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This paper presents a simple rational expectations model of intertemporal asset pricing relating
instability of stock return characteristics to heterogeneity in investor preferences. Heterogeneity
is likely to generate declining aggregate relative risk aversion. This leads to variability in
expected asset returns, volatility, and autocorrelation. The stronger this variability is, the more
heterogeneous preferences are, implying more instability of financial markets. Stock market
crashes may be observed if relative risk aversion differs strongly across investors.

1. Introduction

The last twenty five years witnessed various sudden shifts in valuation so that instability
of financial markets does not seem to be the exception but the rule. The stock market
crashes of 1987, 1998, and 2001 and most recently the subprime crisis are the most prominent
examples. In addition to these events, financial markets show more signs of instability.
Financial instability is measured by the variability in characteristics of stock return processes,
in particular, expected return, volatility, and autocorrelation. The more these characteristics
vary, the stronger is instability.

This paper shows that financial market instability is a natural consequence of
heterogeneous investor preferences. In a simple intertemporal equilibrium model we show
that heterogeneous investor preferences are likely to cause declining aggregate relative
risk aversion. Financial instability is driven by the instability in the decline of aggregate
relative risk aversion. Our model delivers rather stable time series characteristics of stock
returns given smoothly declining aggregate relative risk aversion, but unstable characteristics
given strong variations in the decline of relative risk aversion. In the latter case, the model
indicates strong variability in expected stock returns, volatility, and in serial correlation
of stock returns. It even explains crashes without significant fundamental news for which
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Shiller [1] provides evidence. Temporary illiquidity of stock markets may also contribute to
financial instability. This makes it difficult to distinguish pricing effects of liquidity and of risk
aversion. The current crisis illustrates this problem. Our model is based on a perfect capital
market in which illiquidity problems do not exist.

To present our case of instability, we use a simple model of a perfect, competitive
financial market similar to Wang [2], Campbell and Cochrane [3], and Chan and Kogan [4]
in which the dividend on the market portfolio is governed by a geometric Brownian motion
and the price of the market portfolio equals the present value of these dividends. Aggregate
relative risk aversion depends on the equilibrium allocation of consumption and the relative
risk aversion levels of the various investors. The level and variation of aggregate relative risk
aversion are controversial. Defining aggregate relative risk aversion as the negative elasticity
of the stochastic discount factor with respect to market wealth, empirical studies estimate
its level using option prices. The empirical results documented in Aı̈t-Sahalia and Lo [5],
Jackwerth [6], and Rosenberg and Engle [7] suggest extreme bounds for aggregate relative
risk aversion. Aı̈t-Sahalia and Lo [5], for example, document levels up to 60 for S&P 500
index values about 15 percent below the current future price. They conclude that declining
aggregate relative risk aversion appears to be more realistic than constant aggregate relative
risk aversion (Assuming constant aggregate relative risk aversion, Bliss and Panigirtzoglou
[8] estimate aggregate relative risk aversion levels between 1.97 and 9.52. They find that
risk aversion declines with the forecast horizon and with the level of volatility. Analyzing
the cross-section of industry portfolios Dittmar [9] also provides evidence against constant
aggregate relative risk aversion.). Little is known on the level of aggregate relative risk
aversion for index values more than 15 percent above or below the current value and the
empirical estimates are subject to various methodological concerns (see [8, 10]).

The first important result in this paper generalises the result of Benninga and Mayshar
[11]. Declining aggregate relative risk aversion not only holds if every individual has constant
relative risk aversion but also is likely if individual relative risk aversion is not constant. Since
the aggregate dividend is exogenously given, but prices are not, we define aggregate relative
risk aversion as the negative elasticity of the stochastic discount factor with respect to the
dividend. In an intertemporal model this allows us to characterize aggregate risk preferences
independently of endogenous asset prices. Moreover, we show that declining relative risk
aversion is stable over time, in contrast to increasing relative risk aversion.

If aggregate relative risk aversion is constant, then it is well known that under some
additional assumptions the market return is identically and independently distributed. If,
however, aggregate relative risk aversion declines with increasing dividend, then an increase
in the dividend leads to an overproportional price increase because the risk premium
declines. This implies variability in the expected stock return and volatility. The less stable
these parameters are, the more financial instability is induced. This instability depends on
the instability in the decline in aggregate relative risk aversion. If it declines rapidly (slowly)
in some dividend range, then the risk premium declines strongly (slowly) in this range
so that the price of the market portfolio increases rapidly (slowly) given a small increase
in dividends. Conversely, a small decline in dividends together with a strong increase in
aggregate relative risk aversion leads to a strong price decline, similar to a crash. If the
dividend happens to first increase and then to decline, then we may observe a stock market
movement which resembles a bubble that bursts.

Since the decline pattern in aggregate relative risk aversion is crucial for financial
stability, the paper analyzes the determinants of this pattern. Suppose that each investor has
constant relative risk aversion. If the level of relative risk aversion of investors is uniformly
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distributed across some range and these investors have similar endowments, then aggregate
relative risk aversion smoothly declines. Hence stock return characteristics are fairly stable. If,
however, endowments are concentrated at investors with high and at those with low levels of
relative risk aversion, then aggregate relative risk aversion declines rapidly in some dividend
range. In this case, stock return characteristics are quite unstable.

The decline in aggregate relative risk-aversion is driven by the “variance of the inverse
levels of relative risk aversion of investors” in which the weights are not probabilities, but the
fractions of aggregate consumption of the investors which add up to 1. In equilibrium, these
fractions reflect differences in relative risk aversion and in the endowments of investors. If
this “variance” varies little with aggregate dividend, then the market is rather stable. If it
varies strongly, then it induces financial instability.

These important results are new as shown by a brief discussion of the theoretical asset
pricing literature. For finite horizon models it is known from Bick [12] and Franke et al. [13]
that if the price of the market portfolio is governed by a geometric Brownian motion as in the
Black and Scholes [14] model, then aggregate relative risk aversion is constant. Stapleton
and Subrahmanyam [15] assume that the dividend process is governed by a geometric
(arithmetic) Brownian motion. They show that if aggregate relative risk aversion (absolute
risk aversion) is constant, the forward price is governed by a geometric (arithmetic) Brownian
motion. Wang [2] analyzes the term structure of interest rates in an economy with investors
who display constant relative risk aversion, but at different levels. Campbell and Cochrane
[3] analyze a similar economy, but they assume a representative investor whose utility
depends on current and past consumption (habit) so that it is path-dependent. This allows
them to explain return predictability and excess volatility. Chan and Kogan [4] combine the
setup of Wang [2] and that of Campbell and Cochrane [3]. Their economy is populated
with constant relative risk averse investors whose level of risk aversion differs and whose
utility depends on aggregate consumption scaled by a weighted geometric average of past
aggregate consumption. This feature again implies path-dependence of the utility function.
Gomes and Michaelidis [16] analyze asset pricing with heterogeneous agents in incomplete
markets with borrowing constraints. Brennan et al. [17] and Brennan and Xia [18] emphasize
the importance of a time-varying investment opportunity set to explain predictability of asset
returns. Our results depend neither on path-dependent utility functions nor on learning.

The remainder of the paper is organized as follows. In Section 2 the model is
introduced and declining aggregate relative risk aversion is shown to be the normal case.
Moreover, the pattern of decline in aggregate relative risk aversion is analyzed. In Section 3,
instability in expected excess returns, volatility, and autocorrelation of returns is related to
instability of the decline in aggregate relative risk aversion. Section 4 discusses conditions for
stock market crashes. In Section 5 an analytic formula for the price of the market portfolio is
presented together with simulations illustrating the previous results. Section 6 concludes.

2. Aggregate Relative Risk Aversion

2.1. The Economic Setting

Our model setup is close to Wang [2]. There exists a continuous time-pure exchange economy
with a perfect and complete market. At each date τ , aggregate consumption equals the
dividend on the market portfolio Dτ . The aggregate dividend is the only exogenous risk
factor in the model. All agents have homogeneous and rational expectations, but different
utility functions.
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Each investor, indexed by i = 1, . . . , n, has a time-independent von Neumann-
Morgenstern utility function according to which she optimizes her consumption at each date.
Many people use standard time-additive utility. Then, in equilibrium, precautionary savings
can force the risk free rate to be strongly negative. This can lead to infinite stock prices in
an infinite horizon equilibrium model. Even if stock prices remain finite, the variation in the
risk free rate can lead to a situation in which an increase in the aggregate dividend triggers a
strong decline in the price of the market portfolio. Since (real) risk free rates vary little in the
real world, we prefer a model in which the real risk free rate is constant.

