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We develop a mathematical modeling approach to evaluate the effectiveness of a Bayesian search
for objects in cases where the target exhibits ancillary dependencies. These dependencies occur
in situations where there are multiple search passes of the same region, and they represent a
change in search probability from that predicted using an assumption of independent scans. This
variation from independent scans is typically found in situations of advanced detection processing
due to fusion and/or collaboration between searchers. The framework developed is based upon
the evaluation of a recursion process over spatial search cells, and the dependencies appear as
additive utility components within the recursion. We derive expressions for evaluating this utility
and illustrate in detail some specific instantiations of the dependency. Computational examples
are provided to demonstrate the capabilities of the method.

1. Introduction

The planning of searches for objects of uncertain disposition is a classical problem in military
operations research. Historically, such searches are conducted by a single platform examining
different regions of the space over time. This has led to a classical search theory methodology
that provides an analytical basis for evaluating potential searches a priori. When such searches
are represented parametrically, the evaluation can be computationally very efficient. The
problem of optimal search involves the mathematical determination of these search parameters
in order to maximize this search effectiveness. These modeling approaches have been limited
by the requirement to obtain analytical solutions for computational exigency, yet have served
well as appropriate-fidelity models of historical search practice. Modern search platforms,
however, can store past search information and, thus, fuse the overlapping “looks” of the
same region to improve performance. Unfortunately, these multipass search dependencies
are not consistent with the independence assumptions that are explicit in the conventional
analytical formulations of search theory.
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The independence dominant perspective of conventional approaches to modeling
search effectiveness considers the target as an object whose presence can be ascertained only
on the proximity of a searcher to that object. However, modern search systems exhibit many
more dependencies in addition to simple proximity that affect the search performance. The
type of search dependencies we are concerned with occurs when the target contains some
sort of ancillary dependency on the particulars of the search platform’s engagement. These
dependencies violate the independence assumptions of the classical analytical approach to
search theory.

With modern computing capabilities, there is an opportunity to consider a numerical
approach to search evaluation that incorporates a Bayesian update of the likelihood of finding
an object under a grid representation of the search region. Previous computational limitations
prohibited the computational examination of these grid approaches that necessarily require
extensive computer storage. In this paper, we develop a mathematical model of search that
allows for the incorporation of multiple pass dependencies. The model is based on recursively
updating a geometric likelihood structure that represents the search success. We illustrate an
efficient computational process for determining search effectiveness utilizing this modeling
framework. Examples that illustrate the model are provided for some notional dependencies
and the results are demonstrated with computer simulations.

2. Classical Approaches to Search Modeling

The classical theory of search, as initially developed by Koopman [1], was developed to
examine the search for randomly located objects within a large search space. That work was
furthered by many others over many years, as summarized in Benkoski et al. [2] and the
references therein. From a modeling perspective, these extensions allowed the examination of
more complicated scenarios, such as accounting for the effects of motion and for the effects of
multiple targets. While the extension to two-sided games for evading targets is well studied,
we are only focused on fixed nonreactive search objects, and thus do not consider those
extensions. However, the classical one-sided search problem still has a variety of probability
questions, as noted by Nakai [3]. These problems include the detection search problem, the
information search problem, and the whereabouts search problem. While different from a
design and optimization standpoint, from an evaluation standpoint all of the proceeding
problems focus on the sequential evaluation of object detection likelihood over the search
space.

From a system design perspective, search theory allows the development of improved
courses of action for limited search resources. Given models that determine the effectiveness
of arbitrary search distributions, one can formulate the problems of optimal search, which
lead to “best” allocations of search effort for maximizing the search goal. As clearly pointed
out by Washburn [4], the problem of optimizing the search for a stationary object becomes
a distribution of effort problem, for which a number of solutions exist (see [5, 6] for
an overview). However, many of these search optimization problems are computationally
difficult [7], and approximation methods are often employed. Computationally efficient cell-
based methods to the problem of search allocation are often employed [8].

When the searchers are moving yet the target remains fixed, the kinematics of the
search platform limit the achievable states and thus provide a constraint on the optimal
solution. Many practical problems involve long durations with relatively narrow search
swaths. This leads to problems of path formulation, as in Reber search theory (as described
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in [9]) which examines the achievable performance over long times given a relatively narrow
search swath. Even when paths are fixed, benefits can be achieved if one adjusts the sensor
gains dynamically [10]. However, all of these approaches to improved search performance
hinge on the underlying mathematical model of probabilistic search performance that is
employed.

When modeling the expected performance of a given search, the use of density
representations of search objects is often utilized. This has been done either due to physical
complications of multiple objects [11], uncertainty of the number of discrete objects [12],
or a desire to search for an object whose natural representation is density-based [13]. In all
these cases, the density approaches provide a natural likelihood structure for the underlying
process of search. In the search context, the density approach extends to more complicated
search problems, such as, the introduction of false target objects [14] or the added uncertainty
of unknown searcher performance [15]. Furthermore, the likelihood formulations extended
readily into the problem of (non-reactive) moving targets [16], although that complication
leads to problems of optimal control which are beyond the scope of this paper. We examine
the problem of one or more searchers seeking a set of objects with uncertain disposition.
As opposed to other decision-theoretic methods [17], we focus on creating a sequential
likelihood update process for given search paths and anticipated searcher performance.
These sequential likelihood updates are similar to other approaches to sequential likelihood
updating as found in receding horizon estimation [18]. When applied to geographic maps of
performance, the sequential likelihood update process creates a geographic form of Bayesian
estimation, which has been successfully applied to areas such as robot localization [19] and
search-and-rescue [20, 21]. By formulating our numerical approach as a sequential likelihood
update over a common geographical partition, we have developed a model that is scalable
with respect to complex application-specific variabilities. This capability augments the
limited parametric considerations found in other approaches. This new approach to recursive
search performance prediction accounts for complex multiple pass search operations, and
thus provides a foundation for future work on optimal planning of coordinated search efforts.

3. Search Modeling for Multiple Search Passes

Performance evaluation models that are applicable to multiple pass search operations must
possess enough flexibility to account for dependencies inherent within the dynamics of
collaborative search yet be simple enough to promote the computational efficiency necessary
for extended usage in planning. We model the search as an interrogation over a set of
geometric grid cells. We choose a grid partition of the search space as a means to account
for variability encountered during the search that is not readily articulated in closed form.
This variability may present itself as spatial variations in object placement likelihood or
in the sensor’s capacity to detect objects. The variability may also be exhibited in the
spatial coverage projected by various search plans. It can be manifested by irregularity in
hypothesized search path trajectories or as a distribution in the number of search passes
conducted over the space. The extent of the variability dictates the specification of the grid
such that the quantities are approximately static within each grid cell. This enables us to avoid
any need for segmentation within the evaluation process and to keep the numeric calculation
of performance to its simplest realization. We do not impose any kinematic constraints on the
cell structure as search paths can be considered an input to the model. Rather, the kinematics
of searcher motion are naturally translated into a sequence of cell visitations.
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While we employ the grid construct in a two-dimentional search paradigm in
this paper, the approach readily extends to higher dimensions in any of the searcher
parameters subject to optimization. In particular, three-dimensional spatial constructs are
a natural extension of the approach provided that likelihood variability restrictions on grid
specification are maintained. By using a Bayesian update framework, we develop expressions
for the sequential update of search probabilities over the cell visitation sequence in a manner
that retains the ability to include nontrivial multipass search dependencies. We furthermore
restrict our attention to cases of fixed search objects, the extension to moving search objects is
a subject of future study.

