j wjS
2
j where wj = (nj − 1)/(n − m) for

j = 1, . . . , m. Note that since
∑

j(nj − 1) = n −m,
∑

j wj = 1. Now define

σ2 =
∑

j

wjσ
2
j , φ =

(

σ2
j

√
wj

)

, u =
(√

wj

)

, C = Im − uuT . (4.2)

Then θ = Cφ = ((σ2
j − σ2)

√
wj). This is zero if and only if σ2

j = σ2 for all j. Hence testing
equality of variances is equivalent to testing H: θ = 0m against K: θ /= 0m. An unbiased
estimator of θ is ̂θ = ((S2

j − S2)
√
wj) and since C is symmetric, ̂θ = C ̂φ has covariance matrix

estimated by côv(̂θ) = CDC where now D = diag(djwj). Now CDC is not of full rank, and in
order to use results on quadratic forms of multivariate normal random variables generalised
or pseudoinverses are required. Here we use M+, the Moore-Penrose inverse of the matrix M.
See the appendix.

Because C is idempotent, the Moore-Penrose inverse of CDC is given by

(CDC)+ = C+D+C+ = CD−1C. (4.3)

A Wald test statistic for testing H: θ = 0m against K: θ /= 0m is

̂θT
(

côv(̂θ)
)+
̂θ =
(

C ̂φ
)T

(CDC)+
(

C ̂φ
)

= ̂φTCCD−1CC ̂φ

= ̂φTCD−1C ̂φ = ̂θTD−1
̂θ =

m
∑

j=1

(

S2
j − S2

)2

dj
= TMP say.

(4.4)

Since rank(CDC) = m − 1, TMP should be compared with the χ2
m−1 distribution to assess

significance. Should the test indicate significance at an appropriate level, rough pairwise
comparisons can be made as in the comparison of means in the analysis of variance. To see
how to do this first note that, as above, (n − 1)S2/σ2 has the χ2

n−1 distribution which, for
large n, is approximately N((n − 1), 2(n − 1)). Hence S2 is approximately N(σ2, 2σ4/(n − 1))
and under the null hypothesis of equality of variances for any i /= j the difference S2

i − S2
j is
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approximatelyN(0, 2σ4
i /(ni − 1) + 2σ4

j /(nj − 1)), and var(S2
i −S2

j ) can be estimated by di +dj .
A least significant difference may be constructed in the usual way.

Appendix

The Moore-Penrose Inverse

One of several pseudo-inverses or generalised inverses is the Moore-Penrose inverse: see, for
example, [9, section 8.11]. The unique Moore-Penrose inverse B+ of a real symmetric matrix
B satisfies

B+BB+ = B+,

BB+B = B,

(

B+B
)T = B+B,

(

BB+)T = BB+.

(A.1)

It is routine to show the following.

(i) If Λ = diag(λ1, . . . , λr , 0, . . . , 0), then Λ+ = diag(λ−11 , . . . , λ−1r , 0, . . . , 0).

(ii) If H is orthogonal, then H+ = HT .

(iii) If A is idempotent, then A+ = A.

(iv) If the subsequent matrix products are defined, then (BC)+ = C+B+ and (ABC)+ =
C+B+A+.

It is well known that if X is Np(0,Σ) with rank (Σ) = r < p, then XTΣ+X has the χ2
r

distribution where Σ+ is a pseudoinverse of Σ. For the scenario here it is reasonable to testH
against K using the test statistic ̂θT (côv(̂θ))

+
̂θ.
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