There are different approaches to justify a constant risk free rate. Campbell and
Cochrane [3] assume a risk-free production technology with constant returns to scale which
is always in use. Another approach is to separate relative risk aversion and intertemporal
elasticity of substitution, as suggested by Kreps and Porteus [19] and Epstein and Zin [20].
To simplify things, assume that the intertemporal elasticity of substitution is infinite for
every investor. Hence the marginal rate of substitution for risk free claims is a constant
which equals the investor’s gross time preference rate. This rate is assumed to be the same
for all investors and constant over time. Hence it equals the risk free interest rate which,
therefore, is constant. The drawback of this approach is that the investor is indifferent
to the intertemporal allocation of her initial endowment, which, however, matters for the
intertemporal equilibrium. This gap can be closed by a social planner who determines the
intertemporal allocation. If the social planner is interested in maintaining social stability over
time, then he attaches constant weights to all investors over time. This will be assumed
in order to rule out instability driven by changing weights. Therefore, we obtain a time-
homogeneous forward pricing kernel (In a complete market with investors maximizing
expected time-additive utility, the Lagrange-multiplier of the budget constraint is time-
homogeneous for each investor. Therefore their sharing of the aggregate dividend is time-
homogeneous, as it is in the social planner model with constant weights allocated to investors.
This implies a time-homogeneous forward pricing kernel.). The forward pricing kernel
equals the spot pricing kernel excluding risk free discounting. The spot pricing kernel is the
function relating the stochastic discount factor to the aggregate dividend. Hence our model
implies that the spot pricing kernel is also time-homogeneous except for the discounting.

2.2. Investor Heterogeneity and Aggregate Relative Risk Aversion

With risk aversion, the stochastic discount factor is declining in some aggregate variable like
wealth or aggregate consumption. The negative elasticity of the discount factor with respect
to this variable defines aggregate relative risk aversion (RRA). In our model this variable
is the dividend of the market portfolio. We first show that declining aggregate RRA is the
normal case. Benninga and Mayshar [11] proved the decline in a one period-model assuming
that every investor has constant relative risk aversion, but levels differ across investors.

Let xi(Dτ) denote the optimal consumption of investor i at date τ as a function
of aggregate consumption Dτ and αi(Dτ) = xi(Dτ)/Dτ her share of consumption. Then
∑

i αi(Dτ) = 1 for every level of aggregate consumption. As shown by Benninga and Mayshar
[11], in equilibrium aggregate RRA ηM(Dτ) is related to the investors’ RRA by the harmonic
mean:

1
ηM

(Dτ) =
∑

i

(
1

ηi(xi)

)

αi(Dτ). (2.1)
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ηi(xi) is investor i’s RRA given her consumption xi. In order to find out whether aggregate
RRA declines in aggregate consumption Dτ , we differentiate (2.1) with respect to Dτ . As
shown in the appendix, we obtain the following result.

Proposition 2.1. The elasticity of aggregate RRA with respect to the aggregate dividend is

∂ lnηM(Dτ)
∂ lnDτ

= Dτ

∑

i

η′i(xi)
ηi(xi)

[
αi(Dτ)
ηi(xi)

ηM(Dτ)
]2

−
∑

i

αi(Dτ)
[
ηM(Dτ)
ηi(xi)

− 1
]2

. (2.2)

The proposition shows that in equilibrium the elasticity of aggregate RRA with respect
to the aggregate dividend is the difference between two terms, the first being the sum of
weighted growth rates of individual RRA, the second being a pseudovariance of the inverse
individual levels of RRA standardized to an expectation of 1. If every investor has a positive
share of consumption αi(Dτ), then the last term in (2.2) has the properties of a variance
term. The more heterogeneous agents are in their preferences and, hence, in their equilibrium
levels of RRA, the higher is this pseudovariance. It depends on the equilibrium allocation of
consumption since the shares αi(Dτ) and the individual RRA ηi(xi) are endogenous.

Hence, as shown by Benninga and Mayshar [11], aggregate RRA is declining if every
agent has constant RRA, that is, if η′i(xi) = 0. Now suppose η′i(xi)/= 0. Then the first term
on the right-hand side of (2.2) multiplies the individual RRA growth rate η′i(xi)/ηi(xi) by
z2
i ≡ [αi(Dτ)ηM(Dτ)/ηi(xi)]

2. Note that
∑

i zi = 1, by (2.1). Hence if there are many investors,
each having a positive consumption share, then the average zi will be very small. This
holds, a fortiori, for z2

i . Therefore if there are investors with increasing, with constant, and
with declining RRA, then the first term on the right-hand side is likely to be close to zero
while the positive second term is subtracted. The second term tends to be higher, the more
heterogeneous investor preferences are (The second term approaches zero if one investor
buys a very large fraction of the aggregate dividend and the other investors buy very little.
This can happen if the aggregate dividend is very low or very high and marginal utility of
consumption of the first investor relative to that of every other investor goes to infinity for
very low, respectively, very high levels of consumption.). Since this heterogeneity appears to
be strong in reality, we conclude that aggregate RRA is likely to decline.

The intuition for this result is the following. Given an optimal allocation of claims,
a highly risk averse investor i tends to buy claims xi(Dτ) which increase only little with
aggregate dividend Dτ . Her demand curve xi(Dτ) is rather flat. Hence her share αi(Dτ) =
xi(Dτ)/Dτ tends to be high (low) when Dτ is low (high). The opposite is true of an investor
with low RRA. Therefore in the low dividend states the highly risk averse investors dominate
the market so that aggregate RRA turns out to be high. In the high dividend states low
risk averse investors dominate the market so that aggregate RRA turns out to be low. Thus,
aggregate RRA tends to decline with increasing dividend.

Next we analyze the intertemporal properties of aggregate RRA. The following
proposition reinforces our view that declining aggregate RRA is the normal case. Technically,
aggregate RRA is given by ηΦ,Dt , the negative elasticity of the pricing kernel with respect to
the dividend Dt. The forward date t-pricing kernel for claims contingent on some state at
date s is denoted by Φt,s. In an arbitrage-free, complete market this function is unique. No-
arbitrage also implies that Φ0,t is a martingale and Φt,s = Φ0,s/Φ0,t. Since the dividend is
the only exogenous risk factor in the market, Φ0,t can be characterized as a function of the
dividend. The dividend or aggregate consumption is governed by an exogenous diffusion



6 Advances in Decision Sciences

process with nonaccelerating growth rates, if ∂2 lnDs/∂ lnDt
2 ≤ 0, for s > t. This appears as

a rather weak condition on the behavior of aggregate consumption. The geometric Brownian
motion which is a widely used model for aggregate consumption, for example, is consistent
with this assumption. For this setting we obtain the following.

Proposition 2.2. Suppose that aggregate consumption Dτ is governed by a diffusion process with
nonaccelerating growth rates. Then declining aggregate RRA at some date s implies declining
aggregate RRA at every preceding date t.

This proposition is proved in the appendix. It shows that for declining aggregate RRA
at some date it suffices that there exists some future date with declining aggregate RRA.
Conversely, increasing aggregate RRA at some date does not imply increasing aggregate RRA
at all preceding dates, as can be seen from the appendix. Hence, increasing aggregate RRA is
not a time-invariant property, in contrast to declining aggregate RRA.

Propositions 2.1 and 2.2 show that declining aggregate RRA is likely to hold. On the
empirical side, Aı̈t-Sahalia and Lo [5] support declining aggregate RRA. Also the overpricing
of out-of-the-money put options (see, e.g., [6, 21]) makes a strong case for declining aggregate
RRA. Therefore the rest of the paper is based on declining aggregate RRA.

2.3. Instability of the Decline in Aggregate Relative Risk Aversion

Next we discuss whether aggregate RRA is declining smoothly or not. To simplify the
discussion, consider an economy in which all investors have constant RRA. Then the first
term in (2.2) disappears. Moreover, all consumption shares are positive. This allows us to use
the pseudovariance of inverse levels of RRA as a measure of investor heterogeneity. By (2.2),
this variance equals the negative elasticity of aggregate RRA with respect to the aggregate
dividend. This measure of heterogeneity depends on the RRA levels of all investors and on
their consumption shares, which, in turn, depend on the aggregate dividend. Consider an
economy in which the highest level of RRA is η1, and the lowest is ηn. Then, as shown by
Benninga and Mayshar [11], for a very low aggregate dividend the consumption share of
the most risk averse agents approaches 1 so that aggregate RRA approaches η1. For very
high dividends, the consumption share of the least risk averse agents approaches 1 so that
aggregate RRA approaches ηn. Aggregate RRA is declining everywhere. The instability of the
financial market will be shown to depend on the instability in the decline of aggregate RRA.
This decline can be measured by |∂ lnηM/∂ lnDτ |, that is, the negative elasticity of aggregate
RRA with respect to the dividend. Proposition 2.3 provides some insights into this elasticity.

Proposition 2.3. Consider an equilibrium with investors i (i = 1, . . . , n), ordered by declining level
of constant RRA, η1 ≥ η2 ≥ · · · ≥ ηn with η1 > ηn.

(a) The elasticity of aggregate RRA with respect to the aggregate dividend is the highest when

(i) each investor has either RRA η1 or ηn,
(ii) the consumption share of investors with RRA η1 equals η1/(η1 + η2).