This modeling approach to search evaluation is intended to address the search for
multiple objects. In the following subsections, we provide a quantification of search effort
in multiple pass searches. For this development, we revert to a single object placement
density as a fundamental cell characteristic applicable to either a set of distinct object
density functions or to a common density representative of objects that are independent and
identically distributed.

3.1. Cell-Based Representations of Performance

Let d ∈ {0, 1} represent the event that a search has successfully located the object of search
(i.e., d = 1 when search is successful and d = 0 otherwise). Define the global detection probability
map as the spatial representation of the search detection likelihood function Pd(x) : A →
[0, 1]. This function (defined on the subset A of R

2 that corresponds to our search region)
represents the probability that an object located at x would be found when the searcher
conducts a search at location x (as in Pr(d | x) = Pd(x)). For an object of search that is located
in the search region according to the density function f(x), the probability of the search being
successful is then given by

Pr(d) =
∫
A

Pr(d | x) · f(x)dx =
∫
A
Pd(x) · f(x)dx. (3.1)

Equation (3.1) represents the search effectiveness as a simple marginalization of the
global detection probability map Pd(x) over the search object location density f(x). The
development of prior representations of these search object location density functions for
problems of practical interest has been previously reported by the authors [22]. Thus, by
maintaining careful geometric representations of the evolution of these spatial densities
throughout the search evaluation, we develop a search model with flexibility to handle a
variety of modeling complexities.

Fundamentally, the evaluation of search dependency is a problem in spatial processing
of multiple looks over regions. As such, we consider a cell-based decomposition of the finite
search region A ⊂ R

2 into a finite set of cells Gi ⊂ A, such that the complete set of cells
Gi form a partition on the search region A. Thus, this implies the relationships

⋃
i Gi = A

and Gi ∩ Gj = 0, for all i /= j. In simple convex geometries such as typically found in spatial
search problems, these regions generally form a simple grid of the space A. However, any
finite partitioning of the search region is allowed, and a particular choice of partitioning is
application-dependent. Consider a two-dimensional search evaluation over the cells {Gi}.
We assume that the object is located somewhere in the search region, and specifically concern
ourselves with examining the probability that a search of the cell that contains the object is



Advances in Decision Sciences 5

successful. By focusing on the cell that contains the object, the object location density may be
mapped to the cell-specific object location density fi(x) as

fi(x) =

⎧⎪⎨
⎪⎩

f(x)∫
Gi
f(y)dy

, x ∈ Gi

0, otherwise.
(3.2)

We note that, by this definition, the cell-specific object location density is necessarily equal to
zero in cells that have no likelihood of containing the object, as expected.

The search evaluation function of (3.1) now reduces to

Pr(d) =
∑
i

∫
Gi

Pr(d | x) · f(x)dx =
∑
i

[∫
Gi

f(x)dx

]
PDi , (3.3)

where

PDi =
∫
Gi

Pd(x) · fi(x)dx (3.4)

represents the search effectiveness of the use of the search effort Pd(x) against target object
f(x) over the specific cell Gi. We note that this resulting value denotes a weighted spatial
average of the detection likelihood function over the grid cells, where the weights represent
the likelihood of the object being located in each cell. For a cellGi0 that is known to specifically
contain the object, the integral

∫
Gi
f(x)dx is equal to one for i = i0 and zero for all other i’s,

such that Pr(d) = PDi0
, as expected. Thus, the decomposition of (3.3) separates the problem

of overall search evaluation into one of independent examination of search performance in
each cell.

We shall assume that grid resolution is sufficient such that the variation in both the
detection likelihood and the placement probability over the grid cell is small such that a
nominal constant value can be presumed for the cell. Observe that for PDi < 1, there is a
probability of (1 − PDi) > 0 that an object will not be detected on the first search opportunity.
It may, however, be detected on subsequent passes if the search path covers this cell in a
future segment of the search path.

3.2. Likelihood Functions for Multiple Passes

Let n denote position within a sequence of search scans on the cell position Gi obtained by a
traveling observer. Let δi denote the event that first detection of an object occurs somewhere
within the sequence of NS scans of cell Gi. Furthermore, define the first detection probability
Pδi(n) as the probability that the first detection occurs within scan n. The succession of these
first occurrence probabilities develops sequentially as multiple scans of the cell materialize
from the search plan, leading to

Pr(δi) =
NS∑
n=1

Pδi(n), (3.5)
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By modeling each scan’s detection observation as an independent Bernoulli trial, the waiting
time (i.e., the number of scans before detection occurs) for each cell follows a geometric
distribution [23]. Then, the first detection probability Pδi(n) becomes

Pδi(n) = (1 − PDi)
n−1PDi

(3.6)

for cell detection probabilities PDi that are independent from pass to pass. This probability
expression naturally incorporates both the temporal and spatial aspects of the search process
(the spatial through PDi and the temporal through n).

When there exists a dependency between the multiple passes of a cell Gi, the
independence assumption of the Bernoulli trial is no longer valid. Let us assume that the
cell detection probability PDi varies from scan to scan for a given grid cell Gi, such that
PDi = PDi(n). This may be due to an ancillary dependency such as with sensor type or
proximity to sensor or otherwise. We define the complementary event of no detections
through a sequence of scans NS as η. Then the probability of no detections through the first
n scans of cell Gi is given by Pηi(n). At a given scan number n, the probability of achieving a
first detection event δi in cell Gi is given as the probability product of detecting during scan
n and not having detected up through scan (n − 1). This leads to the relation

Pδi(n) = PDi(n) · Pηi(n − 1), n = 1, . . . ,NS. (3.7)

Similarly, the probability of continuing to not detect at scan n is given by the probability
product of not detecting during scan n and not having detected up through scan (n− 1), as in

Pηi(n) = (1 − PDi(n)) · Pηi(n − 1), n = 1, . . . ,NS. (3.8)

Equation (3.8) is the fundamental recursion relation that guides the search evaluation.
The initial value for this recursion relation (with n = 0 scans designating the unsearched
condition) is given by

Pηi(0) = 1. (3.9)

Since the recursion is defined only on the nondetection probability Pηi(n) (and not on
the detection probability Pδi(n)), the initial probability for Pδi(n) is not explicitly required.
However, we note that (3.7) and (3.9) imply Pδi(1) = PDi(1), as expected.

By computing the evolution of the grid cell detection function PDi(n) over successive
passes as the search progress, (3.8) is used to recursively update the probability of the
search object nondetection on a per cell basis. To obtain the first detection probability of
any given cell at a given scan, the nondetection probability Pηi(n) is applied to (3.7). The
spatial aggregation of these per cell first detection probabilities (3.7) is then a summation
(as in (3.3)) to obtain the aggregate performance at any time step within the search process.
Thus, the probability likelihood maps given by Pηi(n) and Pδi(n) provide the fundamental
mechanism for capturing the search performance information for multiple scans of a search
region, whereby all other aggregate search performance measures can be simply derived.
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We note that, in the case of independent scans, PDi(n) = PDi for all n, such that the
recursion of (3.8) is a linear homogeneous recursion equation with general solution form
Pηi(n) = αrn for some constants α and r. In this form, (3.8) is solved with r = (1 − PDi), and
the initial condition (3.9) is met with α = 1, leading to

Pηi(n) = (1 − PDi)
n (3.10)

and, correspondingly, the complementary first detection probability is given by

Pδi(n) = PDi(1 − PDi)
n−1 (3.11)

which is the same expression as (3.6) that was found by the Bernoulli trials for independent
scans, as expected.

3.3. Utility Functions for Likelihood Updates

We next extend the detection likelihood modeling to include dependency on ancillary
parameters that describe the interrelation between searcher and object properties. Such
modeling may articulate random dependencies such as orientation angle of the search object
or particular dependencies categorizing the capability of specific searchers to detect objects of
a given type. Let θ ∈ Θ denote a random variable that corresponds to the ancillary parameter
that is an object property that is independent of both the scan and the placement of the search
object (such as an orientation angle of an object). Furthermore, let φn denote the deterministic
ancillary parameters of the searcher that are specific to the nth scan (such as a specific searcher
type). Let Pr(d | x, θ;φn) represent the probability that an object located at x with random
parameter θ would be found when the nth scan of a search is conducted at x given the scan
parameter φn. Given a probability distribution h(θ) : Θ → [0, 1] of the random parameter θ,
the marginal search detection likelihood function is given by

Pr(d | x) =
∫
Θ

Pr
(
d | x, θ;φn

)
h(θ)dθ = Pd

(
x;φn

)
. (3.12)

We note that the overbar in Pd is used to differentiate it from Pd which retains the dependency.
Observe that, when h(θ) = constant, we have Pr(d | x, θ;φn) ∝ Pr(d | x;φn), and the detection
likelihood depends only on placement x. In such cases, if there are no additional scan-specific
dependencies, then φn = φ0 for all n, and the expression for search detection is as previously
defined, such that Pd(x) = Pd(x;φ0).

We presume (as indicated in (3.12)) that the ancillary parameter θ and the location
x at which the object is placed are independent random variables. The consequence of this
assumption is that the probability likelihood may be represented as a mean component with
a zero-mean perturbation; that is,

Pr
(
d | x, θ;φn

)
= Pd

(
x;φn

)
+ ΔP

(
θ;φn

)
. (3.13)

Here the search detection likelihood function is decomposed into a nominal value that varies
over the search space (and may vary according to φn as well) and a perturbation that depends
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only on the ancillary parameters θ and φn. Again, for the simple case with no ancillary
parameters, the search detection likelihood reverts to Pd(x;φ0) = Pd(x).

We next consider the evaluation of this search detection likelihood over a regionA that
has been partitioned into subregions {Gi} as described in Section 3.1. We focus our attention
on a specific grid cell Gi, such that the object location density f(x) has been rescaled to fi(x)
as in (3.2). Within this grid cell, the cell first detection probability Pδi(1) associated with the
first (n = 1) pass of cell Gi is now given as

Pδi(1) =
∫
Θ

∫
Gi

Pr
(
d | x, θ;φ1

)
fi(x)h(θ)dxdθ

=
∫
Gi

Pd
(
x;φ1

)
fi(x)dx +

∫
Θ
ΔP

(
θ;φ1

)
h(θ)dθ

= PDi

(
1;φ1

)
+
∫
Θ
ΔP

(
θ;φ1

)
h(θ)dθ,

(3.14)

where PDi(1;φ1) explicitly shows the dependence on φ1. Since we generally expect any
dependence on φn to be implied in the nth pass detection probability, we simplify notation to
PDi(n;φn) �→ PDi(n) with an implied dependence on φn. To further facilitate the exposition,
we define an ancillary cell detection function ψ1(φn) that serves as a decision-theoretic utility
function in φn for the nth search pass of a location. Specifically, we let

ψ1
(
φn

)
=

∫
Θ
ΔP

(
θ;φn

)
h(θ)dθ, n = 1, 2, . . . . (3.15)

However, ΔP(θ;φn) has been defined in (3.13) to be zero-mean perturbation term, so its
integral over θ goes to zero, leading to ψ1(φn) = 0. With that simplification, (3.14) becomes

Pδi(1) = PDi(1). (3.16)

In similar fashion, the first pass nondetection probability for cell Gi is now given as

Pηi(1) =
∫
Θ

∫
Gi

(
1 − Pr

(
d | x, θ;φ1

))
fi(x)h(θ)dxdθ

= 1 −
∫
Gi

Pd
(
x;φ1

)
fi(x)dx −

∫
Θ
ΔP

(
θ;φ1

)
h(θ)dθ

= 1 − PDi(1).

(3.17)

We note that the separation in (3.14) and (3.17) is enabled by the separation of terms in
(3.13), and that these expressions are equivalent to the first terms of (3.7) and (3.8). While
the additional definition of the ancillary cell detection function ψ1 seems to be unnecessary, it
will become useful in the following recursion terms.
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For subsequent passes over the grid cell, the perturbed likelihood equations are
slightly more complicated. We assume the grid cell size is chosen to be small enough such
that Pd(x;φn) is approximately constant over a cell, so that

∫
Gi

Pd
(
x;φn

)
Pd

(
x;φm

)
fi(x)dx ≈ PDi(n)PDi(m) for any n,m. (3.18)

Then, for the second pass, the equation for first detection takes the form

Pδi(2) =
∫
Θ

∫
Gi

Pr
(
d | x, θ;φ2

)(
1 − Pr

(
d | x, θ;φ1

))
fi(x)h(θ)dxdθ

=
∫
Gi

Pd
(
x;φ2

)(
1 − Pd

(
x;φ1

))
fi(x)dx

+
∫
Θ
ΔP

(
θ;φ2

)
h(θ)dθ

∫
Gi

(
1 − Pd

(
x;φ1

))
fi(x)dx

−
∫
Θ
ΔP

(
θ;φ1

)
h(θ)dθ

∫
Gi

(
Pd

(
x;φ2

))
fi(x)dx

−
∫
Θ
ΔP

(
θ;φ1

)
ΔP

(
θ;φ2

)
h(θ)dθ

≈ PDi(2)(1 − PDi(1)) + ψ1
(
φ2

)
(1 − PDi(1)) − ψ1

(
φ1

)
PDi(2) − ψ2

(
φ1, φ2

)
,

(3.19)

where

ψ2
(
φ1, φ2

)
=

∫
Θ
ΔP

(
θ;φ1

)
ΔP

(
θ;φ2

)
h(θ)dθ (3.20)

represents the second-order ancillary cell detection function. Recalling that ψ1(φn) = 0 for any
n, we have that

Pδi(2) ≈ PDi(2)Pηi(1) − ψ2
(
φ1, φ2

)
. (3.21)

Note that (3.21) is similar to (3.7) with n = 2; however, there is now an additional term (given
by ψ2) to account for the effects of the ancillary parameters defining the search. Similarly, the
second pass recursion equation for nondetection becomes

Pηi(2) =
∫
Θ

∫
Gi

(
1 − Pr

(
d | x, θ;φ2

))(
1 − Pr

(
d | x, θ;φ1

))
fi(x)h(θ)dxdθ

≈ (1 − PDi(2))Pηi(1) + ψ2
(
φ1, φ2

)
.