Then aggregate RRA equals the mean (η1 +ηn)/2 and the elasticity of aggregate RRA with
respect to the aggregate dividend equals (1/4)(ηn/η1)(1 + (η1/ηn))

2 − 1.

(b) The elasticity of aggregate RRA with respect to the aggregate dividend approaches 0 for very
low and very high dividend levels.
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Figure 1: Aggregate relative risk aversion for two and three investor groups as a function of the aggregate
dividend D.

Proposition 2.3(a) is proved in the appendix. Proposition 2.3(b) follows because the
consumption share of the most (least) risk averse investor approaches 1 for very low (high)
dividend levels. Hence the pseudovariance of inverse RRA approaches 0. Therefore the
maximal pseudovariance indicates the level of instability in aggregate RRA.

The pseudovariance |∂ lnηM/∂ lnDτ | is maximal when each investor has the highest
or lowest possible RRA, and the most risk averse investors consume the fraction η1/(η1 +ηn).
To illustrate, if η1 = 2 and ηn = 1, then aggregate RRA is 1.5 and the pseudovariance is
1/8. If η1 = 19 and ηn = 1, then aggregate RRA is 10 and the pseudovariance is 4.26. Both
values are much higher.The maximal pseudovariance depends only on the ratio η1/ηn, not
on the initial endowments of both investor groups. But the dividend level at which the
pseudovariance is highest, increases with the initial endowment of the most risk averse
investors. This follows because a higher endowment raises the consumption share of these
investors at every dividend level and this consumption share monotonically declines in the
dividend.

Retaining the same range [ηn, η1], the maximal pseudovariance is smaller at the
same aggregate RRA when there are also investors with intermediate levels of RRA and
substantial consumption shares. As in Proposition 2.3, let investor i have a consumption
share ηi/

∑
j ηj . Then aggregate RRA equals the mean (1/n)

∑
j ηj , and the pseudovariance is

(1/n)
∑

i(ηM/ηi) − 1. For n → ∞ and a uniform distribution of η across the range [η, η] the
maximal pseudovariance is (1/2) ln(η/η)(η + η)/(η − η) − 1. Expanding the examples above,
consider three investors with η1 = 2, η2 = 1.5, and η3 = 1. Then for consumption shares
ηi/

∑
j ηj , aggregate RRA is 1.5 and the pseudovariance is (2/3)(1/8). If η1 = 19, η2 = 10,

and η3 = 1, then aggregate RRA is 10 and the pseudovariance is 2.84 = (2/3)4.26. In the
limit for n → ∞, at the same level of aggregate RRA, the maximal pseudovariance equals
(1/2)(ln 19)20/18 − 1 = 0.64. This is a small value indicating low instability.

Summarizing, instability in the decline of aggregate RRA is strong if a large fraction
of investors buys almost only risk-free assets and the other investors buy only stocks. If
there are many investors mixing bonds and stocks in varying proportions, then the decline of
aggregate RRA is rather stable.

Figure 1 illustrates this for cases of 2 and 3 investors. In case (a) η1 = 11 and η2 = 1
with λ1 = λ2, and in case (b), there exists an additional investor with an average level of
RRA, η1 = 11, η2 = 6, η3 = 1 with λ1 = λ2 = λ3. λi is investor i’s expected marginal utility
in equilibrium. λi is higher, the smaller the investor’s endowment is. Equivalently, 1/λi can
be interpreted as the weight allocated to investor i by a social planner who allocates the
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Figure 2: (a) shows the consumption shares of the three investors as a function of aggregate dividend. (b)
shows the implied aggregate RRA as a function of aggregate dividend. The approximation will be used
later in the simulation. (η) = (5; 3; 1) and 1/λ = (1; 3/5; 1).

aggregate dividend D to the investors so as to maximize their weighted expected utility.
The black curve depicts aggregate RRA for case (a), the grey curve for case (b). In case (a),
aggregate RRA is almost constant at the level 11 for dividends up to 0.6 units, then strongly
declines in the dividend range (0.6, 1), and then gradually approaches the lower bound 1. In
case (b), aggregate RRA declines smoothly over the dividend range (0, 2.5) indicating more
stability.

To provide further insight into aggregate RRA patterns, we present three more
examples. Assume that there are three investor groups (for short, investors) with different
levels of constant relative risk aversion. (η1, η2, η3) denotes the vector of these levels.
Sensitivity of the results with respect to (λ1, λ2, λ3) will be analyzed, too. To determine the
values for the risk aversion parameters we refer to recent empirical estimates of aggregate
RRA implied by option prices, but stick to relatively conservative specifications.

Figures 2 to 4 illustrate the simulation results. The upper graph shows the shares of
claims bought by the three investors as a function of the aggregate dividend. These shares
always add up to 1. The lower graph shows the implied aggregate RRA as a function of the
aggregate dividend (fat curve) and an approximation of the fat curve (thin curve) which is
used later. Note that the scale of D, the aggregate supply of claims, is irrelevant since all
investors have constant RRA.
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Figure 3: (η) = (20; 3; 1) and 1/λ = (10−3; 20; 1).

Figure 2 may be viewed as the “normal” case. The three investors have RRA levels
(5; 3; 1). The weights (1/λ) are given by the vector (1; 3/5; 1). As indicated in the upper graph,
given a very low aggregate dividend, the most risk averse investor 1 buys almost all available
claims, but her share declines quickly since, first, investor 2 with RRA 3 quickly raises her
share and, second, the least risk averse investor also increases her share gradually. The lower
graph shows that aggregate RRA is basically a smoothly declining convex curve. Hence, in
this setting there is little instability.

In Figure 3 we raise investor 1’s RRA from 5 to 20 so that (η) = (20; 3; 1). (1/λ) =
(10−3; 20; 1) so that the expected marginal utility of investor 1 is very high indicating a small
endowment. Yet the upper graph in Figure 3 shows that she buys almost all claims as long as
the supply of claims stays below 1. The second and third investors come into play at higher
supply levels. Therefore, aggregate RRA stays almost constant at a level of 20 for the entire
(0; 1) range of claims supply. Then it declines sharply in the range (1; 1.5) and thereafter
slowly approaches level 1, the RRA of the least risk averse investor. The sharp decline in
aggregate RRA paves the ground for a crash.

Consider a third example in Figure 4. Now there exist two investors with high RRA
20 and 18, respectively, and one investor with RRA 1; (η) = (20; 18; 1) and (1/λ) = (10; 6; 1).
Again, the decline in aggregate RRA is very unstable.

How robust are these results? Additional simulations indicate several properties. First,
if as in Figure 4, there are 2 investors such that their levels of RRA are higher than twice the
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Figure 4: (η) = (20; 18; 1) and (1/λ) = (10; 6; 1).

level of the third investor, then the aggregate RRA curve is similar to that in Figure 4. Second,
if the weights (1/λ) for the three investors are changed, then the shape of the aggregate
RRA curve remains similar, but the low dividend range with almost constant aggregate RRA
will be shorter or longer depending on the endowment of the most risk averse investors.
Third, if there are many investors instead of one with the same constant RRA η, this has no
effect on aggregate RRA as long as the sum of the λ1/η across these investors stays the same.
This follows because all investors with the same RRA buy the same portfolio of claims up to
multiplicative factors reflecting the levels of their initial endowments.

Therefore, the shape of aggregate RRA shown in Figures 3 and 4 appears to be robust
to a wide set of parameter changes. The crucial condition for a sharp decline of aggregate
RRA in some range of the supply of claims appears to be that the investors can be split into
two groups, the first having high levels of RRA and the second having low levels of RRA
such that the high levels exceed twice the low levels.

3. Instability of Excess Return and Volatility

In this section we show that instability in the decline of aggregate RRA induces financial
instability, that is, strong variability in the characteristics of the market portfolio return. We
investigate the pricing of the market portfolio in a perfect and complete capital market. We
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consider a continuous time economy with an infinite horizon. The instantaneous risk-free
rate rf equals the time preference of investors which is exogenously given and nonrandom.
As in many other papers, the market portfolio pays an exogenously given dividend stream
which is governed by a geometric Brownian motion:

dDt = μDDtdt + σDDtdWt, 0 � t <∞, (3.1)

where the instantaneous drift μD and the instantaneous volatility σD are assumed constant.
Wt is a one-dimensional standard Brownian motion and the initial dividend D0 is positive.
This represents a simple setting with the dividend being the only risk factor. The price of the
market portfolio at date t, St, is the present value of all future dividends:

St = E
(∫∞

t

exp
(
−rf(s − t)

)
DsΦt,sds | Dt

)

. (3.2)

This price is finite given a sufficiently high risk-free rate and aggregate risk aversion. Since
the dividend is the only risk factor in the market, the pricing kernel Φ0,t can be characterized
by

dΦ0,t = −ηΦ,Dt σDΦ0,tdWt,

Φ0,0 = 1.
(3.3)

Hence Φ0,t > 0 so that the market is arbitrage-free. As aggregate RRA ηΦ,Dt is time-
homogeneous, the asset price St is a time-homogeneous function of the dividend at date t
and can be characterized by the following stochastic differential equation:

dSt = η
Φ,D
t ηS,Dt σ2

DSt −Dt + rfSt
︸ ︷︷ ︸

=μS(St)St

dt + ηS,Dt σDSt
︸ ︷︷ ︸
=ΣS(St)St

dWt. (3.4)

μS(St) denotes the instantaneous drift which equals the expected instantaneous excess return
plus the risk-free rate rf . ΣS(St) denotes the instantaneous volatility, and ηS,Dt the elasticity of
the asset price St with respect to the dividend Dt. Both, volatility and drift depend in general
on the asset price St.