(3.22)
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In summary, for the second scan pass of the cell Gi, we have

Pδi(2) ≈ PDi(2)Pηi(1) +U(2),

Pηi(2) ≈ (1 − PDi(2))Pηi(1) −U(2),
(3.23)

where the utility function U(2) = −ψ2(φ1, φ2) represents the added utility of the search scan
over that obtained with traditional independent passes. It is a result of marginalization over
the control parameter θ for the given search scan perturbation function ΔP . This second pass
utility function has two arguments, one for each ancillary parameter corresponding to each
scan of the grid cell. More generally, we construct a set of functions that are readily calculated
to assess search utility for any number of passes given the search path. It is desirable that
these utility functions do not present unduly computational storage requirements associated
with the detection and nondetection maps developed by the search evaluation.

The general form for the nth scan cell nondetection probability becomes

Pηi(n) =
∫
Θ

∫
Gi

(
1 − Pr

(
d | x, θ;φn

))
⎡
⎣ n−1∏

j=1

(
1 − Pr

(
d | x, θ;φj

))
⎤
⎦fi(x)h(θ)dxdθ

=
∫
Gi

(
1 − Pd

(
x;φn

))∫
Θ

⎡
⎣ n−1∏

j=1

(
1 − Pr

(
d | x, θ;φj

))
⎤
⎦h(θ)dθ fi(x)dx

−
∫
Θ

(
ΔP

(
θ;φn

))∫
Gi

⎡
⎣ n−1∏

j=1

(
1 − Pd

(
x;φj

)
−ΔP

(
θ;φj

))
⎤
⎦fi(x)dxh(θ)dθ

≈ (1 − PDi(n))Pηi(n − 1) −U(n),

(3.24)

where we note that

Pηi(n − 1) =
∫
Θ

∫
Gi

n−1∏
j=1

(
1 − Pr

(
d | x, θ;φj

))
fi(x)h(θ)dxdθ, (3.25)

and U(n) is defined as the nth pass utility function. Note that the approximation in (3.24)
comes from the approximation of (3.18) for spatial integrations over a grid cell. Similarly, for
the nth scan cell first detection probability, we have

Pδi(n) =
∫
Θ

∫
Gi

Pr
(
d | x, θ;φn

)
⎡
⎣ n−1∏

j=1

(
1 − Pr

(
d | x, θ;φj

))
⎤
⎦fi(x)h(θ)dxdθ

≈ PDi(n)Pηi(n − 1) +U(n)

(3.26)

with the same utility function U(n). Thus, the fundamental nondetection recursion of (3.8) is
now generalized to the form of (3.24), and the complementary equation for first detection of
(3.7) is generalized by (3.26).
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The form of the utility function U(n) found in (3.26) and (3.24) is explicitly given by

U(n) =
∫
Θ
ΔP

(
θ;φn

)
⎡
⎣ n−1∏

j=1

(
1 − PDi

(
j
)
−ΔP

(
θ;φj

))
⎤
⎦h(θ)dθ. (3.27)

By multiplying out the product term, taking the integral over θ, and then rearranging terms,
this function is written in the form

U(n) =
n∑
j=2

(−1)j−1
∑

γj∈μn−1
j−1

⎡
⎢⎢⎣ψj

(
φn,

{
φm

}
; γj

) n−1∏
k=1
k /= γj

(1 − PDi(k))

⎤
⎥⎥⎦ (3.28)

with

ψj
(
φn,

{
φm

}
; γj

)
=

∫
Θ
ΔP

(
θ;φn

)∏
m∈γj

ΔP
(
θ;φm

)
h(θ)dθ, (3.29)

representing the jth ancillary function. Here U(n) represents an nth pass general utility
function with μmj representing the set of all j-tuples of indices from 1 to m (i.e., μ4

3 =
{(1, 2, 3), (1, 3, 4), (1, 2, 4), (2, 3, 4)}), and γj representing a specific j-tuple. For convenience,
we rewrite the utility in the form U(n) =

∑n
j=2 Uj(n), where the component utility function

Uj(n) denotes the contribution of the jth ancillary function ψj to the total utility.
An important simplification of the utility function can be found when the nominal

value of the search detection likelihood Pd is independent of the scan parameter φn. In
particular, for those cases when Pd(x;φn) = Pd(x), (3.4) implies that PDi(n) = PDi for all
n, such that the component utility functions reduce to

Uj(n) = (−1)j−1(1 − PDi)
n−j ∑

γj∈μn−1
j−1

ψj
(
φn,

{
φm

}
; γj

)
; (3.30)

a form that is found to be convenient in many practical computational examples. Because the
ancillary functions ψj may be computed and stored prior to any specific search evaluation,
the forms in (3.28) and (3.30) are extremely computationally efficient.

3.4. Properties of Multipass Utility Functions

We next note some useful properties of the utility function that illustrate some features of
ancillary dependency in search and also aid in the numerical evaluation. We first consider
the case of noninteracting scans, that is, events whereby the detection performance of each
scan is independent of the other scans. In such cases, we have the following lemma.

Lemma 3.1. For searches in which there is no scan-specific dependency φn, the utility functionU(n)
is a linear combination of the moments of the random perturbation component of detection likelihood
ΔP(θ).
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Proof. Assume a search with no scan-specific dependencies φn. Then Pd(x;φn) = Pd(x)
which leads to PDi(n) = PDi for all n via (3.4). Furthermore, when there is no φn, we have
ΔP(θ;φn) = ΔP(θ) which leads to ψj =

∫
ΔP(θ)jh(θ)dθ from (3.29). Thus, each component

ψj is the jth moment of ΔP(θ). The form of the utility function U(n) in (3.30) now holds,

and
∑
ψj(φn, {φm}; γj) = αψj , where α =

(
n−1

j

)
is the number of terms in the sum. Thus, the

component utilities are given by Uj(n) = (−1)j−1
(
n−1

j

)
(1 − PDi)

n−jψj = c(n, j)ψj , where c(n, j)

is a constant that depends on n and j. Now, U(n) =
∑n

j=2 Uj(n) =
∑n

j=2 c(n, j)ψj , which is a
linear combination of the moments ψj of ΔP(θ).

This lemma naturally leads to the following theorem about the construction of zero-
utility functions.