One measure of financial instability is the variability in the elasticity of the asset price
with respect to the dividend. If this elasticity is always equal to 1, then the asset price follows a
geometric Brownian motion since the dividend is governed by a geometric Brownian motion.
If the elasticity is higher than 1, then the spot price overreacts compared to a geometric
Brownian motion. As long as the extent of overreaction is constant, the market is said to
be stable. The following proposition establishes the relationship between overreaction and
aggregate RRA.

Proposition 3.1 (Overreaction). Assume that at each date aggregate RRA is declining in the
dividend and that the dividend is governed by a geometric Brownian motion with constant
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instantaneous volatility and constant instantaneous drift. Then the elasticity of the asset price with
respect to the dividend is higher than 1, that is,

ηS,Dt = 1 − 1
St

∫∞

t

covP̃
(
Ds, η

Φ,D
s | Dt

)

exp
(
rf(s − t)

) ds > 1. (3.5)

Hence the variability in ηS,Dt is driven by the variability in the covariance between the aggregate
dividend and aggregate RRA.

This proposition is proved in the appendix. covP̃ (·, ·) denotes the covariance under
the risk adjusted probability measure using Φts(Ds)/E(Φts(Ds) | Dt) for risk adjustment.
This covariance is negative (positive) for declining (increasing) aggregate RRA. To get
the intuition for the overreaction, think about aggregate RRA in terms of a representative
investor. A representative investor with decreasing RRA requires a lower excess return for the
same risk, the wealthier she is, that is, the higher the dividend is. Compared to an investor
with constant RRA, her required risk premium decreases, the wealthier she is. Hence, the
price she is willing to pay for the asset increases with increasing dividend more than under
constant RRA. Thus, with declining aggregate RRA an increase in the dividend induces a
decline in the required risk premium which reinforces the purely fundamental increase of the
asset price so that the asset price overreacts compared to constant aggregate RRA.

As (3.5) shows, the extent of overreaction, measured by ηS,Dt −1, depends on the present
value of negative covariances between the dividend and aggregate RRA. If aggregate RRA
declines slowly in the aggregate dividend, then the covariances are close to zero so that ηS,Dt
is only slightly above 1. If there exists a dividend range in which aggregate RRA strongly
declines, then in this range ηS,Dt is much higher. Hence financial instability increases with the
instability in the decline of aggregate RRA.

To draw conclusions about the behavior of excess returns we derive the behavior
of the total return index (performance index) Vt. Since the total return index includes the
reinvested dividend payments, its return minus the risk-free rate is the excess return that we
are interested in:

dVt
Vt
− rfdt =

dSt
St

+
Dt

St
dt − rfdt. (3.6)

Note that Vt = αtSt with αt being independent of Dt. Therefore ∂ lnVt/∂ lnDt ≡ ηV,Dt = ηS,Dt ≡
∂ lnSt/∂ lnDt. This implies that Proposition 3.1 holds equally for the elasticities ηS,Dt and ηV,Dt .

Overreaction translates into an increase in the instantaneous volatility of returns as
the instantaneous volatility of the total return index is the product ΣV (St) = ηV,Dt σD. Hence
the instantaneous return volatility varies more, the more the elasticity of the stock price with
respect to the dividend varies, indicating more financial instability. The following proposition
establishes that declining aggregate RRA raises the conditional and the unconditional
variance of asset returns over finite periods. Hence, declining aggregate RRA can explain the
well-documented high levels of volatility (Ghysels et al. [22] provide an extensive overview
on the characteristics of return volatility.).
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Proposition 3.2 (Volatility). Suppose that at each date aggregate RRA is declining in the dividend
and that the dividend is governed by a geometric Brownian motion with constant instantaneous
volatility and constant instantaneous drift. Then the conditional (τ > t = θ) and the unconditional
(τ > t > θ) variance of the total return index exceed the dividend variance, that is,

Var(lnVτ − lnVt | Dθ) > Var(lnDτ − lnDt | Dθ). (3.7)

The conditional total return variance increases with overreaction (ηS,D−1). Variability of overreaction
leads to variability in the conditional total return variance.

Proposition 3.2 is proved in the appendix. The conditional variance Var(lnVτ | Dt)
exceeds the dividend variance Var(lnDτ | Dt) because of overreaction. The same is true of the
unconditional variance. The conditional variance Var(lnVτ − lnVt | Dt) is higher, the stronger
is the overreaction. If the overreaction (ηS,D−1) is small everywhere, then the variance of lnVτ
relative to that of lnDτ is small and does not vary much. Hence it is fairly stable. If, however,
(ηS,D − 1) is quite high in some dividend range and small otherwise, then the variance of
lnVτ is also unstable implying more financial instability. Proposition 3.2 assumes declining
aggregate RRA. It does not hold in an analogous manner for increasing aggregate RRA.

Does overreaction imply that the expected market return depends on the aggregate
dividend? (For an overview on return predictability and return volatility as well as a
discussion of the methodological problems, see Ang and Bekaert [23].) First, notice that the
instantaneous drift of the total return index μV (St) equals the instantaneous drift of stock
returns plus the dividend yield. Hence the instantaneous Sharpe ratio

μV (St) − rf
ΣV (St)

=
μS(St) +Dt/St − rf

ΣS(St)
= ηΦ,Dt σD (3.8)

depends negatively on Dt for declining aggregate RRA, ηΦ,Dt . Therefore the Sharpe ratio
can be predicted knowing the current dividend. This predictability is particularly strong
if aggregate RRA declines strongly in the aggregate dividend. Hence higher instability in
aggregate RRA translates into stronger predictability. The predictability of the Sharpe ratio
would directly translate into predictability of excess returns if the instantaneous return
volatility ΣV (St) was nonrandom. But changes in volatility might disturb this relationship,
the exception being that the volatility does not increase with the dividend.

Another characteristic of the asset price process is the return autocorrelation. To
analyze the serial return dependence, we consider the covariance between the excess return
over the time span [t, τ], that is, CERt,τ ≡

∫τ
t dVs/Vs −

∫τ
t rfds, and the instantaneous expected

excess return at time τ , that is, μV (τ) − rf ; see also Johnson [24].

Proposition 3.3. Suppose that at each date aggregate RRA is declining in the dividend and that
the dividend is governed by a geometric Brownian motion with constant instantaneous volatility and
constant instantaneous drift. Then, the cumulated excess return and the instantaneous expected excess
return are negatively correlated if the volatility of excess returns does not increase with the dividend
(The corresponding result for increasing aggregate RRA is shown in the appendix.).

This proposition is proved in the appendix (The conditions established in
Proposition 3.3 are sufficient but not necessary.). It shows that excess returns are negatively
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autocorrelated if aggregate RRA is declining, provided that the volatility of excess returns
does not increase with the dividend. The intuition for the negative autocorrelation is
that if past returns have been strongly positive, investors are better off implying lower
aggregate RRA. Hence, the required risk premium decreases which lowers future expected
excess returns. This leads to negative autocorrelation. However, Proposition 3.3 reveals that
autocorrelation might be positive if the volatility of excess returns strongly increases with
the dividend so that the required risk premium increases, too. This may happen if there is a
dividend range in which aggregate RRA strongly declines so that the stock price strongly
increases with the dividend. Thus, the sign of autocorrelation turns out to be unstable if
aggregate RRA is not smoothly declining.

The level of the return autocorrelation is closely tied to the stability of the elasticity
ηV,D. If ηV,D varies only little, then the instantaneous expected excess return and the
instantaneous return volatility vary only little. Hence the autocorrelation is negative and
close to zero. If, however, ηV,D varies a lot, due to strong variation in aggregate RRA, then
autocorrelation tends to be stronger in some dividend range, but may even turn positive.
Therefore financial instability can manifest in changing signs of autocorrelation.

To sum up, this section has shown that overreaction, return predictability, enlarged
volatility, and autocorrelation in returns follow from declining aggregate RRA. These effects
need not be stable, however. Stability depends very much on the stability of the decline in
aggregate RRA. If aggregate RRA declines smoothly everywhere, then these effects are rather
stable. If, however, aggregate RRA declines strongly in some dividend range and otherwise
slowly, then these effects are also unstable translating into strong financial instability.

4. Stock Market Crashes

Our simple rational expectations model also permits an explanation of stock market
crashes without advocating market imperfections or “irrational behaviour” (For an excellent
overview of such models consider Brunnermeier [25].). Stock market crashes are an
illustration of extreme financial instability. We define a crash as a situation in which a small
decline in the fundamentals triggers a strong decline in the stock price. Conversely, a small
improvement in the fundamentals may trigger a strong increase in the stock price. A bubble
that bursts may be observed if a small improvement in fundamentals leading to a strong price
increase is followed by a small decline in fundamentals leading to a strong price decline. Such
phenomena can be explained in a perfect market with rational expectations.

A crash is based on a shift from a low-risk aversion regime to a high-risk aversion
regime. To illustrate the regime shift, first, consider a market with constant aggregate RRA,
η. Then in an infinite horizon model in which the aggregate dividend follows a geometric
Brownian motion, the stock price at date t, St, is a multiple of the dividend at date t, St =
Dt/k with k = rf + ησ2

D − μD. To make things simple, suppose that rf equals μD. Empirical
estimates of the dividend volatility of the market portfolio are around 12.8 percent. Then the
price dividend ratio would be around 61 for constant aggregate RRA of 1. Now suppose that
unexpectedly aggregate RRA increases from a constant level of 1 to a constant level of 10.
Then the price dividend ratio would drop to 6.1; that is, the price would drop by 90 percent.
Hence the shift from the low- to the high-risk aversion regime induces a stock market crash.

The property required for a crash is that aggregate RRA stays almost constant in the
range of low aggregate dividends, then drops sharply with an increase in dividends, and,
again, almost stays constant in the upper range. Even though a precise characterization
of the conditions implying these properties is difficult, Proposition 2.3 indicates situations
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leading to a crash. If investors have very high or very low RRA, then the maximal
elasticity of aggregate RRA with respect to the dividend, |∂ lnyM/∂ lnDτ |, is approximately
(1/4)(ηn/η1)(1+(η1/ηn))

2−1. Hence given a high ratio η1/ηn, there exists a dividend range in
which aggregate RRA strongly declines. In this dividend range a small increase in dividends
starting at the low end of the range leads to a very strong price increase, while a small
dividend decline starting at the high end leads to a crash. This is explained by a regime shift.
There exists a range of low aggregate dividends in which the most risk averse investor group
buys a high share of the available claims so that aggregate RRA approaches its high level of
constant RRA. This group dominates the market in this dividend range. In the range of high
dividends, this group buys a small share of the available claims so that its influence on the
market disappears. In this range the least risk averse investor group dominates the market.
Hence the shift from a high- to a low-risk aversion regime explains a crash.

5. Simulation

In this section we illustrate our results by simulating the returns of the market portfolio. First,
we discuss the procedure used for simulation. Second, we present the simulation results.

5.1. Simulation Procedure

The simulation approximates the valuation of the market portfolio in an infinite horizon
setting by a finite horizon setting with a very long horizon. The price of the market portfolio
at the horizon is a function of the aggregate dividend paid at the horizon. Once the stochastic
discount factor for the horizon date is known, the stochastic discount factors for the preceding
dates can be derived from no-arbitrage. Therefore we only need to specify the stochastic
discount factor for the horizon date. We approximate the equilibrium stochastic discount
factor through a sum of power functions. Let St+h be the value of the market portfolio at some
horizon date t + h which defines the aggregate supply of claims at that date. The discount
factor, Φt,t+h(St+h), is approximated by the generalized polynomial

Φt,t+h =

∑N
i=1 αiS

−δi
t+h

E
[∑N

i=1 αiS
−δi
t+h | Dt

] , (5.1)

with αi, δi ∈ R. This specification is very general. Since the δi’s are not required to be integers,
this approximation is at least as good as a Taylor-series approximation. For large N, the
approximation error converges to zero. For illustration, we use polynomials with N = 3
terms. We use again the three specifications which illustrated aggregate RRA in Section 2.3.
These specifications are given in Figures 2 to 4. Table 1 displays for each figure the parameters
of the investors and the parameters δi and αi used in the generalized polynomial.

Table 1 shows that the exponents δ1 and δ3 used in the polynomial approximation
of the stochastic discount factor correspond closely to the RRA η1 and η3, respectively. The
quality of the approximation can be seen in the lower graphs of Figures 2 to 4 depicting the
equilibrium aggregate RRA (fat curve) and aggregate RRA derived from the approximation
(thin curve). The approximation appears to be quite good. It could be further improved
by using more than three power functions (see also [21]). Alternatively, we could choose
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a setting with more than 3 investors which would yield an equilibrium aggregate RRA
indistinguishable from the thin curve.

The value of the market portfolio at the horizon is a deterministic function of
the dividend paid at the horizon, St+h = St+h(Dt+h) consistent with the infinite horizon
model. In order to avoid artificial instability, we specify St+h(Dt+h) as a function with
constant elasticity, that is, St+h = dpDϑ

t+h. dp is a kind of price dividend ratio. The
exponent ϑ is greater than 1 indicating declining aggregate RRA. Analyzing the annual
S&P 500 real price and price-dividend data for the time period 1871–2002, (Source: Shiller
(http://www.econ.yale.edu/∼shiller/data.htm).) one finds that the price-dividend ratio is
reasonably approximated by St/ADt = 7.27AD0.53

t with an R2 of almost 40 percent where
ADt = 12Dt is the annual and Dt the monthly dividend. This implies for the numerical
simulation based on monthly data St+h = 325.6D1.53

t+h . The real interest rate is set to 2.5 percent
p.a. which is consistent with the historical average (see [18]). Consistent with the historical
mean and volatility of real monthly dividend growth we choose σD = 0.037 and μD = 0.002.

The date t-value of the market portfolio is given by

St =
t+h∑

s=t
exp

(
rf(t − s)

)
E(DsΦt,s | Dt) + exp

(
−rfh

)
E
(
dpDϑ

t+hΦt,t+h | Dt

)
. (5.2)

Using the stochastic discount factor polynomial, E(St+hΦt,t+h | Dt) is a weighted average
of means of power functions of St+h. Since St+h is a power function of Dt+h and Dt+h is
lognormally distributed, E(St+hΦt,t+h | Dt) can be derived analytically. The same is true of
E(DsΦt,s | Dt) since Φt,s = E(Φt,t+h | Ds) by no-arbitrage. Hence the price St can be derived
analytically as a function of the dividend Dt as shown in the appendix.

We use simulation to derive the properties of the price process. In each simulation
run, we generate 240 observations of the dividend process. This corresponds to 20 years of
monthly data. Given a constant investment horizon of h = 240 months, so that t + h moves
over time, we obtain a sequence of 240 asset prices, derived from (5.2). The initial dividend
D0 is set to 1 or 4. For every model specification we run 1000 simulations. The parameters of
every specification 1 to 3 are given in Table 1, approximating aggregate RRA in Figures 2 to
4. Since we use a very long horizon of 240 months, the impact of replacing the infinite by a
finite time horizon model on our simulation results is very small. This is shown by further
simulations not reported here.

5.2. Simulation Results

First, consider Figure 5 illustrating the relationship between the asset price and the concurrent
dividend.

In the benchmark case of constant aggregate RRA the asset price increases linearly
in the dividend. Thus, there is perfect financial stability. In specification 1, the rather
mild decline in aggregate RRA produces a convex curve which mildly contrasts with the
benchmark case, thus retaining a high level of financial stability. Specifications 2 and 3 deviate
strongly from the benchmark case. For low dividends, the asset price increases very little
with the dividend, then around a dividend level of 4, it increases strongly, and, thereafter,
it increases almost proportionally as in the benchmark case. Hence, specifications 2 and 3
show the potential for a stock market crash. If, given specification 3, the dividend declines
from 4.3 to 3.8, then the price of the market portfolio crashes from about 1,400 to around 260.
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Table 1: For each figure the table shows the RRA of the three investors (γ) and their relative expected
marginal utility (λ−1). The parameters used in the polynomial approximation of the stochastic discount
factor are the exponents (δ) and the weights (α).

Figure 1 Figure 2 Figure 3
γ1 5 δ1 4.5 γ1 20 δ1 20 γ1 20 δ1 19
γ2 3 δ2 3 γ2 3 δ2 12 γ2 18 δ2 6
γ3 1 δ3 1.2 γ3 1 δ3 2 γ3 1 δ3 2
λ−1

1 1 α1 1 λ−1
1 10−3 α1 1 λ−1

1 10 α1 1
λ−1

2 0.6 α2 1 λ−1
2 20 α2 1 λ−1

2 6 α2 0.001
λ−1

3 1 α3 0.2 λ−1
3 1 α3 0.01 λ−1

3 1 α3 0.0001
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Figure 5: Asset price as a function of the concurrent monthly dividend. The figure shows for four different
specifications the asset price as a function of the concurrent monthly dividend. The first graph (a) shows
the benchmark case of constant aggregate RRA. The other graph shows the asset prices for declining
aggregate RRA as shown in Specification 1 (gray line), Specification 2 (black line) and Specification 3
(dotted line) (Figures 2–4).