Theorem 3.2. If a search has no scan-specific dependencies φn, then the utility is zero through the nth
scan if the first n moments of the random perturbation ΔP(θ) are zero.

Proof. The proof of this theorem follows from Lemma 3.1. Assume a search has no scan-
specific dependencies φn. Furthermore, assume the first n moments of ΔP(θ) are zero. Let
v ∈ R

n be a vector of the first n moments of ΔP(θ). From Lemma 3.1, it is known that there
exists a vector u ∈ R

n such that U(n) = uTv. However, vj =
∫
ΔP(θ)jh(θ)dθ = 0 for all j, so

that U(n) = uT0 = 0.

An obvious case of the conditions in Theorem 3.2 is the case of no ancillary
dependency at all. In such cases, there are no scan-specific dependencies φn and the random
perturbation term ΔP(θ) = 0 for all θ. Thus, the conditions of the theorem are met and
we have zero utility, as expected. However, there are conditions under which we may have
no scan-specific dependencies φn, but still have a non-trivial ΔP(θ), for which we have the
following important corollary to Theorem 3.2.

Corollary 3.3. In searches with no scan-specific dependencies φn, there may still exist a non-zero
utility if there are non-zero moments of the random perturbation ΔP(θ).

The importance of this corollary is that a model may be constructed to incorporate
effects that vary randomly over the scans, but have no scan-specific dependency associated
with them. These effects are naturally modeled with the θ dependency in ΔP(θ;φn) and can
lead to non-zero utility, thus showing a change in search performance relative to the situation
with no ancillary dependencies.

For the special case of repeated events, which are more restrictive than independent
events, the utility can be used to show that the search effectiveness actually decreases. This is
illustrated by the following theorem.

Theorem 3.4. For a search component comprised of repeated events, there is non-positive utility, that
is,U(n) ≤ 0.

Proof. Assume a search component comprised of repeated events, such that φn = φm for all
n,m. From (3.29), we have ψj(φn) =

∫
ΔP(θ;φn)

jh(θ)dθ. Since ΔP(θ;φn) is, by definition,
a zero-mean real-valued function, we have that all of the odd moments of ΔP(θ;φn) are
also zero, specifically

∫
ΔP(θ;φn)

jh(θ)dθ = 0 for j odd. Since Pd(x;φn) = Pd(x) for repeated
events, we have the form of (3.30) for component utility. From (3.30), we then have Uj = 0
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for j odd. Thus, U(n) =
∑n/2

j=1 U2j(n) for n even, and U(n) =
∑(n−1)/2

j=1 U2j(n) for n odd.

Since 0 ≤ PDi ≤ 1, we have (1 − PDi)
n−2j ≥ 0. Furthermore, ψ2j ≥ 0 for all arguments.

Thus, U2j(n) = (−1)(1 − PDi)
n−2j ∑ψ2j ≤ 0 for all positive integer values of j, and therefore

U(n) ≤ 0.

This theorem is important since utility is an additive component of the standard
independent event recursions. If a search is performed without independent examination,
but instead a repeatable examination, then the benefits of multiple independent scans are
lost, yet the utility formulation can be utilized to quantify this decrease in performance.

The computation of utility becomes combinatorially complex as the number of passes
n of a cell increases. This is due to the summation over the components of μn−1

j , which has

size
(
n−1

j

)
. To reduce this computational burden, we utilize the following theorem that gives

bounds on the magnitude of the component utility functions Uj(n).

Theorem 3.5. For a search with cell detection probabilities that are independent of scan number, and
with random perturbation bounded by 1/2, the component utility functions are bounded by

∣∣Uj(n)
∣∣ ≤ 1

2j

(
n − 1

j − 1

)
(1 − PDi)

n−j . (3.31)

Proof. Consider a search with scan independent detection probabilities, such that PDi(n) =
PDi for all n. Then the component utility form of (3.30) holds. The function ΔP(θ;φn) is a
zero-mean function over a probability space that is bounded by 1/2, so the integral expression∫
|ΔP(θ;φn)|h(θ)dθ ≤ 1/2. Furthermore, the integral composed of the product of j of these

terms under the integrand is also bounded by (1/2)j . Thus, we have |ψj | ≤ 1/2j . The

summation in (3.30) contains
(
n−1

j−1

)
terms, such that the summation is bounded by 2−j

(
n−1

j−1

)
.

Substituting this into (3.30) yields |Uj(n)| ≤ 2−j
(
n−1

j−1

)
(1 − PDi)

n−j , thus demonstrating the
bound in the theorem.

4. Applications

In this section, we articulate the application of the utility-based likelihood structure for
the evaluation of search performance. To do this, we first establish a constructive baseline
whereby no ancillary dependency is exhibited. This is done to demonstrate the efficacy of
the grid-based numerical calculation and to validate the asserted modeling assumptions.
We follow this with exemplary cases exhibiting a respective discrete or continuous ancillary
dependency. The discussion within the examples highlights the corresponding distinct
considerations that these respective modeling paradigms present.

4.1. Example: Generic Search with Overlapping Scans

We first consider an example in which there are known analytical solutions. Consider the
search for objects within a rectangular region using a ladder-type (or mowing-the-lawn)
search pattern. In this case, the searcher is a simple searcher with no ancillary dependencies.
The absence of an ancillary dependency allows the recursion in detection likelihood to be
based solely upon the single search pass expected probability of detection.
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Let the search over the partitioned placement space be defined to occur as a sequence
of partial searches IP = {I	}Imax

	=0 , where I	 denotes a set of grid cell indices (for grid cells {Gi})
covered during the time interval over which the partial search is conducted. The time interval
for partial search is chosen small enough so that no grid cell Gi is visited more than once in
that time interval. Sequence IP then corresponds to a temporal partitioning of the total search
trajectory into nonoverlapping segments. For each interval I	 , define a region C	 centered
about the partial search trajectory segment where detection is possible. Unfortunately, these
detection regions generally overlap across adjacent search intervals. To preserve the notion
of independent persistent detection observations within the search paradigm whereby the
observation is interrogated only once during the partial search, we define the index sets as

I	 = {i | Gi ∈ C	 \ C	−1}. (4.1)

Thus, we restrict the set of indices I	 to be that set of grid cell indices that are newly covered
by the time interval. This “slither” of cells provides the subregion of the search space that
has been additionally searched in the new partial search time interval. Multiple independent
detection events are allowed to occur at a given cell only with the search path doubling
back over itself (separated by at least one partial search time interval) or by distinct sensor
platforms performing a coordinated search of the cell, which is not a concern in this example.