A small decline (less than 12 percent) in the dividend, the fundamental variable, triggers
a very strong decline in the market value (more than 80 percent). If the dividend happens
to first increase from 3.8 to 4.3 and then to fall back to 3.8, then the asset price increases
from about 260 to 1,400 and then falls back to about 260. This can be viewed as a bubble.
Technicians would call 260 a support level and 1,400 a resistance level.

The strong financial instability of specifications 2 and 3 is also illustrated by the strong
variability in the elasticity of the asset price with respect to the dividend as shown in Figure 6.
This elasticity varies only little with levels between 1 and 2 in specification 1, but it increases
dramatically to more than 16 in specifications 2 and 3 around a dividend level of 4 so that the
local return volatility will be quite high.

Figure 5 also illustrates instability in expected asset returns. In Figure 5, the expected
asset return is reflected in the slope of the asset price curve. This slope varies except for
the benchmark case; its variation is particularly strong for specifications 2 and 3, due to the
crash potential. Another indicator of instability is the Sharpe-ratio. The simulation shows that
except for the benchmark case the monthly Sharpe-ratio declines with increasing dividend,
similar to the aggregate RRA. This decline is particularly strong for specifications 2 and 3. For
specification 3 the average Sharpe-ratio is around 0.18 given an initial dividend D0 = 4. For
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Figure 6: Elasticity of the asset price with respect to the concurrent monthly dividend. The figure shows
the elasticity of the asset price with respect to the concurrent monthly dividend for declining aggregate
RRA as shown in Specification 1 (gray line), Specification 2 (black line), and Specification 3 (dotted line)
(Figures 2–4). The benchmark case of constant aggregate RRA (not shown in the figure) yields a constant
elasticity of 1.

Table 2: Characteristics of excess returns and return volatility. The table shows the mean annualized
volatility of monthly and 4-year returns, the lag 1-serial correlation of these returns, as well as lag 1-
and lag 4-serial correlations in return volatility. For comparison we also show the theoretical values for
a geometric Brownian motion (constant aggregate RRA). Results are shown for two different start values
(D0 = 1 and D0 = 4) of the dividend process. Specifications 1 to 3 correspond to the aggregate RRA shown
in Figures 2 to 4.

Specification Start value D0 = 1 Start value D0 = 4 GBM
1 2 3 1 2 3

Mean-annualized volatility of monthly returns 0.167 0.192 0.201 0.178 0.843 0.774 0.128
Mean-annualized volatility of 4-year returns 0.166 0.168 0.181 0.177 0.624 0.583 0.128
Mean autocorrelation (lag 1) of monthly returns −0.002 −0.015 −0.011 −0.002 −0.028 −0.023 0
Mean autocorrelation (lag 1) of 4-year returns −0.019 −0.031 −0.055 −0.015 −0.168 −0.179 0
Autocorrelation (lag 1) in monthly return volatility 0.064 0.900 0.890 0.006 0.966 0.964 0
Autocorrelation (lag 4) in monthly return volatility 0.094 0.891 0.895 0.040 0.963 0.959 0

D0 = 1, we find an astonishingly high average Sharpe-ratio of about 2.65. This also indicates
financial instability.

More information on the characteristics of the asset price process is provided in
Table 2. This table presents measures of return volatility and of autocorrelation in returns and
in return volatility for the benchmark case and for specifications 1 to 3. The results are given
for initial dividends of 1 and 4. The initial dividend is relevant since it determines the likely
dividend paths underlying the simulation results. We compare the asset return characteristics
at different initial dividend levels to illustrate the extent of financial instability. In a stable
world the characteristics should depend little on the initial dividend.

The volatility of asset returns equals the dividend volatility of 12.8 percent in the
benchmark case. It is higher for specifications 1 to 3 because of declining aggregate RRA. For
specification 1 and an initial dividend of 1 the return volatility is 16.7 percent on a monthly
basis and 16.6 percent on a 4-year basis. These figures are similar for an initial dividend of 4
indicating financial stability. This is completely different for specifications 2 and 3. Not only
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Figure 7: Serial covariance of the asset return as a function of the monthly dividend. The figure shows the
serial covariance of the monthly asset return as a function of the monthly dividend for declining aggregate
RRA as shown in Specification 1 (gray line), Specification 2 (black line), and Specification 3 (dotted line)
(Figures 2–4). In the benchmark case of constant aggregate RRA there is no serial correlation.

are the figures higher, but also they increase dramatically if the initial dividend is 4, that is, in
the center of the crash potential. The strong price movements in this region produce a high
volatility. This indicates strong financial instability.

All displayed return autocorrelations are negative, except for the benchmark case.
Figure 7 reveals that the serial return covariance is slightly negative everywhere for
specification 1, but this is not true for specifications 2 and 3. Here the autocorrelation becomes
positive at a dividend level of about 3.5, reaches a peak at about 3.7, respectively, 3.9,
and then turns strongly negative before it moves back close to zero. The intuition for this
surprising result is as follows. When the dividend moves up from, say, 3.8 to 4.2, then the
asset return is strongly positive as it is when the dividend moves further up in the next
period from 4.2 to 4.7 implying positive autocorrelation. But when it moves further up from
4.7 to 5.2, then the return will be small implying negative autocorrelation. Hence even though
Table 2 shows negative autocorrelations, this only indicates that in the specifications of strong
financial instability the local negative autocorrelations dominate the local positive ones in our
simulations.

Finally, all the autocorrelations in return volatility shown in the last two rows of Table 2
are positive indicating volatility clustering. Again, this does not rule out varying signs of
local autocorrelation. The autocorrelations are small for specification 1 but quite high for
specifications 2 and 3, in particular, if the initial dividend is 4. The high volatility in the crash
region reinforces volatility clustering. To conclude, the simulations illustrate that instability in
the decline of aggregate relative risk aversion induces instability in important characteristics
of the asset return process and, thus, financial instability.

6. Conclusion

This paper analyzes in a perfect capital market with rational investors the impact of
heterogeneous risk preferences on financial stability. First, it is shown that asset pricing
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is likely to be characterized by declining aggregate relative risk aversion (RRA). Financial
instability is largely driven by the pattern of aggregate RRA. If it declines smoothly then stock
returns display rather stable characteristics. This is not the case if aggregate RRA declines
strongly in some dividend range and weakly otherwise. Then stock return characteristics
display strong instability leading in the extreme to stock market crashes. Whether aggregate
RRA declines smoothly, depends on preferences and endowments of investors. If the
economy is populated with many investors whose relative risk aversion levels are distributed
uniformly across a given range, then aggregate RRA tends to decline smoothly. If there are
basically two groups of investors, one with high and the other one with low RRA, then
aggregate RRA tends to decline in an irregular pattern generating financial instability. In
summary, equilibrium asset returns may display very unstable properties as reflected in
expected returns, volatility, and serial correlation.

The findings of the paper are consistent with many empirical findings on stock returns.
The model setup is deliberately chosen to be simple to pinpoint the importance of the
aggregate RRA pattern for financial instability. Therefore future research should investigate
more complicated models taking into consideration more realistic settings. For example, this
model does not deal with heterogeneous expectations of investors. Also, this model only
analyzes the return of the market portfolio neglecting single stocks. Instability of single stock
return characteristics might be different from that of the market portfolio due to idiosyncratic
risks.

Appendix

A. Proofs

A.1. Proof of Proposition 2.1

Investor i derives her optimal portfolio of date τ-claims from

maxE[ui(xi)] s.t. E
[
xiφ(Dτ)

]
= w0τ . (A.1)

w0τ is the investor’s endowment reserved for buying claims on Dτ . φ(Dτ) is the stochastic
discount factor, that is, φ(Dτ) = Φ0,τ exp(−rfτ). The FOC for xi is (1/λi denotes the Lagrange-
multiplier of the budget constraint)

u′i(xi) =
1
λi
φ(Dτ); ∀Dτ. (A.2)

Differentiate the log of this equation with respect to lnDτ . This yields

ηi(xi)
d lnxi
d lnDτ

= ηM(Dτ); ∀Dτ. (A.3)
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Since d lnxi/d lnDτ = (dxi/dDτ)/αi(Dτ) and
∑

i dxi/dDτ = 1, aggregating (A.3) across all
investors yields

1
ηM(Dτ)

=
∑

i

αi(Dτ)
ηi(xi)

. (A.4)

Differentiate (A.4) with respect to Dτ . This yields

η′M(Dτ)
[
ηM(Dτ)

]2
=
∑

i

η′i(xi)
[
ηi(xi)

]2

dxi
dDτ

αi(Dτ) −
∑

i

1
ηi(xi)

α′i(Dτ). (A.5)

The first term on the right-hand side of (A.5) can be rewritten using (A.3) as

∑

i

η′i(xi)
[
ηi(xi)

]2

d lnxi
d lnDτ

[αi(Dτ)]2 =
1

ηM(Dτ)

∑

i

η′i(xi)
ηi(xi)

[

αi(Dτ)
ηM(Dτ)
ηi(xi)

]2

. (A.6)

The second term on the right-hand side of (A.5) can be rewritten as (since
∑

i α
′
i(Dτ) = 0)

∑

i

α′i(Dτ)
(

1
ηi(xi)

− 1
ηM(Dτ)

)

=
1
Dτ

∑

i

α′i(Dτ)
αi(Dτ)

Dτ

[
1

ηi(xi)
− 1
ηM(Dτ)

]

αi(Dτ)

=
1
Dτ

∑

i

d lnαi
d lnDτ

[
1

ηi(xi)
− 1
ηM(Dτ)

]

αi(Dτ)

=
ηM(Dτ)
Dτ

∑

i

[
1

ηi(xi)
− 1
ηM(Dτ)

]2

αi(Dτ).

(A.7)

The last equation follows from d lnαi/d lnDτ = d lnxi/d lnDτ − 1 and (A.3) which implies
d lnαi/d lnDτ = ηM(Dτ)[1/ηi(xi) − 1/ηM(Dτ)].

Multiplying the revised equation (A.5) by ηM(Dτ)Dτ proves Proposition 2.1.

A.2. Proof of Proposition 2.2

Intertemporal no-arbitrage implies for dates s and t with s > t

Φ0,t(Dt) = E[Φ0,s(Ds) | Dt]. (A.8)

Taking logs and differentiating with respect to lnDt yields

∂ lnΦ0,t

∂ lnDt
= E

[
∂ lnΦ0,s

∂ lnDs

∂ lnDs

∂ lnDt

Φ0,s

Φ0,t
| Dt

]

. (A.9)
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This may be written as

ηΦ,Dt = E
[

ηΦ,Ds
∂ lnDs

∂ lnDt
Φt,s | Dt

]

(A.10)

with Φt,s = Φ0,s/Φ0,t. Differentiating ηΦ,Dt with respect to lnDt yields

∂ηΦ,Dt

∂ lnDt
= E

[
∂ηΦ,Ds

∂ lnDs
Φt,s

(
∂ lnDs

∂ lnDt

)2

| Dt

]

+ E

[

ηΦ,Ds
∂2 lnDs

∂lnDt
2
Φt,s | Dt

]

+ E
[

ηΦ,Ds
∂ lnDs

∂ lnDt

∂ lnΦt,s

∂ lnDt
Φt,s | Dt

]

.

(A.11)

Because of the martingale property Φ0,t = E[Φ0,s | Dt] and Φt,s = Φ0,s/Φ0,t the elasticity of the
(forward) stochastic discount factor Φt,s with respect to the dividend Dt is given by

∂ lnΦt,s

∂ lnDt
=
∂ lnΦ0,s

∂ lnDs

∂ lnDs

∂ lnDt
− E

[
∂ lnΦ0,s

∂ lnDs

∂ lnDs

∂ lnDt
Φt,s | Dt

]

= −ηΦ,Ds
∂ lnDs

∂ lnDt
+ E

[

ηΦ,Ds
∂ lnDs

∂ lnDt
Φt,s | Dt

]

.

(A.12)

Hence, the last term in (A.11) equals −VarianceP̃ [ηΦ,Ds (∂ lnDs/∂ lnDt) | Dt], where
VarianceP̃ [·] is the variance under the equivalent martingale measure P̃ defined by Φt,s.

Regarding the sign of ∂ηΦ,Dt /∂ lnDt as given by (A.11), if ∂ηΦ,Ds /∂ lnDs ≤ 0,
then the first term is negative. The second term is negative for nonaccelerating aggregate
consumption, ∂2 lnDs/∂ lnDt

2 ≤ 0. Since the variance is always positive, the third term is
also negative. This proves the proposition.

A.3. Proof of Proposition 2.3

First, we show that, given investors i = 1, . . . , n with constant RRA η1 ≥ η2 ≥ · · · ≥ ηn and
η1 > ηn,

∣
∣
∣
∣
∂ lnηM(Dτ)
∂ lnDτ

∣
∣
∣
∣ =

n∑

i=1

αi(Dτ)
(
ηM(Dτ)

ηi
− 1

)2

(A.13)

attains its maximum if αi(Dτ) = 0 for every investor i with ηi ∈ (ηn, η1). To simplify notation,
let 1/ηi ≡ zi. Then rewrite

∣
∣
∣
∣
∂ lnηM(Dτ)
∂ lnDτ

∣
∣
∣
∣ = −1 +

n∑

i=1

αi(Dτ)
(
ηM(Dτ)

ηi

)2

= −1 +
n∑

i=1

αi(Dτ)z2
i

[∑n
i=1 αi(Dτ)zi

]2
.

(A.14)
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In equilibrium αi(Dτ) ≥ 0; for all i. Differentiate the last equation with respect to αi, subject
to

∑n
i=1 αi(Dτ) = 1 and αi(Dτ) ≥ 0; for all i. This yields the FOC (u ≡ Lagrange −multiplier):

z2
i

[∑
j αj(Dτ)zj

]2
− 2zi

∑

j

αj(Dτ)z2
j

[∑
j αj(Dτ)zj

]3
≤ u; ∀i. (A.15)

Except for the factors z2
i and 2zi the FOC is the same for all i. Hence it can hold as an

equality only for two investors. For all other investors αi (Dτ) = 0. Then the maximum of
|∂ lnηn(Dτ)/∂ ln(Dτ)| is obtained if α1(Dτ) and αn(Dτ) are positive with α1(Dτ) + αn(Dτ) =
1, for all Dτ.

Second, given only two investors (n = 2), we show that |d lnηM/d lnDτ | is the highest
for

α1 =
z2

(z1 + z2)
=

1/η2

1/η1 + 1/η2
=

η1

η1 + η2
. (A.16)

For n = 2, α2 = 1 − α1 so that

∣
∣
∣
∣
d lnηM
d lnDτ

∣
∣
∣
∣ =

α1
(
z2

1 − z
2
2

)
+ z2

2

(α1(z1 − z2) + z2)2
− 1. (A.17)

Differentiate with respect to α1. Setting the derivitive equal to zero yields

(
α1(z1 − z2) + z2

)2
(
z2

1 − z
2
2

)
= 2

[
α1

(
z2

1 − z
2
2

)
+ z2

2

]
(z1 − z2)(α1(z1 − z2) + z2), (A.18)

or

(
α1(z1 − z2) + z2

)
(z1 + z2) = 2

[
α1

(
z2

1 − z
2
2

)
+ z2

2

]
, (A.19)

or

α1[(z1 − z2){(z1 + z2) − 2(z1 + z2)}] = 2z2
2 − z2(z1 + z2), (A.20)

or

α1(z1 − z2)(z1 + z2) = z1z2 − z2
2 = z2(z1 − z2), (A.21)

or

α1 =
z2

z1 + z2
=

1/η2

1/η1 + 1/η2
=

η1

η1 + η2
. (A.22)

This share is the equilibrium share for D
τ .



24 Advances in Decision Sciences

Third, inserting α1 yields, since α1z1 = α2z2,

∣
∣
∣
∣
∣

d ln∗ηM
d lnDτ

∣
∣
∣
∣
∣
= −1 +

(z1 + z2)
2

4z1z2
= 1 −

(
η1/η2 + 1

)2

4
(
η1/η2

) . (A.23)

In addition, ηM(D
τ) = (η1 + η2)/2 follows.

A.4. Proof of Proposition 3.1

Differentiating the logarithm of equation with respect to lnDt and using ∂ lnDs/∂ lnDt = 1
and (A.12) yields after some manipulation

ηS,Dt = 1 +

∫∞
t exp

(
−rf(s − t)

)
E
(
DsΦt,s

(
−ηΦ,Ds + E

(
ηΦ,Ds Φt,s | Dt

))
| Dt

)
ds

St

= 1 − 1
St

∫∞

t

covP̃
(
Ds, η

Φ,D
s | Dt

)

exp
(
rf(s − t)

) ds,

(A.24)

where covP̃ (·) is the covariance under the martingale measure P̃ . Thus, if ηΦ,Ds is constant,
then ηS,Dt ≡ ∂ lnSt/∂ lnDt = 1. Declining aggregate RRA, ∂ηΦ,Ds /∂Ds < 0, implies
covP̃ (Ds, η

Φ,D
s | Dt) < 0 and, hence, ηS,Dt > 1. Increasing aggregate RRA, ∂ηΦ,Ds /∂Ds > 0,

implies ηS,Dt < 1. The last sentence in Proposition 3.1 follows directly from (3.5).