When multiple pass searches occur, cell indices that are represented singularly within
the distinct partial search time intervals are repeated over the course of multiple intervals.
We consider cell-based search detection probabilities PDi(n) that are independent of n, so that
PDi(n) = PDi . Furthermore, by Theorem 3.2, the utility for this problem U(n) = 0. Therefore,
for this search, the cell-referenced recursions of (3.26) and (3.24) are given by

Pδi(n) = PDiPηi(n − 1),

Pηi(n) = (1 − PDi)Pηi(n − 1),
(4.2)

where we have replaced the approximation (≈) with equality for ease of exposition. As
previously solved in Section 3.2, this special case of constant coefficient linear homogeneous
recursion equations can be solved analytically to arrive at

Pδi(n) = (1 − PDi)
n−1PDi . (4.3)

The cumulative probability of detecting the target within cell Gi up through the Nith scan of
that cell is then given by

Pr(d, {Gi,Ni}) = Pr(Gi)
Ni∑
n=1

Pδi(n) = Pr(Gi)
[
1 − (1 − PDi)

Ni

]
, (4.4)
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Figure 1: Experimental geometry for two searchers performing a vertical search plan. The blue squares,
green diamonds, and red circles represent nominal locations of three different types of search objects,
respectively, that are sampled with E{N0} = 5. Only the initial history of the search path is shown for
clarity.

where Ni is the number of searches of cell Gi, and Pr(Gi) =
∫
Gi
f(x)dx is the probability of

the target being located in cell Gi. The aggregate search probability for the search plan is now
given by summing these individual cell probabilities

PSP =
Imax∑
	=1

∑
Gi

Pr(d, {Gi,Ni(I	)}), (4.5)

where the summation is performed both over the partial search time intervals 	 as well as
the spatially distributed grid cells Gi. Furthermore, Ni(I	) explicitly notes the dependency
of how many times cell Gi has been searched up to (and including) the search interval I	 .
Thus, the search evaluation properly accounts for both the temporal and spatial aspects of
the complex search problem.

We next consider the numerical evaluation of the search probability compared to
known theoretical benchmarks. The search path employed is the vertical ladder path depicted
in Figure 1. Nominally, such search path construction would extend beyond the search region
so that all the space is covered. We employ the internal ladder-type search paths shown in
Figure 1 to allow a comparison of the grid-based numeric calculation with theoretical results.
We consider a region with N0 objects placed according to a distribution function f(x). The
theoretical baseline comprises the probability of detecting n > k objects within the search
path, given by (see [24])

PSS(n > k) = 1 − exp

(
E{N0}Pd

A0

∫
GSP

f(x)dx

)
, (4.6)

where A0 =
∫
A1dx is the area of the search region.

In Figure 2, we show the performance of the theoretical and aggregated numerical
search for this problem as black and red curves, respectively. The individual curves illustrate
different values of k for probability of k > n detections for a scenario with E{N0} = 5. The
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Figure 2: Search performance with overlapping search paths for cumulative probability of achieving k > n
detections (n = {0, 2, 4}). Red curves show the numerical calculation and black curves show a theoretical
result illustrating single pass coverage.

baseline theoretical curve is derived under an assumption of single pass coverage. Initially,
the theoretical and numerical are nearly identical, as the paths do not overlap. However,
after 4 hours of search time, path overlap commences and the curves deviate. Henceforth
from this point in time, search probability aggregation occurs at the reduced rate given by
the pass recursion probability.

4.2. Example: Search for Multiple Object Types

This example illustrates utility functionals that apply over extended discrete likelihood
structures. These extensions arise from a variation in sensor detection performance due to
a specialization in detection characteristics according to search object type. That is, certain
sensors perform better against certain target types, and collaboration between sensor
platforms may be utilized to maximize the overall detection performance of the search group.

In this case, the ancillary random variable θ is the search object type; that is, θ ∈
{mi}Mi=1 for M discrete object types. The ancillary deterministic parameter φn represents the
searcher type that has been deployed to conduct search. The dependency manifests itself as a
conditional probability of detection for each of the search object types. The discrete ancillary
random variable (equivalent to (3.12)) for this sensor-specific detection likelihood takes the
form of a mixture over possible search object types, as

Pr
(
d | x;φn

)
=

∑
mj∈M

Pr
(
d | x, mj ;φn

)
Pr

(
mj | x

)
= Pd

(
x;φn

)
, (4.7)

where φn denotes the searcher type that is deployed for the nth search pass. The
resulting detection likelihood function represents a marginalization over search object type
aggregating the searcher/object-specific combinations. In this case, the placement likelihood
over the spaceAmay vary for each of the respective search object types. The conditioning on
x acknowledges a possible variation in search object composition over the search space.
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Analogous to (3.13), the detection likelihood function is formulated as a mean
value with an additive variational quantity symptomatic of the ancillary dependency being
modeled. That is, the likelihood function becomes

Pr
(
d | x, θ;φn

)
= Pr

(
d | x, mj ;φn

)
= Pd

(
x;φn

)
+ ΔP

(
mj | x;φn

)
. (4.8)

Assume as before that the grid resolution Gi is selected such that likelihood variations within
the grid cell are insignificant, yet the scale is large enough to ensure the independence of
detection events over the grid. Assume as well that the mixture weights do not vary within
the grid cell; that is, ΔP(mj | x;φn) = ΔP(mj ;φn). Then, the first pass grid cell detection
probability attained when deploying searcher φ1 becomes

Pδi(1) =
∑
mj∈M

∫
Gi

Pr
(
d | x, mj ;φ1

)
fi(x)Pr

(
mj | x

)
dx

=
∫
Gi

Pd
(
x;φ1

)
fi(x)dx +

∑
mj∈M

ΔP
(
mj ;φ1

)
Pr

(
mj | x ∈ Gi

)

≈ PDi

(
φ1

)
+ ψ1

(
φ1

)
,

(4.9)

with the ancillary dependency condition

ψ1
(
φn

)
=

∑
mj∈M

ΔP
(
mj ;φn

)
Pr

(
mj | x ∈ Gi

)
= 0 (4.10)

holding due to the definition of ΔP as a zero-mean perturbation term. The corresponding
first pass grid cell probability of nondetection becomes

Pηi(1) =
∑
mj∈M

∫
Gi

(
1 − Pr

(
d | x, mj ;φ1

))
fi(x)Pr

(
mj | x

)
dx

≈ 1 − PDi

(
φ1

)
− ψ1

(
φ1

) (4.11)

yielding similar results to the previous sections.
To develop the probability functions for further passes, we proceed with the utility

function development by constructing a set of ancillary functions {ψj}∞j=2. The ψ2 ancillary
function is explicitly given by

ψ2
(
φ1, φ2

)
=

∑
mj∈M

ΔP
(
mj ;φ1

)
ΔP

(
mj ;φ2

)
Pr

(
mj | x ∈ Gi

)
, (4.12)

and the general form for the ψj term is given by

ψj
(
φn,

{
φm

}
; γj

)
=

∑
mj∈M

ΔP
(
mj ;φn

)∏
m∈γj

ΔP
(
mj ;φm

)
Pr

(
mj | x ∈ Gi

)
, (4.13)



18 Advances in Decision Sciences

0

0.2

0.4

Pr
ob

ab
ili

ty

0 2 4 6 8 10 12 14 16 18 20

Pass number

0.2

−0.2

0

0 2 4 6 8 10 12 14 16 18 20

U
ti

lit
y

Pass number

Figure 3: Search probability and cell utility as a function of pass number for a specialized searcher with
varying values of deviation α from mean detection probability. (blue: α = 1.0, cyan: α = 0.9, yellow: α = 0.5,
red: α = 0.0).

where γj is a j-tuple used in the utility form of (3.28). These terms are calculated directly and
applied to either (3.24) or (3.26) to realize the likelihood recurrence over the search field.

As a numerical example of the searcher specialization, consider the case where a
single grid cell Gi is searched multiple times by the same searcher φn with mean detection
probability PDi(φn) = 0.5. Let ΔP = α · min{PDi(φn), 1 − PDi(φn)} represent a maximum
deviation from this mean value as search object type is varied where α serves as a scale
factor indicative of the variability. Let the search paradigm consist of finding three possible
object types with the variation in detection probability given by ΔP(mj ;φn) ∈ {ΔP, 0,−ΔP}.
Figure 3 illustrates the negative impact that searching the grid cell with the same searcher
type can have on the resulting multipass search effectiveness. In this example, each object
type is equally likely (i.e., Pr(mj | x ∈ Gi) = 1/3 for j = 1, 2, 3). The search probability
(as given by the sequence Pη(n)) and corresponding utility are depicted for each of the
set of α values in {1.0, 0.9, 0.5, and 0.0}. The intent is to show the impact of the size of the
variation from the mean detection likelihood value on the multipass detection probability. As
this example presumes only one searcher type (i.e., φn is constant), all associated utilities are
negative.

4.3. Example: Search with Target Orientation Dependency

We next introduce a detection likelihood dependency example that is in the form of a
continuous random variable. Here, we impart a dependency on detection due to the angular
separation between searcher and search object orientation. For instance, in optical sensing,
objects that present a significant shadow are considered more detectable, and that shadow
depends on object orientation relative to the searcher look direction. As an example, consider
a sinusoidal representation of detection likelihood in the form of (3.13) given by

Pr
(
d | x, θ;φn,Gi

)
= PDi + Pθi cos

(
2
(
θ − φn

))
, (4.14)

where Pθi is a cell-specific constant indicative of the size of the variation, θ denotes search
object orientation, and φn denotes searcher orientation during search pass n of cell Gi.
This functional representation allows for maximum detection probability when the object
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orientation is aligned with the searcher motion axis (i.e., when the scans are perpendicular to
the object orientation).

Let search object orientation angle be denoted as θ ∈ [0, 2π) with h(θ) = 1/2π over
that interval. Observe for these conditions that

ψ1
(
φ1

)
=

∫2π

0

1
2π

Pθ cos
(
2
(
θ − φ1

))
dθ = 0. (4.15)

That is, as expected, there is no utility in specifying the searcher axis to address this random
object orientation for the first pass over the grid cell.

Using the trigonometric identity

cos(θ − θA) cos(θ − θB) =
1
2

cos(θB − θA) +
1
2

cos(2θ − θA − θB), (4.16)

the ancillary functions ψ2(φ1, φ2) takes the form

ψ2
(
φ1, φ2

)
=

∫2π

0

1
2π

P 2
θ cos

(
2θ − 2φ1

)
cos

(
2θ − 2φ2

)
dθ =

P 2
θ

2
cos

(
2
(
φ2 − φ1

))
(4.17)

with corresponding utility U(2) = −ψ2(φ1, φ2). We note that, in general, the second pass
detection probability is maximized when utility U(2) is maximized. This occurs for this
sinusoidal model of orientation dependency when 2(φ2 − φ1) = ±π or simply when φ2 =
φ1 ± π/2 and the first two passes of the searcher are at right angles to each other.

We note that the third ancillary function ψ3(φ1, φ2, φ3) for the likelihood function of
(4.14) is given by

ψ3
(
φ1, φ2, φ3

)
=

∫2π

0

1
2π

P 3
θ cos

(
2θ − 2φ1

)
cos

(
2θ − 2φ2

)
cos

(
2θ − 2φ3

)
dθ = 0, (4.18)

and thus U3(3) = 0. However, the utility function for the third pass U(3) still has non-zero
components, and from (3.30) we have

U(3) = U2(3) +U3(3) = −(1 − PDi)
2∑
j=1

ψ2
(
φ3, φj

)
+ 0

=
−P 2

θ

2
(1 − PDi)

[
cos

(
2
(
φ3 − φ1

))
+ cos

(
2
(
φ3 − φ2

))]
,

(4.19)
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where we recall that U2(3) represents the contribution of the ψ2 ancillary function to the third
pass utility function U(3). In general, the ψ2 contribution for the nth pass utility function
using this sinusoidal model takes the form (see (3.30))

U2(n) = −(1 − PDi)
n−2

n−1∑
j=1

P 2
θ

2
cos

(
2
(
φn − φj

))

=
−P 2

θ

2
(1 − PDi)

n−2

⎛
⎝cos 2φn

n−1∑
j=1

cos 2φj + sin 2φn
n−1∑
j=1

sin 2φj

⎞
⎠.

(4.20)

Similarly, for this sinusoidal model, the fourth ancillary function ψ4 is generally non-zero,
becoming

ψ4
(
φ1, φ2, φ3, φ4

)
=

∫2π

0

1
2π

P 4
θ

4∏
j=1

cos
(
2
(
θ − φj

))
dθ

=
P 4
θ

8
[
cos

(
2
(
φ4 − φ3

))
cos

(
2
(
φ2 − φ1

))
+ cos

(
2
(
φ4 − φ1

))
cos

(
2
(
φ3 − φ2

))

+ cos
(
2
(
φ4 − φ2

))
cos

(
2
(
φ1 − φ3

))]
.

(4.21)

The corresponding U4(n) utility component aggregating the contribution of the ψ4 ancillary
function on the nth pass utility where n ≥ 4 takes the form

U4(n) = (1 − PDi)
n−4

(
P 4
θ

8

)
n−1∑
j1=1

⎡
⎢⎢⎣cos

(
2
(
φn − φj1

)) n−1∑
j3=2
j3 /= j1

j3−1∑
j2=1
j2 /= j1

cos
(
2
(
φj3 − φj2

))
⎤
⎥⎥⎦. (4.22)

As before, the odd ancillary function ψ5 integrates to zero. The analytic calculation of utility
function components can continue until a specified degree of accuracy has been reached, as
given in Theorem 3.5. For the purpose of this specific example, we terminate our discussion
at ψ5.

Naturally, an issue that is paramount in any extended likelihood structure is the
amount of processing and storage necessary to calculate utility function components. Ideally,
we wish to minimize both storage and computational loading. Table 1 provides useful
recursions for calculating the U2(n) and U4(n) components. Indicated in the table is the pass
number in which the terms become non-zero or non-empty in the case of vector quantities.
For the U2(n) component, observe from (4.17) that temporary variables defined in Table 1
reduce storage requirements to a two-parameter grid cell attribute. This same information
must be stored in vector format, however, to apply it properly for the U4(n) component. The
U4(n) recursion increases storage requirements in that three vectors of size n and one scalar
attribute must now be saved for each grid cell location along with the stored quantities for the
U2(n) calculation. Observe how the recursions in Table 1 separate the contribution of the nth
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Table 1: Recursion equations for computing component utilities for a sinusoidal orientation dependency.