A.5. Proof of Proposition 3.2

We know that for constant aggregate RRA

Var
(

ln
Vτ
Vt
| Dt

)

= Var
(

ln
Dτ

Dt
| Dt

)

, t < τ. (A.25)

By Proposition 2.1, for declining aggregate RRA ηΦ,Dt , the elasticity is ηS,Dt > 1 so that the
conditional variance of asset returns is higher than the (conditional) variance of the dividend
process, that is,

Var
(

ln
Vτ
Vt
| Dt

)

> Var
(

ln
Dτ

Dt
| Dt

)

, t < τ. (A.26)

Consider now the unconditional variance (i.e., θ = 0):

Var
(

ln
Vτ
Vt

)

= Var(E(lnVτ | Dt) − lnVt) + E(Var(lnVτ | Dt)) (A.27)
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with

E(lnVτ | Dt) − lnVt = E
(∫ τ

t

(

μV (Ss) −
1
2
ΣV (Ss)2

)

ds | Dt

)

. (A.28)

We need to show that Var(ln(Vτ/Vt)) is greater than

Var
(

ln
Dτ

Dt

)

= Var(lnDτ | Dt). (A.29)

From (A.26) it follows that the second term on the right-hand side of (A.27) exceeds
Var(ln(Dτ/Dt)). As the first term on the right-hand side of (A.27) is also positive, we are
done. The proof is the same for the variance conditional on Dθ; 0 < θ < t. The conditional
total return variance increases if ηS,D increases everywhere. Hence, variability of overreaction
implies variability in the conditional total return variance.

A.6. Proof of Proposition 3.3

Since by definition CERt,τ ≡
∫τ
t (dSs/Ss)+

∫τ
t (Ds/Ss−rf)ds, and the riskless rate rf is assumed

constant, the covariance is given by

Cov
(
CERt,τ , μV (Sτ) − rf | Dt

)
= Cov

(∫ τ

t

dSs
Ss

+
∫ τ

t

Ds

Ss
ds,

∫ τ

t

dμV (Ss) | Dt

)

= E
([∫ τ

t

dSs
Ss

+
∫ τ

t

Ds

Ss
ds − E

(∫ τ

t

dSs
Ss

+
∫ τ

t

Ds

Ss
ds | Dt

)]

×
[∫ τ

t

dμV (Ss) − E
(∫ τ

t

dμV (Ss) | Dt

)]

| Dt

)

.

(A.30)

By (3.4), μV (St) = η
Φ,D
t ηS,Dt σ2

D + rf and ΣS(St) = η
S,D
t σD. Since Vt = αtSt, we obtain ηS,Dt = ηV,Dt

and ΣV (St) = ΣS(St) = η
V,D
t σD. Hence we can rewrite the covariance as

E

((∫ τ

t

ηV,Ds σDdWs

)(∫ τ

t

{

ηV,Ds
∂ηΦ,Ds

∂Ds
+ ηΦ,Ds

∂ηV,Ds
∂Ds

}

σ3
DDsdWs

)

| Dt

)

=
∫ τ

t

E

({

ηV,Ds
∂ηΦ,Ds

∂Ds
+ ηΦ,Ds

∂ηV,Ds
∂Ds

}

σ4
DDsη

V,D
s | Dt

)

ds,

(A.31)

since by Ito’s Lemma the stochastic part of dμV (St) is given by

∂
(
ηΦ,Dt ηV,Dt σ2

D + rf
)

∂Dt
σDDtdWt.

(A.32)
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The elasticities ηV,Ds and ηΦ,Ds are positive. Hence, Cov(CERt,τ , μV (Vτ) − rf | Dt) < [>]0 if
aggregate RRA is declining (increasing) and ηV,Ds is nonincreasing (nondeclining) in Ds. The
latter condition is equivalent to the condition that the instantaneous volatility of the return
index, ΣV (Ss), is not increasing (not declining) because ΣV (Ss) = η

V,D
s σD.

A.7. The Price of the Market Portfolio

The price of the market portfolio at date t, St, is

St =
t+h∑

s=t
exp

(
rf(t − s)

)
E[DsΦt,s | Dt) + exp

(
−rfh

)
E
(
dpDϑ

t+hΦt,t+h | Dt

)

= A
t+h∑

s=t
exp

(
rf(t − s)

) N∑

i=1

D1−δiϑ
t Bit,sexp

[

(1 − δiϑ(s − t))
{
μD − δiϑσ2

D

2

}]

+A exp
(
−rfh

) N∑

i=1

D
ϑ(1−δi)
t βidp

1−δiexp

[

(1 − δi)ϑh
{
μD − [(1 − δi)ϑ − 1]σ2

D

2

}]

(A.33)

with

A−1 ≡
N∑

i=1

D−δiϑt Bit,t

Bit,s ≡ βidp
−δi exp

[

−δiϑ(t + h − s)
{
μD − [δiϑ + 1]σ2

D

2

}]

.

(A.34)
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Mathématique de Montréal, the CoFE (University of Konstanz), the ZEW (Mannheim), and
a grant by the Deutsche Bundesbank is gratefully acknowledged.



Advances in Decision Sciences 27

References

[1] R. J. Shiller, Irrational Exuberance, Princeton University Press, Princeton, NJ, USA, 2000.
[2] J. Wang, “The term structure of interest rates in a pure exchange economy with heterogeneous

investors,” Journal of Financial Economics, vol. 41, pp. 75–110, 1996.
[3] J. Y. Campbell and J. H. Cochrane, “By force of habit: a consumption-based explanation of aggregate

stock market behavior,” Journal of Political Economy, vol. 107, no. 2, pp. 205–251, 1999.
[4] Y. L. Chan and L. Kogan, “Catching up with the Joneses: heterogeneous preferences and the dynamics

of asset prices,” Journal of Political Economy, vol. 110, no. 6, pp. 1255–1285, 2002.
[5] Y. Aı̈t-Sahalia and A. W. Lo, “Nonparametric risk management and implied risk aversion,” Journal of

Econometrics, vol. 94, no. 1-2, pp. 9–51, 2000.
[6] J. C. Jackwerth, “Recovering risk aversion from option prices and realized returns,” Review of Financial

Studies, vol. 13, pp. 433–451, 2000.
[7] J. V. Rosenberg and R. F. Engle, “Empirical pricing kernels,” Journal of Financial Economics, vol. 64, pp.

341–372, 2002.
[8] R. Bliss and N. Panigirtzoglou, “Option-implied risk aversion estimates,” Journal of Finance, vol. 59,

pp. 407–446, 2004.
[9] R. F. Dittmar, “Nonlinear pricing kernels, kurtosis preference, and evidence from the cross section of

equity returns,” Journal of Finance, vol. 57, no. 1, pp. 369–403, 2002.
[10] G. Barone-Adesi, R. F. Engle, and L. Mancini, “A GARCH option pricing model with filtered historical

simulation,” Review of Financial Studies, vol. 21, no. 3, pp. 1223–1258, 2008.
[11] S. Benninga and J. Mayshar, “Heterogeneity and option pricing,” Review of Derivatives Research, vol. 4,

pp. 7–27, 2000.
[12] A. Bick, “On the consistency of the Black-Scholes model with a general equilibrium framework,”

Journal of Financial and Quantitative Analysis, vol. 22, no. 3, pp. 259–275, 1987.
[13] G. Franke, R. C. Stapleton, and M. G. Subrahmanyam, “When are options overpriced? The Black-

Scholes model and alternative characterisations of the pricing kernel,” European Finance Review, vol.
3, pp. 79–102, 1999.

[14] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of Political Economy,
vol. 81, pp. 637–654, 1973.

[15] R. C. Stapleton and M. G. Subrahmanyam, “Risk aversion and the intertemporal behavior of asset
prices,” Review of Financial Studies, vol. 3, pp. 677–693, 1990.

[16] F. Gomes and A. Michaelidis, “Asset pricing with limited risk sharing and heterogeneous agents,”
Review of Financial Studies, vol. 21, pp. 415–448, 2008.

[17] M. J. Brennan, A. W. Wang, and Y. Xia, “Estimation and test of a simple model of intertemporal capital
asset pricing,” Journal of Finance, vol. 59, no. 4, pp. 1743–1775, 2004.

[18] M. J. Brennan and Y. Xia, “Risk and valuation under an intertemporal capital asset pricing model,”
Journal of Business, vol. 79, no. 1, pp. 1–35, 2006.

[19] D. M. Kreps and E. L. Porteus, “Temporal resolution of uncertainty and dynamic choice theory,”
Econometrica, vol. 46, no. 1, pp. 185–200, 1978.

[20] L. G. Epstein and S. E. Zin, “Substitution, risk aversion, and the temporal behavior of consumption
and asset returns: a behavorial framework,” Econometrica, vol. 57, no. 4, pp. 937–969, 1989.
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