Recursion for calculating U2

Initialization u2c(0) = u2s(0) = 0
Utility Calc w2 = cos 2φnu2c(n − 1) + sin 2φnu2s(n − 1) n > 1

U2(n) = −(1 − PDi
)n−2(P 2

θ
/2)w2 n > 1

Update u2c(n) = u2c(n − 1) + cos 2φn n > 0
u2s(n) = u2s(n − 1) + sin 2φn n > 0

Recursion for calculating U4

Initialization Vs(0) = Vc(0) = V4(0) = [ ]
u4(0) = u4(1) = 0

Utility Calc
Vφn = Vc(n − 1) cos 2φn + Vs(n − 1) sin 2φn n > 1
w4 = [u4(n − 1) − V4(n − 1)] · V T

φn
(n) n > 3

U4(n) = −(1 − PDi
)n−4(P 4

θ
/8)w4 n > 3

Update

Vs(n) = [Vs(n − 1) sin 2φn] n > 0
Vc(n) = [Vc(n − 1) cos 2φn] n > 0
V4(n) = [(V4(n − 1) + Vφn) w2] n > 1
u4(n) = u4(n − 1) +w2 n > 1

pass control parameter from the preceding parameter values. This methodology generalizes
for higher order recursions.

We illustrate the impact of orientation and its utility calculation on search performance
via the construction of search plans representing limiting cases on utility. Figure 1 in its
continuing pattern depicts a vertical search plan in which the detection likelihood remains
relatively fixed over the plan. Here, the first searcher starts at the lower left corner of the space
and commences a vertical ladder search. The second searcher starts at the upper right corner
and similarly performs a vertical ladder search. Figure 4 depicts the second limiting case
search plan. The first part of the search remains unchanged from the vertical ladder search.
However, when the two searchers reach proximity to each other, they jointly turn at right
angles to alter their orientation, that is, φ2 = φ1 ± π/2 as above, while maintaining coverage
of the space. Hence, this plan seeks to achieve a positive utility through orientation diversity.
This plan also demonstrates the capacity of the search evaluation modeling technique to
account for arbitrary searcher motion in collaborative, multipass search plans.

The utilities achieved in the two search plans are illustrated in Figures 5 and 6,
respectively. Note that what is depicted is the average utility over the cells in the sequential
update. For the vertical search plan, noninteraction between searchers results in a zero
utility prior to search path overlap. When multipass coverage does occur, the resulting
utility is negative, following Theorem 3.4, as the searchers have the same orientation
(Incidental “spikes” into positive utility occur as the searchers maneuver between search
legs). Orientation switching in the second plan yields the desired generally positive utility
for both searchers as multipass coverage is achieved over the cells.

These geometries represent two-pass search strategies developed over a benign search
environment under which uniformity in placement preference and detection likelihood is
assumed. More generally, spatial variability in these quantities may induce a variability in the
number of search passes conducted over the space. To illustrate the capacity of the algorithm
to accommodate higher order search pass sequences, we include a deviated coverage plan
in which a local assessment of the direction of highest coverage induces the searchers to
deviate from the standard ladder search. While the searchers attempt to fulfill a coverage
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Figure 4: Experimental geometry for two searchers performing an orientation switch search plan. Only the
initial history of the search path is shown for clarity.
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Figure 5: Average utility for each of two searchers performing a vertical search plan with orientation
dependency (the two curves are nearly identical).

strategy, the resulting search paths take on a random appearance. Further, in the process of
deviating towards cells of high Pηi , a natural variability in the number of cell search passes
occurs over the cell grid construct. A partial realization of the search geometry is depicted
in Figure 7 with a histogram of the achieved search pass number provided in Figure 8. The
average utility that results for the entire search path set is shown in Figure 9.

The impact of these paths on the selected search criteria is shown in Figure 10. For
these evaluations, only one object type is considered. The uniform placement prior has
an expected number of objects of E{N0} = 5 over the space. The probability that k > n
objects will be detected along the search paths is calculated as a function of search time for
n = {0, 2, 4} for each of the search plans. The limiting utility realizations yield corresponding
search performance curves with the orientation switching plan clearly outperforming both
the vertical ladder search and the deviated coverage plan. It is predictable that the deviated
coverage search strategy yields a lower performance than the ladder searches during the
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Figure 6: Average utility for each of two searchers performing a switched orientation search plan with
orientation dependency (searcher 1 utility is in blue and searcher 2 utility is in red).

Figure 7: Experimental geometry for two searchers performing a deviated coverage search plan. Only the
initial history of the search path is shown for clarity.
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Figure 8: Search pass histogram for the deviated coverage search plan.
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Figure 9: Average utility for each of two searchers performing a deviated coverage search plan with
orientation dependency (searcher 1 utility is in blue and searcher 2 utility is in red).
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Figure 10: Search performance with orientation dependency for cumulative probability of achieving k > n
detections (n = {0, 2, 4}). Red curves represent the vertical search plan, blue curves represent a orientation
switch search plan and grey curves indicate the deviated coverage search plan.

initial (single pass) phase of the plan [5]. However, during the latter (multipass) phase
of the plan, the deviated coverage strategy surpasses the vertical search strategy (but not
the˜orientation switching plan) due to the negative utility incurred by the vertical ladder
search (as in Figure 5).

We finish by presenting the results of a Monte Carlo experiment for the deviated
coverage search plan. An ensemble of 1000 runs of a simulated placement scenario is executed
and the frequency of occurrence results are calculated. For the experiment, objects are placed
uniformly with a random object orientation assigned independently for each object. The
detection event is simulated in a sequential realization of the search trajectories by a random
draw governed according to (4.14). The results are illustrated in Figure 11. In the figure, the
mean frequency of occurrence is plotted against the predicted successful search probability
for the k > n detection events. Standard deviation bounds at the 3σ level are also depicted
in the figure to indicate the estimation uncertainty in the experiment. The usefulness of
Table 1 is validated under these operating conditions as the prediction is contained within
the uncertainty interval.
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Figure 11: Monte Carlo performance results with orientation dependency for cumulative probability of
achieving k > n detections (n = {0, 2, 4}).

5. Conclusion

A mathematical model of search that allows for the incorporation of multiple pass
dependencies has been developed. The model is based on recursively updating a geometric
likelihood structure that directly impacts search performance. This model provides a general
framework for modeling arbitrary ancillary search dependencies. The example problems
studied include the standard overlapping scans, a multiple searcher with multiple objects
problem where each searcher is tuned to a specific object type, and two search geometries
with searcher performance that varies over relative aspect to the object. The latter examples
show that the method provides an approach to examine the impacts of complex dependencies
at a planning stage, without resorting to extensive simulation studies. Future efforts will
examine the utilization of this evaluation model in the development of optimal multisearcher
coordination strategies.
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